Variation in the Composition and Quality of Nigella sativa L. Seed Oils—The Underestimated Impact on Possible Health-Promoting Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Variation in Oil Yield and Fatty Acids Composition
2.2. Variations in Unsaponifiable Compounds
2.3. Variations in Quality Indices
2.4. Variation in Volatile Compounds of Oils
2.5. Principal Component Analysis
3. Materials and Methods
3.1. Plant Material
- India, glass jar (June 2023);
- India, paper and foil bag (February 2024);
- India, glass jar (March 2024);
- India, paper and foil bag (April 2024);
- India, cardboard box (November 2024);
- India, cardboard box (December 2024);
- Syria, foil bag (November 2023);
- Syria, foil bag (March 2024);
- Syria, foil bag (June 2024);
- Egypt, foil bag (March 2024);
- Egypt, foil bag (January 2025);
- Poland, paper and foil bag (November 2023);
- Poland, foil bag (December 2024).
3.2. Solvents and Reagents
3.3. Experimental Methods
3.3.1. Solvent Extraction
3.3.2. Quality Indices
3.3.3. Fatty Acids Composition
3.3.4. Phytosterols and Squalene Content
3.3.5. Tocols Content
3.3.6. Volatile Compounds Profiles
3.3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albakry, Z.; Karrar, E.; Ahmed, I.A.M.; Oz, E.; Proestos, C.; El Sheikha, A.F.; Oz, F.; Wu, G.; Wang, X. Nutritional Composition and Volatile Compounds of Black Cumin (Nigella sativa L.) Seed, Fatty Acid Composition and Tocopherols, Polyphenols, and Antioxidant Activity of Its Essential Oil. Horticulturae 2022, 8, 575. [Google Scholar] [CrossRef]
- Haron, H.; Grace-Lynn, C.; Shahar, S. Comparison of Physicochemical Analysis and Antioxidant Activities of Nigella sativa Seeds and Oils from Yemen, Iran and Malaysia. Sains Malays. 2014, 43, 535–542. [Google Scholar]
- Salehi, B.; Quispe, C.; Imran, M.; Ul-Haq, I.; Živković, J.; Abu-Reidah, I.M.; Sen, S.; Taheri, Y.; Acharya, K.; Azadi, H.; et al. Nigella Plants—Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Front. Pharmacol. 2021, 12, 625386. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Sharfaraz, A.; Dutta, A.; Ahsan, A.; Masud, M.A.; Ahmed, I.A.; Goh, B.H.; Urbi, Z.; Sarker, M.M.R.; Ming, L.C. A Review of Ethnobotany, Phytochemistry, Antimicrobial Pharmacology and Toxicology of Nigella sativa L. Biomed. Pharmacother. 2021, 143, 112182. [Google Scholar] [CrossRef]
- Burdock, G.A. Assessment of Black Cumin (Nigella sativa L.) as a Food Ingredient and Putative Therapeutic Agent. Regul. Toxicol. Pharm. 2022, 128, 105088. [Google Scholar] [CrossRef]
- Rahim, M.A.; Shoukat, A.; Khalid, W.; Ejaz, A.; Itrat, N.; Majeed, I.; Koraqi, H.; Imran, M.; Nisa, M.U.; Nazir, A.; et al. A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa). Foods 2022, 11, 2826. [Google Scholar] [CrossRef]
- PubMed PubMed Database. Available online: https://pubmed.ncbi.nlm.nih.gov (accessed on 1 April 2023).
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Begum, S.; Mannan, A. A Review on Nigella sativa: A Marvel Herb. J. Drug Deliv. Ther. 2020, 10, 213–219. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An Updated Knowledge of Black Seed (Nigella sativa Linn.): Review of Phytochemical Constituents and Pharmacological Properties. J. Herb. Med. 2021, 25, 100404. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Xu, Q.; Ma, J.; Li, X.; Yan, J.; Tian, Y.; Wen, Y.; Chen, T. Nigella sativa and Health Outcomes: An Overview of Systematic Reviews and Meta-Analyses. Front. Nutr. 2023, 10, 1107750. [Google Scholar] [CrossRef] [PubMed]
- Koshak, A.; Wei, L.; Koshak, E.; Wali, S.; Alamoudi, O.; Demerdash, A.; Qutub, M.; Pushparaj, P.; Heinrich, M. The Benefits of Nigella sativa Oil Supplementation on Asthma Inflammation: A Randomised, Double-Blind, Placebo-Controlled, Phase II Trial. Planta Medica 2016, 82, P932. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Effects of Nigella sativa Oil on Pain Intensity and Physical Functions in Patients with Knee Osteoarthritis: A Randomized Controlled Trial. Available online: https://www.clinicaltrials.gov/study/nct05541185 (accessed on 1 April 2023).
- Farag, M.A.; El-Kersh, D.M.; Rasheed, D.M.; Heiss, A.G. Volatiles Distribution in Nigella Species (Black Cumin Seeds) and in Response to Roasting as Analyzed via Solid-Phase Microextraction (SPME) Coupled to Chemometrics. Ind. Crops Prod. 2017, 108, 564–571. [Google Scholar] [CrossRef]
- Kabir, Y.; Akasaka-Hashimoto, Y.; Kubota, K.; Komai, M. Volatile Compounds of Black Cumin (Nigella sativa L.) Seeds Cultivated in Bangladesh and India. Heliyon 2020, 6, e05343. [Google Scholar] [CrossRef]
- Alkhatib, H.; Mawazi, S.; Al-Mahmood, S.A.; Zaiter, A.; Doolaanea, A. Thymoquinone Content in Marketed Black Seed Oil in Malaysia. J. Pharm. Bioallied Sci. 2020, 12, 284. [Google Scholar] [CrossRef]
- Khaikin, E.; Chrubasik-Hausmann, S.; Kaya, S.; Zimmermann, B.F. Screening of Thymoquinone Content in Commercial Nigella sativa Products to Identify a Promising and Safe Study Medication. Nutrients 2022, 14, 3501. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, Y.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. A Comprehensive Review of the Physicochemical, Quality and Nutritional Properties of Nigella sativa Oil. Food Rev. Int. 2019, 35, 342–362. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Momot, M.; Stawicka, B.; Rabiej-Kozioł, D. Effects of the Chemical Composition on the Antioxidant and Sensory Characteristics and Oxidative Stability of Cold-Pressed Black Cumin Oils. Antioxidants 2022, 11, 1556. [Google Scholar] [CrossRef] [PubMed]
- Prakhova, T.Y. Ecological Aspects of the Productivity of Nigella Varieties under the Conditions of the Middle Volga Region. Russ. Agric. Sci. 2022, 48, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, B.; Musa Özcan, M. Fatty Acids, Tocopherol, and Sterol Contents of Some Nigella Species Seed Oil. Czech J. Food Sci. 2011, 29, 145–150. [Google Scholar] [CrossRef]
- Dessie, A.B.; Abate, T.M.; Adane, B.T.; Tesfa, T.; Getu, S. Estimation of Technical Efficiency of Black Cumin (Nigella sativa L.) Farming in Northwest Ethiopia: A Stochastic Frontier Approach. J. Econ. Struct. 2020, 9, 18. [Google Scholar] [CrossRef]
- CBI. The European Market Potential for Cumin Seeds. Available online: https://www.cbi.eu/market-information/spices-herbs/cumin/market-potential (accessed on 1 April 2023).
- Tridge. Black Cumin Oil. Available online: https://www.tridge.com/intelligences/black-cumin-seed-oil/export (accessed on 1 April 2023).
- Kıralan, M. Changes in Volatile Compounds of Black Cumin (Nigella sativa L.) Seed Oil during Thermal Oxidation. Int. J. Food Prop. 2014, 17, 1482–1489. [Google Scholar] [CrossRef]
- Suri, K.; Singh, B.; Kaur, A.; Yadav, M.P.; Singh, N. Impact of Infrared and Dry Air Roasting on the Oxidative Stability, Fatty Acid Composition, Maillard Reaction Products and Other Chemical Properties of Black Cumin (Nigella sativa L.) Seed Oil. Food Chem. 2019, 295, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Farhan, N.; Salih, N.; Salimon, J. Physiochemical Properties of Saudi Nigella sativa L. (‘Black Cumin’) Seed Oil. OCL 2021, 28, 11. [Google Scholar] [CrossRef]
- Kiralan, M.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Physicochemical Properties and Stability of Black Cumin (Nigella sativa) Seed Oil as Affected by Different Extraction Methods. Ind. Crops Prod. 2014, 57, 52–58. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Laukagalis, V.; Paulauskienė, A.; Baltušnikienė, A.; Meškinytė, E. Quality Changes of Cold-Pressed Black Cumin (Nigella sativa L.), Safflower (Carthamus tinctorius L.), and Milk Thistle (Silybum marianum L.) Seed Oils during Storage. Plants 2023, 12, 1351. [Google Scholar] [CrossRef]
- Hassanien, M.M.M.; Abdel-Razek, A.G.; Rudzińska, M.; Siger, A.; Ratusz, K.; Przybylski, R. Phytochemical Contents and Oxidative Stability of Oils from Non-traditional Sources. Eur. J. Lipid Sci. Tech. 2014, 116, 1563–1571. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Elyes Kchouk, M.; Marzouk, B. Lipid and Aroma Composition of Black Cumin (Nigella sativa L.) Seeds from Tunisia. J. Food Biochem. 2008, 32, 335–352. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J. Oxidative Stability of Black Cumin (Nigella sativa L.), Coriander (Coriandrum sativum L.) and Niger (Guizotia abyssinica Cass.) Crude Seed Oils upon Stripping. Eur. J. Lipid Sci. Tech. 2004, 106, 35–43. [Google Scholar] [CrossRef]
- Javed, S.; Sultan, M.H.; Ahsan, W.; Najmi, A.; Alhazmi, H.A.; Albratty, M.; Madkhali, O.; Almoshari, Y.; Ur Rehman, Z.; Alam, S. Chemometrics-Assisted Comparative Chemical Profiling of Marketed Nigella sativa L. Seed Oils Using Spectroscopic Techniques. Lat. Am. J. Pharm. 2022, 41, 1917–1929. [Google Scholar]
- Lipinski, M.; Scholz, M.; Pieper, K.; Fischer, R.; Prüfer, D.; Müller, K. A Squalene Epoxidase from Nigella sativa Participates in Saponin Biosynthesis and Mediates Terbinafine Resistance in Yeast. Open Life Sci. 2009, 4, 163–169. [Google Scholar] [CrossRef]
- Al-Naqeeb, G.; Ismail, M.; Al-Zuba, A.S. Fatty Acid Profile, α-Tocopherol Content and Total Antioxidant Activity of Oil Extracted from Nigella Sativa Seeds. Int. J. Pharmacol. 2009, 5, 244–250. [Google Scholar] [CrossRef]
- Mène-Saffrané, L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants 2017, 7, 2. [Google Scholar] [CrossRef]
- Adams, S.R.; Langton, F.A. Photoperiod and Plant Growth: A Review. J. Hortic. Sci. Biotechnol. 2005, 80, 2–10. [Google Scholar] [CrossRef]
- Alimentarius C. Codex standard for edible fats and oils not covered by individual standards. Codex Stan. 1999, 19, 1981. [Google Scholar]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Elyasi, R.; Majdi, M.; Krause, S.T.; Kücükay, N.; Azizi, A.; Degenhardt, J. Identification and Functional Characterization of a γ-Terpinene Synthase in Nigella sativa L (Black Cumin). Phytochemistry 2022, 202, 113290. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 660; Animal and Vegetable Fats and Oils. Determination of Acid Value and Acidity. Polski Komitet Normalizacyjny: Warsaw, Poland, 2010.
- PN-EN ISO 3960; Animal and Vegetable Fats and Oils. Determination of Peroxide Value. Iodometric (Visual) Endpoint Determination. Polski Komitet Normalizacyjny: Warsaw, Poland, 2012.
- AOCS Official Methods Cd 7-58; Poly-Unsaturated Acids. Ultraviolet Spectrophotometric Method. Association of Official Analytical Chemists: Washington, DC, USA, 2017.
- Dąbrowski, G.; Konopka, I.; Czaplicki, S. Variation in Oil Quality and Content of Low Molecular Lipophilic Compounds in Chia Seed Oils. Int. J. Food Prop. 2018, 21, 2016–2029. [Google Scholar] [CrossRef]
- Lampi, A.-M. Analysis of Tocopherols and Tocotrienols by HPLC; AOCS Lipid Library: Champaign, IL, USA, 2023. [Google Scholar]
Sample | Oil Yield (g/100 g) | Fatty Acids (% of Total Fatty Acids) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:0 | C16:0 | C16:1 | C17:0 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C20:1 | C20:2 | C22:0 | C22:1 | ||
1 | 40.51 ± 1.25 b | 0.21 ± 0.00 cd | 13.02 ± 0.09 de | 0.19 ± 0.00 cde | 0.07 ± 0.01 a | 2.93 ± 0.04 cd | 25.06 ± 0.07 de (1.08 ± 0.00 f) | 55.32 ± 0.18 abc | 0.14 ± 0.00 a | 0.15 ± 0.03 ab | 0.29 ± 0.01 cd | 2.14 ± 0.02 c | 0.03 ± 0.00 b | 0.49 ± 0.08 ab |
2 | 40.15 ± 0.90 b | 0.17 ± 0.01 a | 12.00 ± 0.01 ab | 0.17 ± 0.01 abc | 0.07 ± 0.00 a | 3.30 ± 0.01 efg | 26.37 ± 0.06 f (1.00 ± 0.01 bcde) | 54.61 ± 0.01 ab | 0.20 ± 0.01 abc | 0.21 ± 0.00 bc | 0.25 ± 0.00 abc | 1.86 ± 0.02 ab | 0.12 ± 0.01 d | 0.71 ± 0.01 ab |
3 | 39.50 ± 1.05 b | 0.21 ± 0.01 cd | 13.01 ± 0.04 de | 0.19 ± 0.01 bcde | 0.07 ± 0.00 a | 3.06 ± 0.06 de | 24.91 ± 0.07 d (0.93 ± 0.01 a) | 55.15 ± 0.03 abc | 0.15 ± 0.00 ab | 0.16 ± 0.00 ab | 0.30 ± 0.01 d | 2.16 ± 0.00 cd | nd a | 0.64 ± 0.14 ab |
4 | 42.83 ± 0.07 bc | 0.20 ± 0.01 bcd | 13.05 ± 0.14 de | 0.21 ± 0.00 e | 0.06 ± 0.01 a | 3.04 ± 0.01 d | 24.29 ± 0.01 c (0.99 ± 0.03 bcd) | 54.81 ± 0.25 ab | 0.21 ± 0.01 bc | 0.20 ± 0.03 abc | 0.43 ± 0.01 e | 2.32 ± 0.05 e | nd a | 1.21 ± 0.07 ab |
5 | 35.77 ± 1.23 a | 0.22 ± 0.00 d | 13.11 ± 0.03 e | 0.20 ± 0.01 de | 0.07 ± 0.01 a | 2.65 ± 0.00 b | 23.32 ± 0.01 b (1.01 ± 0.02 bcde) | 57.01 ± 0.13 c | 0.17 ± 0.01 ab | 0.16 ± 0.02 ab | 0.30 ± 0.01 d | 2.30 ± 0.05 e | 0.03 ± 0.00 b | 0.50 ± 0.18 ab |
6 | 41.84 ± 0.77 bc | 0.20 ± 0.01 abcd | 13.20 ± 0.01 e | 0.16 ± 0.00 ab | 0.08 ± 0.01 a | 3.47 ± 0.01 gh | 26.01 ± 0.04 f (1.05 ± 0.03 ef) | 53.42 ± 0.33 a | 0.16 ± 0.02 ab | 0.21 ± 0.02 bc | 0.26 ± 0.01 abcd | 1.94 ± 0.03 ab | 0.06 ± 0.00 c | 0.86 ± 0.35 ab |
7 | 41.62 ± 1.03 bc | 0.17 ± 0.01 ab | 11.77 ± 0.17 a | 0.16 ± 0.01 ab | 0.08 ± 0.01 a | 3.47 ± 0.16 gh | 26.25 ± 0.35 f (0.96 ± 0.01 ab) | 55.07 ± 0.91 abc | 0.16 ± 0.01 ab | 0.21 ± 0.01 bc | 0.25 ± 0.01 ab | 1.83 ± 0.04 a | 0.16 ± 0.01 e | 0.44 ± 0.23 ab |
8 | 40.49 ± 0.14 b | 0.19 ± 0.01 abc | 12.39 ± 0.04 bc | 0.17 ± 0.01 abcd | 0.08 ± 0.00 a | 3.16 ± 0.1 def | 25.33 ± 0.18 de (0.98 ± 0.01 abc) | 55.41 ± 0.73 abc | 0.44 ± 0.04 e | 0.19 ± 0.02 abc | 0.23 ± 0.01 a | 1.83 ± 0.03 a | 0.06 ± 0.00 c | 0.57 ± 0.42 ab |
9 | 35.91 ± 0.36 a | 0.18 ± 0.01 ab | 12.68 ± 0.15 cd | 0.16 ± 0.00 ab | 0.07 ± 0.00 a | 3.40 ± 0.01 fgh | 25.43 ± 0.17 e (0.98 ± 0.01 abc) | 54.60 ± 0.45 ab | 0.45 ± 0.00 e | 0.20 ± 0.00 abc | 0.25 ± 0.02 ab | 1.89 ± 0.04 ab | 0.08 ± 0.01 c | 0.65 ± 0.52 ab |
10 | 41.02 ± 1.25 bc | 0.17 ± 0.01 a | 12.66 ± 0.08 cd | 0.15 ± 0.00 a | 0.07 ± 0.00 a | 3.33 ± 0.06 fg | 25.05 ± 0.04 de (1.03 ± 0.01 cdef) | 54.26 ± 0.88 ab | 0.35 ± 0.02 d | 0.20 ± 0.01 abc | 0.25 ± 0.01 ab | 1.97 ± 0.01 b | 0.06 ± 0.02 bc | 1.52 ± 0.74 b |
11 | 44.11 ± 0.05 c | 0.19 ± 0.01 abc | 13.13 ± 0.08 e | 0.16 ± 0.01 a | 0.08 ± 0.01 a | 3.59 ± 0.05 h | 26.03 ± 0.05 f (1.04 ± 0.01 def) | 53.54 ± 0.16 a | 0.18 ± 0.01 ab | 0.23 ± 0.00 c | 0.27 ± 0.00 abcd | 2.12 ± 0.04 c | 0.08 ± 0.00 c | 0.43 ± 0.10 ab |
12 | 35.67 ± 0.02 a | 0.22 ± 0.01 cd | 11.93 ± 0.12 a | 0.20 ± 0.01 de | 0.07 ± 0.01 a | 2.27 ± 0.02 a | 20.59 ± 0.07 a (1.03 ± 0.01 cdef) | 61.54 ± 0.16 d | 0.24 ± 0.01 c | 0.14 ± 0.00 a | 0.27 ± 0.00 abcd | 2.54 ± 0.03 f | nd a | nd a |
13 | 35.96 ± 0.87 a | 0.22 ± 0.01 cd | 13.36 ± 0.16 e | 0.20 ± 0.00 e | 0.07 ± 0.01 a | 2.80 ± 0.03 bc | 23.20 ± 0.04 b (1.00 ± 0.01 bcde) | 55.99 ± 0.93 bc | 0.16 ± 0.01 ab | 0.16 ± 0.01 ab | 0.29 ± 0.01 bcd | 2.29 ± 0.03 de | nd a | 1.29 ± 0.75 ab |
Mean | 39.64 | 0.20 | 12.72 | 0.18 | 0.07 | 3.11 | 24.76 (1.00) | 55.44 | 0.23 | 0.19 | 0.28 | 2.09 | 0.05 | 0.72 |
SD | 2.90 | 0.02 | 0.53 | 0.02 | 0.01 | 0.38 | 1.61 (0.04) | 2.06 | 0.11 | 0.03 | 0.05 | 0.23 | 0.05 | 0.41 |
CV (%) | 7.31 | 9.88 | 4.19 | 11.40 | 8.29 | 12.14 | 6.50 (4.18) | 3.72 | 47.24 | 15.28 | 17.92 | 10.80 | 95.32 | 57.58 |
Sample | Squalene | Campesterol | Stigmasterol | β-Sitosterol | Isofucosterol | Cycloartenol | 24-Methylene Cyclolanostanol | Others | Total |
---|---|---|---|---|---|---|---|---|---|
1 | nd a | 87.88 ± 3.30 cd | 193.28 ± 1.57 de | 713.80 ± 12.54 bc | 229.28 ± 9.67 de | 540.21 ± 18.26 f | 215.20 ± 1.69 f | 29.99 ± 2.89 de | 2009.63 ± 49.92 cde |
2 | nd a | 113.36 ± 3.00 ef | 172.16 ± 6.30 bcde | 959.30 ± 12.91 g | 210.68 ± 5.73 bcd | 447.99 ± 1.46 bcd | 155.98 ± 5.39 bc | 14.56 ± 0.83 b | 2074.03 ± 33.96 e |
3 | nd a | 90.17 ± 1.79 cd | 173.53 ± 3.92 bcde | 688.78 ± 3.97 b | 196.48 ± 2.71 bcd | 506.10 ± 12.68 ef | 193.79 ± 6.08 ef | 23.45 ± 1.64 cd | 1872.31 ± 27.38 c |
4 | 24.65 ± 11.20 b | 63.81 ± 0.91 b | 115.63 ± 5.40 a | 537.05 ± 10.26 a | 144.31 ± 6.24 a | 387.88 ± 3.08 a | 150.29 ± 0.27 abc | 14.44 ± 1.49 b | 1413.41 ± 16.70 a |
5 | 12.63 ± 2.12 b | 89.58 ± 6.10 cd | 191.31 ± 15.16 de | 717.45 ± 20.44 bc | 202.90 ± 6.87 bcd | 526.67 ± 20.74 ef | 210.68 ± 16.27 f | 32.28 ± 4.14 e | 1970.87 ± 89.73 cde |
6 | nd a | 102.31 ± 5.23 de | 144.09 ± 20.25 ab | 832.26 ± 34.17 de | 177.39 ± 22.15 abc | 407.64 ± 11.98 ab | 151.08 ± 0.45 abc | 14.70 ± 2.02 b | 1829.46 ± 96.24 c |
7 | nd a | 105.17 ± 8.58 de | 154.68 ± 7.28 bc | 912.48 ± 20.24 fg | 205.66 ± 4.14 bcd | 481.60 ± 21.45 cde | 164.41 ± 2.07 bcd | nd a | 2024.00 ± 63.75 cde |
8 | nd a | 106.95 ± 1.16 de | 170.99 ± 0.91 bcde | 817.54 ± 4.43 de | 195.33 ± 2.43 bcd | 411.60 ± 6.77 ab | 157.84 ± 6.37 bc | 14.73 ± 1.83 b | 1874.99 ± 16.11 cd |
9 | nd a | nd a | 150.04 ± 3.75 ab | 770.46 ± 21.26 cd | 173.91 ± 7.01 ab | 378.76 ± 15.91 a | 141.86 ± 2.71 ab | 16.47 ± 0.11 bc | 1631.49 ± 13.51 b |
10 | nd a | 130.51 ± 10.12 f | 185.91 ± 7.90 cde | 846.72 ± 11.86 ef | 212.52 ± 8.16 bcde | 423.33 ± 3.80 ab | 172.75 ± 1.80 cde | 18.34 ± 2.96 bc | 1990.08 ± 42.99 cde |
11 | nd a | 94.95 ± 4.28 cde | 141.79 ± 5.63 ab | 821.37 ± 5.86 de | 179.73 ± 11.86 abc | 444.66 ± 14.36 bc | 181.82 ± 1.81 de | nd a | 1864.32 ± 11.47 c |
12 | nd a | 81.01 ± 1.74 bc | 165.77 ± 8.30 bcd | 735.48 ± 8.30 bc | 252.49 ± 1.05 e | 681.13 ± 19.23 g | 132.37 ± 7.25 a | 22.61 ± 1.54 bcd | 2070.84 ± 22.15 de |
13 | 12.79 ± 0.49 b | 95.84 ± 6.56 cde | 202.52 ± 5.35 e | 745.28 ± 24.41 bc | 217.23 ± 18.37 cde | 501.38 ± 8.38 def | 191.63 ± 3.36 ef | 30.10 ± 2.44 de | 1983.99 ± 52.12 cde |
Mean | 3.85 | 89.35 | 166.28 | 776.77 | 199.84 | 472.23 | 170.75 | 17.82 | 1893.03 |
SD | 7.84 | 31.33 | 24.53 | 107.54 | 27.32 | 82.03 | 26.14 | 10.17 | 187.74 |
CV (%) | 203.59 | 35.07 | 14.75 | 13.85 | 13.67 | 17.37 | 15.31 | 57.06 | 9.92 |
Sample | α-Tocopherol | γ-Tocopherol | β-Tocotrienol | δ-Tocotrienol | Total |
---|---|---|---|---|---|
1 | nd a | 55.22 ± 1.57 bc | 194.16 ± 2.35 cde | 16.29 ± 9.87 bc | 265.67 ± 10.65 b |
2 | 20.14 ± 11.15 a | nd a | 135.97 ± 3.18 a | nd a | 156.12 ± 14.32 a |
3 | nd a | 54.62 ± 13.11 b | 197.79 ± 12.52 de | 18.26 ± 2.71 bc | 270.67 ± 22.92 b |
4 | tr a | 83.77 ± 1.55 cd | 207.84 ± 5.80 ef | 25.59 ± 3.80 c | 317.21 ± 8.05 bc |
5 | tr a | 112.48 ± 15.23 e | 240.68 ± 7.56 g | 5.12 ± 7.24 ab | 358.28 ± 15.55 c |
6 | nd a | nd a | 140.01 ± 1.18 ab | nd a | 140.01 ± 1.18 a |
7 | 4.71 ± 1.61 a | nd a | 137.79 ± 3.20 ab | nd a | 142.50 ± 1.59 a |
8 | nd a | nd a | 178.12 ± 2.49 cd | nd a | 178.12 ± 2.49 a |
9 | nd a | nd a | 182.31 ± 5.58 cde | nd a | 182.31 ± 5.58 a |
10 | nd a | nd a | 165.98 ± 13.58 bc | nd a | 165.98 ± 13.58 a |
11 | tr a | nd a | 147.82 ± 2.26 ab | nd a | 147.82 ± 2.26 a |
12 | 16.81 ± 18.05 a | 360.35 ± 15.20 f | 253.53 ± 10.69 g | nd a | 630.69 ± 43.94 d |
13 | 0.42 ± 0.59 a | 91.72 ± 5.73 de | 234.55 ± 8.50 fg | nd a | 326.68 ± 13.64 bc |
Mean | 3.24 | 58.32 | 185.89 | 5.02 | 252.47 |
SD | 6.92 | 99.90 | 40.28 | 8.91 | 137.65 |
CV (%) | 213.76 | 171.29 | 21.67 | 177.46 | 54.52 |
Sample | Conjugated Dienes (%) | Acid Value (mg/KOH/g) | Peroxide Value (meq O2/kg) |
---|---|---|---|
1 | 0.24 ± 0.00 c | 28.2 ± 0.1 c | 52.0 ± 0.6 c |
2 | 0.17 ± 0.00 ab | 52.3 ± 0.8 g | 18.3 ± 0.3 ab |
3 | 0.24 ± 0.01 c | 30.0 ± 0.1 d | 49.1 ± 0.2 c |
4 | 0.22 ± 0.00 c | 24.9 ± 0.7 b | 46.3 ± 0.2 c |
5 | 0.25 ± 0.00 c | 19.7 ± 0.5 a | 62.5 ± 0.2 d |
6 | 0.18 ± 0.00 ab | 37.6 ± 0.0 f | 15.6 ± 0.7 a |
7 | 0.16 ± 0.00 ab | 34.9 ± 0.2 e | 11.6 ± 0.1 a |
8 | 0.17 ± 0.00 ab | 36.6 ± 0.2 f | 18.1 ± 0.4 ab |
9 | 0.15 ± 0.00 a | 28.3 ± 0.2 c | 16.0 ± 0.1 ab |
10 | 0.19 ± 0.01 b | 23.6 ± 0.4 b | 23.0 ± 0.2 b |
11 | 0.18 ± 0.00 ab | 24.7 ± 0.0 b | 14.3 ± 0.1 a |
12 | 0.25 ± 0.00 c | 51.6 ± 0.3 g | 71.6 ± 0.0 e |
13 | 0.24 ± 0.02 c | 37.5 ± 0.1 f | 66.1 ± 6.2 de |
Mean | 0.20 | 33.08 | 35.73 |
SD | 0.04 | 10.11 | 22.53 |
CV (%) | 18.02 | 30.57 | 63.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, G.; Czaplicki, S.; Konopka, I. Variation in the Composition and Quality of Nigella sativa L. Seed Oils—The Underestimated Impact on Possible Health-Promoting Properties. Molecules 2024, 29, 1360. https://doi.org/10.3390/molecules29061360
Dąbrowski G, Czaplicki S, Konopka I. Variation in the Composition and Quality of Nigella sativa L. Seed Oils—The Underestimated Impact on Possible Health-Promoting Properties. Molecules. 2024; 29(6):1360. https://doi.org/10.3390/molecules29061360
Chicago/Turabian StyleDąbrowski, Grzegorz, Sylwester Czaplicki, and Iwona Konopka. 2024. "Variation in the Composition and Quality of Nigella sativa L. Seed Oils—The Underestimated Impact on Possible Health-Promoting Properties" Molecules 29, no. 6: 1360. https://doi.org/10.3390/molecules29061360
APA StyleDąbrowski, G., Czaplicki, S., & Konopka, I. (2024). Variation in the Composition and Quality of Nigella sativa L. Seed Oils—The Underestimated Impact on Possible Health-Promoting Properties. Molecules, 29(6), 1360. https://doi.org/10.3390/molecules29061360