The Identification and Quantification of 21 Antibacterial Substances by LC-MS/MS in Natural and Organic Liquid Fertilizer Samples
Abstract
:1. Introduction
2. Results
2.1. Method Development
2.2. Validation of the Method
2.3. Real-Sample Analysis
3. Materials and Methods
3.1. Sample Collection
3.2. Standards, Reagents, and Chemicals
3.3. Extraction Procedure
3.4. Antibiotic Detection by LC-MS/MS Analysis
3.5. Validation of the Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guidelines on EU Requirements for Entry of Animals and Products of Animal Origin. Control Plans for Residues of Veterinary Medicines, Pesticides and Contaminants. Available online: https://food.ec.europa.eu/document/download/a2661e60-c1cc-4b0f-98bc-ee5edcf17c9c_en (accessed on 5 May 2023).
- Commission Delegated Regulation (EU) 2022/1644 of 7 July 2022 supplementing Regulation (EU) 2017/625 of the European Parliament and of the Council with specific requirements for the performance of official controls on the use of pharmacologically active substances authorised as veterinary medicinal products or as feed additives and of prohibited or unauthorised pharmacologically active substances and residues thereof. Available online: https://eur-lex.europa.eu/eli/reg_del/2022/1644/oj(accessed on 5 May 2023).
- Commission Implementing Regulation (EU) 2022/1646 of 23 September 2022 on uniform practical arrangements for the performance of official controls as regards the use of pharmacologically active substances authorised as veterinary medicinal products or as feed additives and of prohibited or unauthorised pharmacologically active substances and residues thereof, on specific content of multi-annual national control plans and specific arrangements for their preparation. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R1646(accessed on 5 May 2023).
- Regulation, E.C. Laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation). Regulation (EC) no 1069/2009 of the European Parliament and of the Council of 21 October 2009. Off. J. Eur. Communities 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:300:0001:0033:en:PDF (accessed on 5 May 2023).
- Berendsen, B.J.A.; Wegh, R.S.; Memelink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlots livestock in eight provinces of China. Sci. Total. Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef]
- Osiński, Z.; Patyra, E.; Kwiatek, K. HPLC-FLD-Based Method for the Detection of Sulfonamides in Organic Fertilizers Collected from Poland. Molecules. 2022, 27, 2031. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K.; Nebot, C.; Gavilán, R.E. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules 2020, 25, 3265. [Google Scholar] [CrossRef]
- Frey, L.; Tanunchai, B.; Glaser, B. Antibiotics residues in pig slurry and manure and its environmental contamination potential. A meta-analysis. Agron. Sustain. Dev. 2022, 42, 31. [Google Scholar] [CrossRef]
- Widyasari-Mehta, A.; Hartung, S.; Kreuzig, R. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center center of conventional pig husbandry. J. Environ. Manag. 2016, 177, 129–137. [Google Scholar] [CrossRef]
- Hu, X.; Luo, Y.; Zhou, Q. Simultaneous analysis of selected typical antibiotics in manure by microwave-assisted extraction and LC–MS. Chromatographia 2010, 1, 217–223. [Google Scholar] [CrossRef]
- Wallace, J.S.; Aga, D. Enhancing Extraction and Detection of Veterinary Antibiotics in solid and Liquid Fractions Manure. J. Environ. Qual. 2016, 45, 471–479. [Google Scholar] [CrossRef]
- Ratsak, C.; Guhl, B.; Zuhlke, S.; Delschen, T. Veterinary antibiotic residues in manure and digestates in Northrhein-Westfalia. Environ. Sci. Eur. 2013, 25, 7. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Breier, B.; Hamscher, G. Simultaneous determination of 14 sulfonamides and tetracyclines in biogas plants by liquid-liquid-extraction and liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 2513–2524. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z Dnia 18 Czerwca 2008 r. w Sprawie Wykonania Niektórych Przepisów Ustawy o Nawozach i Nawożeniu. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20081180756 (accessed on 26 February 2019). (In Polish)
- Zhi, S.; Jing, Z.; Haixue, L.; Huihui, W.; Zulin, Z.; Yongzhen, D.; Keqiang, Z. Simultaneous extraction and determination of 45 veterinary antibiotics in swine manure by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2020, 1154, 122286. [Google Scholar] [CrossRef]
- Jansen, L.J.M.; van de Schans, M.G.M.; de Boer, D.; Bongers, I.E.A.; Schmitt, H.; Hoeksma, P.; Berendsen, B.J.A. A new extraction procedure to abate the burden of non-extractable antibiotic residues in manure. Chemosphere 2019, 224, 544–553. [Google Scholar] [CrossRef]
- Xin, C.Y.; Li, G.J.; Qiu, H.P.Z.; Chen, R.; Xu, J.; Kong, X.J.; Shan, Z.J.; Wang, N. Pollution characteristics of 23 veterinary antibiotics in livestock manure and manure-amended soils in Jiangsu province. J. Environ. Sci. Health 2016, 51, 383–392. [Google Scholar]
- Hu, X.G.; Luo, Y.; Zhou, Q.X.; Xu, L. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chin. J. Anal. Chem. 2008, 36, 1162–1166. [Google Scholar] [CrossRef]
- Rashid, A.; Mazhar, S.H.; Zeng, Q.; Kiki, C.; Yu, C.-P. Simultaneous analysis of multiclass residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectromerty. J. Chromatogr. B 2020, 1145, 122103. [Google Scholar] [CrossRef]
- Haller, M.Y.; Muller, S.R.; McArdell, C.S.; Alder, A.C.; Suter, M.J.F. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography mass spectrometry. J. Chromatogr. A 2002, 952, 111–120. [Google Scholar] [CrossRef]
- Olsen, J.; Björklund, E.; Krogh, K.A.; Hansen, M. Development of an analytical methodology for the determination of theantiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure. Anal. Chim. Acta 2012, 755, 69–76. [Google Scholar] [CrossRef]
- Hansen, M.; Krogh, K.A.; Halling-Sørensen, B.; Björklund, E. Determination of ten steroid hormones in animal waste manureand agricultural soil using inverse and integrated clean-up pressurized liquid extraction and gas chromatography-tandem massspectrometry. Anal. Methods 2011, 3, 1087–1095. [Google Scholar] [CrossRef]
- Nebot, C.; Cardelle-Cobas, A.; García-Presedo, I.; Patyra, E.; Cepeda, A.; Franco, C.M. Identification and Quantification of 29 Active Substances byHPLC–ESI-MS/MS in Lyophilized Swine Manure Samples. Molecules. Molecules 2023, 28, 216. [Google Scholar] [CrossRef]
- Argüeso-Mata, M.; Bolado, S.; Jiménez, J.J.; López-Serna, R. Determination of antibiotics and other veterinary drugs in the solid phase of pig manure. Chemosphere 2021, 275, 130039. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, M.; Xiao, H.; Huai, B.; Wang, F.; Pan, G.; Liao, X.; Liu, Y. Development of a modified QuEChERS method for the determination of veterinary antibiotics in swine manure by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2016, 1027, 110–118. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC. Off. J. Eur. Union 2021, 180, 84–109. [Google Scholar]
- Gans, O.; Pfundtner, E.; Winckler, C.; Bauer, A. Antibiotika in Biogasanlagen; Umweltbundesamt Wien: Vienna, Austria, 2010; pp. 1–48. ISBN 978-3-99004-088-1. [Google Scholar]
- Pan, X.; Qiang, W.; Ben, W.; Chen, M. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shanding Province, China. Chemosphere 2011, 84, 695–700. [Google Scholar] [CrossRef] [PubMed]
- ISO 11843-1:1997; Capability of detection. Part 1: Terms and definitions. International Organization for Standardization: Geneva, Switzerland, 1997.
Validation Parameters | Analyte | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OXT | epi-OXT | TC | CTC | epi-CTC | DC | CIP * | ENR * | SAR * | FLU | ||
Selectivity | No interference | ||||||||||
LOD (µg/kg) | 4.4 | 5.1 | 3.1 | 4.0 | 4.3 | 6.2 | 12.0 | 13.1 | 10.2 | 3.1 | |
LOQ (µg/kg) | 7.5 | 7.2 | 5.1 | 6.0 | 7.4 | 8.5 | 15.6 | 17.8 | 18.2 | 6.0 | |
CCα (µg/kg) | 12.3 | 15.2 | 11.3 | 10.2 | 14.8 | 15.4 | 25.8 | 22.2 | 28.0 | 12.2 | |
CCβ (µg/kg) | 15.6 | 18.1 | 15.6 | 13.4 | 17.7 | 21.0 | 36.3 | 31.0 | 37.6 | 17.4 | |
Repeatability (CV %) | |||||||||||
10/20 * µg/kg | 8.0 | 10.1 | 6.4 | 12.0 | 12.0 | 15.6 | 16.0 | 18.0 | 16.8 | 10.3 | |
50/100 * µg/kg | 8.1 | 9.2 | 7.2 | 10.1 | 11.0 | 14.8 | 14.9 | 16.8 | 9.8 | 8.8 | |
500/750 * µg/kg | 5.6 | 10.3 | 5.3 | 9.3 | 8.0 | 17.6 | 15.1 | 17.0 | 9.0 | 9.4 | |
Reproducibility (CV %) | |||||||||||
10/20 * µg/kg | 9.1 | 14.3 | 12.7 | 15.5 | 18.2 | 16.8 | 17.8 | 18.1 | 15.6 | 13.1 | |
50/100 * µg/kg | 11.0 | 12.1 | 9.5 | 12.5 | 11.8 | 17.0 | 13.8 | 19.0 | 16.7 | 15.0 | |
500/750 * µg/kg | 9.4 | 14.7 | 7.6 | 10.1 | 9.5 | 19.2 | 14.9 | 17.6 | 12.3 | 13.2 | |
Recovery (%) | |||||||||||
10/20* µg/kg | 115.4 | 120.4 | 98.6 | 112.3 | 100.4 | 117.0 | 96.4 | 113.9 | 122.1 | 112.2 | |
50/100 * µg/kg | 98.6 | 98.5 | 101.2 | 101.1 | 101.3 | 97.5 | 99.5 | 98.5 | 97.7 | 95.5 | |
500/750 * µg/kg | 102.1 | 114.6 | 114.2 | 98.7 | 111.4 | 96.7 | 102.1 | 104.7 | 93.2 | 88.6 | |
Uncertainty (U %) | |||||||||||
10/20 * µg/kg | 25.1 | 28.1 | 24.6 | 31.0 | 26.6 | 35.0 | 33.0 | 36.0 | 31.0 | 25.2 | |
50/100 * µg/kg | 22.3 | 25.2 | 18.0 | 25.2 | 25.0 | 34.3 | 28.1 | 35.2 | 31.2 | 27.3 | |
500/750 * µg/kg | 21.9 | 26.6 | 15.6 | 21.0 | 20.3 | 35.6 | 28.0 | 30.9 | 25.5 | 26.1 | |
Validation parameters | Analyte | ||||||||||
SGD | SDZ | SMR | SMZ | SMX | TRIM | LINKO | TIAM | TYL | SPIR | VAL | |
Selectivity | No interference | ||||||||||
LOD (µg/kg) | 6.3 | 3.0 | 3.4 | 3.1 | 4.0 | 3.3 | 5.9 | 2.9 | 5.8 | 4.2 | 5.8 |
LOQ (µg/kg) | 8.9 | 5.4 | 6.5 | 6.3 | 7.6 | 6.2 | 7.6 | 5.2 | 8.7 | 8.2 | 7.8 |
CCα (µg/kg) | 16.7 | 11.1 | 17.7 | 12.1 | 10.3 | 12.1 | 13.4 | 11.7 | 17.7 | 13.8 | 14.7 |
CCβ (µg/kg) | 25.3 | 17.2 | 23.8 | 16.1 | 15.4 | 18.4 | 18.5 | 14.5 | 26.4 | 19.4 | 20.1 |
Repeatability (CV %) | |||||||||||
10/20 * µg/kg | 17.1 | 10.3 | 16.1 | 14.1 | 14.5 | 9.8 | 12.1 | 11.4 | 16.6 | 11.0 | 12.3 |
50/100 * µg/kg | 16.0 | 11.4 | 12.5 | 13.4 | 11.3 | 9.4 | 13.5 | 10.8 | 17.1 | 10.6 | 15.0 |
500/750 * µg/kg | 12.0 | 5.7 | 11.9 | 7.7 | 9.8 | 11.7 | 12.1 | 13.0 | 13.4 | 8.5 | 11.4 |
Reproducibility (CV %) | |||||||||||
10/20 * µg/kg | 20.1 | 10.8 | 17.8 | 12.9 | 17.1 | 12.8 | 14.5 | 17.5 | 17.5 | 13.0 | 15.6 |
50/100 * µg/kg | 15.4 | 17.8 | 13.5 | 15.4 | 10.4 | 11.6 | 13.9 | 14.3 | 16.7 | 12.1 | 14.5 |
500/750 * µg/kg | 10.0 | 12.6 | 11.2 | 11.2 | 10.2 | 10.1 | 11.0 | 11.9 | 13.8 | 10.5 | 12.1 |
Recovery (%) | |||||||||||
10/20 * µg/kg | 100.2 | 110.2 | 113.2 | 102.2 | 101.2 | 111.2 | 97.3 | 106.7 | 94.4 | 105.2 | 112.8 |
50/100 * µg/kg | 91.3 | 112.0 | 98.7 | 104.3 | 94.3 | 110.3 | 98.5 | 103.4 | 98.7 | 100.7 | 107.6 |
500/750 * µg/kg | 97.7 | 93.3 | 99.5 | 98.3 | 97.8 | 109.4 | 101.2 | 98.3 | 103.8 | 98.8 | 102.2 |
Uncertainty (U %) | |||||||||||
10/20 * µg/kg | 30.2 | 28.6 | 29.4 | 28.0 | 31.0 | 25.0 | 26.7 | 26.0 | 33.5 | 26.0 | 25.4 |
50/100 * µg/kg | 30.6 | 25.1 | 26.3 | 26.3 | 24.5 | 22.7 | 25.1 | 25.1 | 30.7 | 22.2 | 27.8 |
500/750 * µg/kg | 19.5 | 24.4 | 22.1 | 22.8 | 18.5 | 19.6 | 23.5 | 23.0 | 28.9 | 19.5 | 23.1 |
No. | Analyte [µg/kg] | |||||||
---|---|---|---|---|---|---|---|---|
Sample | DC | OXT+ epi-OXT | CIP | ENR | TIAM | TYL | LINCO | |
Organic liquid fertilizers produced from animal by-products | ||||||||
1. | Post-fermentation sludge from a biogas plant | 148.6 | ||||||
2. | Post-fermentation sludge from a biogas plant | 45.6 | ||||||
3. | Post-fermentation sludge from a biogas plant | 89.2 | ||||||
4. | Post-fermentation sludge from a biogas plant | 135.3 | ||||||
5. | Post-fermentation sludge from a biogas plant | 166.7 | 54.3 | 63.6 | ||||
6. | Post-fermentation sludge from a biogas plant | 24.4 | 43.5 | 27.3 | ||||
7. | Post-fermentation sludge from a biogas plant | 61.9 | 456.3 | |||||
8. | Post-fermentation sludge from a biogas plant | 82.7 | ||||||
9. | Post-fermentation sludge from a biogas plant | 32.3 | ||||||
10. | Post-fermentation sludge from a biogas plant | 13.8 | ||||||
11. | Post-fermentation sludge from a biogas plant | 1002.0 | 23.0 | 38.0 | 216 | 426.0 | 17.0 | 192.0 |
Liquid manure | ||||||||
12. | Slurry from milk cows | 1500.0 + 324.6 | ||||||
13. | Pig slurry | 14,810 | 262.0 | |||||
14. | Pig slurry | 5640.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patyra, E.; Osiński, Z.; Kwiatek, K. The Identification and Quantification of 21 Antibacterial Substances by LC-MS/MS in Natural and Organic Liquid Fertilizer Samples. Molecules 2024, 29, 1644. https://doi.org/10.3390/molecules29071644
Patyra E, Osiński Z, Kwiatek K. The Identification and Quantification of 21 Antibacterial Substances by LC-MS/MS in Natural and Organic Liquid Fertilizer Samples. Molecules. 2024; 29(7):1644. https://doi.org/10.3390/molecules29071644
Chicago/Turabian StylePatyra, Ewelina, Zbigniew Osiński, and Krzysztof Kwiatek. 2024. "The Identification and Quantification of 21 Antibacterial Substances by LC-MS/MS in Natural and Organic Liquid Fertilizer Samples" Molecules 29, no. 7: 1644. https://doi.org/10.3390/molecules29071644
APA StylePatyra, E., Osiński, Z., & Kwiatek, K. (2024). The Identification and Quantification of 21 Antibacterial Substances by LC-MS/MS in Natural and Organic Liquid Fertilizer Samples. Molecules, 29(7), 1644. https://doi.org/10.3390/molecules29071644