Structural and Vibrational Properties of Carboxylates Intercalated into Layered Double Hydroxides: A Joint Computational and Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.1.1. Chemicals
2.1.2. Synthesis of LDHs
2.1.3. Characterization of LDHs
2.1.4. Hydration of LDHs
2.2. Simulations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Choy, J.H.; Choi, S.J.; Oh, J.M.; Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 2007, 36, 122–132. [Google Scholar] [CrossRef]
- Desigaux, L.; Belkacem, M.B.; Richard, P.; Cellier, J.; Léone, P.; Cario, L.; Leroux, F.; Taviot-Guého, C.; Pitard, B. Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Lett. 2006, 6, 199–204. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Lu, S.; He, J.; Wang, Y. Colloidal assembly of proteins with delaminated lamellas of layered metal hydroxide. Langmuir 2009, 25, 10704–10710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef] [PubMed]
- Forano, C.; Costantino, U.; Prévot, V.; Gueho, C.T. Chapter 14.1—Layered Double Hydroxides (LDH). In Handbook of Clay Science; Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 745–782. [Google Scholar] [CrossRef]
- Evans, D.G.; Slade, R.C. Structural aspects of layered double hydroxides. In Layered Double Hydroxides; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–87. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 2016, 4, 10744–10766. [Google Scholar] [CrossRef]
- Del Hoyo, C. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 2007, 36, 103–121. [Google Scholar] [CrossRef]
- Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018, 153, 172–186. [Google Scholar] [CrossRef]
- Taviot-Guého, C.; Prévot, V.; Forano, C.; Renaudin, G.; Mousty, C.; Leroux, F. Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications. Adv. Funct. Mater. 2018, 28, 1703868. [Google Scholar] [CrossRef]
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef]
- Carlino, S. The intercalation of carboxylic acids into layered double hydroxides: A critical evaluation and review of the different methods. Solid State Ion 1997, 98, 73–84. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Ren, L.; Evans, D.G.; Duan, X. Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions. Mater. Chem. Phys. 2004, 85, 207–214. [Google Scholar] [CrossRef]
- Iyi, N.; Yamada, H.; Sasaki, T. Deintercalation of carbonate ions from carbonate-type layered double hydroxides (LDHs) using acid–alcohol mixed solutions. Applied Clay Science 2011, 54, 132–137. [Google Scholar] [CrossRef]
- Lee, S.M.; Tiwari, D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Appl. Clay Sci. 2012, 59-60, 84–102. [Google Scholar] [CrossRef]
- Darmograi, G.; Prelot, B.; Layrac, G.; Tichit, D.; Martin-Gassin, G.; Salles, F.; Zajac, J. Study of Adsorption and Intercalation of Orange-Type Dyes into Mg–Al Layered Double Hydroxide. J. Phys. Chem. C 2015, 119, 23388–23397. [Google Scholar] [CrossRef]
- Whilton, N.T.; Vickers, P.J.; Mann, S. Bioinorganic clays: Synthesis and characterization of amino-andpolyamino acid intercalated layered double hydroxides. J. Mater. Chemistry 1997, 7, 1623–1629. [Google Scholar] [CrossRef]
- Nakayama, H.; Wada, N.; Tsuhako, M. Intercalation of amino acids and peptides into Mg–Al layered double hydroxide by reconstruction method. Int. J. Pharm. 2004, 269, 469–478. [Google Scholar] [CrossRef]
- Aisawa, S.; Takahashi, S.; Ogasawara, W.; Umetsu, Y.; Narita, E. Direct intercalation of amino acids into layered double hydroxides by coprecipitation. J. Solid State Chem. 2001, 162, 52–62. [Google Scholar] [CrossRef]
- Bernal, J.D. The physical basis of life. Proc. Phys. Soc. B 1949, 62, 597. [Google Scholar] [CrossRef]
- Meister, A. Biochemistry of the Amino Acids, Volume II; Academic Press: London, UK, 1965. [Google Scholar]
- Erastova, V.; Degiacomi, M.T.; G Fraser, D.; Greenwell, H.C. Mineral surface chemistry control for origin of prebiotic peptides. Nat. Commun. 2017, 8, 2033. [Google Scholar] [CrossRef]
- Thyveetil, M.A.; Coveney, P.V.; Greenwell, H.C.; Suter, J.L. Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides. J. Am. Chem. Soc. 2008, 130, 4742–4756. [Google Scholar] [CrossRef] [PubMed]
- Rives, V. Characterisation of Layered Double Hydroxides and Their Decomposition Products. Mater. Chem. Phys. 2002, 75, 19–25. [Google Scholar] [CrossRef]
- Grégoire, B.; Erastova, V.; Geatches, D.L.; Clark, S.J.; Greenwell, H.C.; Fraser, D.G. Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals. Geochim. Cosmochim. Acta 2016, 176, 239–258. [Google Scholar] [CrossRef]
- Kumar, P.P.; Kalinichev, A.G.; Kirkpatrick, R.J. Molecular dynamics simulation of the energetics and structure of layered double hydroxides intercalated with carboxylic acids. J. Phys. Chem. C 2007, 111, 13517–13523. [Google Scholar] [CrossRef]
- Newman, S.P.; Di Cristina, T.; Coveney, P.V.; Jones, W. Molecular dynamics simulation of cationic and anionic clays containing amino acids. Langmuir 2002, 18, 2933–2939. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.J.; Kalinichev, A.G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Kalinichev, A.G.; Liu, X.; Cygan, R.T. Introduction to a special issue on molecular computer simulations of clays and clay–water interfaces: Recent progress, challenges, and opportunities. Clays Clay Miner 2016, 64, 335–336. [Google Scholar] [CrossRef]
- Kalinichev, A.G.; Padma Kumar, P.; James Kirkpatrick, R. Molecular dynamics computer simulations of the effects of hydrogen bonding on the properties of layered double hydroxides intercalated with organic acids. Philos. Mag. 2010, 90, 2475–2488. [Google Scholar] [CrossRef]
- Tsukanov, A.; Psakhie, S. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Manasse, E. Idrotalcite e piroaurite. Atti Soc. Toscana Sci. Nat 1915, 24, 92. [Google Scholar]
- Allmann, R. The Crystal Structure of Pyroaurite. Acta Crystallogr. B Struct. Sci. 1968, 24, 972–977. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Segregation and Cation-Ordering in Sjögrenite and Pyroaurite. Mineral. Mag. 1969, 37, 338–342. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Crystal Structures of Some Double Hydroxide Minerals. Mineral. Mag. 1973, 39, 377–389. [Google Scholar] [CrossRef]
- Duan, X.; Evans, D.G. Layered Double Hydroxides; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 119. [Google Scholar]
- Di Bitetto, A.; André, E.; Carteret, C.; Durand, P.; Kervern, G. Probing the Dynamics of Layered Double Hydroxides by Solid-State 27Al NMR Spectroscopy. J. Phys. Chem. C 2017, 121, 7276–7281. [Google Scholar] [CrossRef]
- Grégoire, B.; Ruby, C.; Carteret, C. Structural Cohesion of MII-MIII Layered Double Hydroxides Crystals: Electrostatic Forces and Cationic Polarizing Power. Cryst. Growth Des. 2012, 12, 4324–4333. [Google Scholar] [CrossRef]
- Fahel, J. Intercalation de Dicarboxylates et D’Acides Aminés dans des Hydroxydes Doubles Lamellaires: Relation Composition-Structure. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2016. [Google Scholar]
- Reinholdt, M.X.; Kirkpatrick, R.J. Experimental Investigations of Amino Acid Layered Double Hydroxide Complexes: Glutamate-Hydrotalcite. Chem. Mater. 2006, 18, 2567–2576. [Google Scholar] [CrossRef]
- Choi, G.; Yang, J.H.; Park, G.Y.; Vinu, A.; Elzatahry, A.; Yo, C.H.; Choy, J.H. Intercalative Ion-Exchange Route to Amino Acid Layered Double Hydroxide Nanohybrids and Their Sorption Properties. Eur. J. Inorg. Chem. 2015, 2015, 925–930. [Google Scholar] [CrossRef]
- Wu, W.; Song, L.; Li, Y.C.; Zhang, F.; Zeng, R.C.; Li, S.Q.; Zou, Y.H. Synthesis of glutamate intercalated Mg-Al layered double hydroxides: Influence of stirring and aging time. J. Dispers. Sci. 2021, 42, 2154–2162. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration. In Intermolecular Forces; Pullman, B., Ed.; Springer: Dordrecht, The Netherlands, 1981; Volume 14, pp. 331–342. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003, 24, 1999–2012. [Google Scholar] [CrossRef]
- Case, D.A.; Betz, R.M.; Cerutti, D.S.; Cheatham, T.E., III; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Homeyer, N.; et al. AMBER 2016; University of California: San Francisco, CA, USA, 2016. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- McQuarrie, D.A. Statistical Mechanics; University Science Books: Sausalito, CA, USA, 2000. [Google Scholar]
- Egorov, S.; Skinner, J. Semiclassical approximations to quantum time correlation functions. Chem. Phys. Lett. 1998, 293, 469–476. [Google Scholar] [CrossRef]
- Ramirez, R.; López-Ciudad, T.; Kumar P, P.; Marx, D. Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes. J. Chem. Phys. 2004, 121, 3973–3983. [Google Scholar] [CrossRef] [PubMed]
- Press, W.H. (Ed.) Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2002. [Google Scholar]
- Ingrosso, F.; Monard, G.; Hamdi Farag, M.; Bastida, A.; Ruiz-López, M.F. Importance of polarization and charge transfer effects to model the infrared spectra of peptides in solution. J. Chem. Theory Comput. 2011, 7, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Porwal, V.K.; Carof, A.; Ingrosso, F. Hydration effects on the vibrational properties of carboxylates: From continuum models to QM/MM simulations. J. Comp. Chem. 2023, 44, 1898–1911. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.M.V.; Tasinato, N.; Barone, V.; Amadei, A.; Zanetti-Polzi, L.; Daidone, I. Modeling amino-acid side chain infrared spectra: The case of carboxylic residues. Phys. Chem. Chem. Phys. 2020, 22, 3008–3016. [Google Scholar] [CrossRef] [PubMed]
- Prevot, V.; Forano, C.; Besse, J.P.; Abraham, F. Syntheses and Thermal and Chemical Behaviors of Tartrate and Succinate Intercalated Zn3Al and Zn2Cr Layered Double Hydroxides. Inorg. Chem. 1998, 37, 4293–4301. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Wei, M.; Evans, D.G.; Duan, X. Preparation and Investigation of Thermolysis of L-Aspartic Acid-Intercalated Layered Double Hydroxide. J. Phys. Chem. B 2004, 108, 12381–12387. [Google Scholar] [CrossRef]
- Feng, Y.J.; Williams, G.R.; Leroux, F.; Taviot-Gueho, C.; O’Hare, D. Selective Anion-Exchange Properties of Second-Stage Layered Double Hydroxide Heterostructures. Chem. Mater. 2006, 18, 4312–4318. [Google Scholar] [CrossRef]
- Sutton, C.C.; Franks, G.V.; da Silva, G. Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Hernández, B.; Pflüger, F.; Ghomi, M. Aspartate: An interesting model for analyzing dipole-ion and ion pair interactions through its oppositely charged amine and acid groups. J. Comp. Chem. 2020, 41, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Deacon, G.; Phillips, R. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Dudev, T.; Lim, C. Monodentate versus bidentate carboxylate binding in magnesium and calcium proteins: What are the basic principles? J. Phys. Chem. B 2004, 108, 4546–4557. [Google Scholar] [CrossRef]
- Martínez, D.; Motevalli, M.; Watkinson, M. Is there really a diagnostically useful relationship between the carbon–oxygen stretching frequencies in metal carboxylate complexes and their coordination mode? Dalton Trans. 2010, 39, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Sutton, C.C.; da Silva, G.; Franks, G.V. Modeling the IR spectra of aqueous metal carboxylate complexes: Correlation between bonding geometry and stretching mode wavenumber shifts. Chem. Eur. J. 2015, 21, 6801–6805. [Google Scholar] [CrossRef] [PubMed]
- Cherif, N.F.; Constantino, V.R.L.; Hamdaoui, O.; Leroux, F.; Taviot-Guého, C. New insights into two ciprofloxacin-intercalated arrangements for layered double hydroxide carrier materials. New J. Chem. 2020, 44, 10076–10086. [Google Scholar] [CrossRef]
- Grégoire, B.; Greenwell, H.C.; Fraser, D.G. Peptide Formation on Layered Mineral Surfaces: The Key Role of Brucite-like Minerals on the Enhanced Formation of Alanine Dipeptides. ACS Earth Space Chem. 2018, 2, 852–862. [Google Scholar] [CrossRef]
- Dong, Y.; Komarneni, S.; Zhang, F.; Wang, N.; Terrones, M.; Hu, W.; Huang, W. “Structural instability” induced high-performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for pH-near-neutral borate electrolyte: The role of intercalates. Appl. Catal. B. 2020, 263, 118343. [Google Scholar] [CrossRef]
- Li, C.F.; Zhao, J.W.; Xie, L.J.; Wu, J.Q.; Ren, Q.; Wang, Y.; Li, G.R. Surface-Adsorbed Carboxylate Ligands on Layered Double Hydroxides/Metal–Organic Frameworks Promote the Electrocatalytic Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2021, 60, 18129–18137. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Li, L.; Yuan, C.; Weng, T.C. Boosting the Electrocatalytic Activity of Nickel-Iron Layered Double Hydroxide for the Oxygen Evolution Reaction byTerephthalic Acid. Catalysts 2022, 12, 258. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Q.N.; Yang, Y.B.; Guo, P.F.; Feng, W.X.; Jia, Y.; Wang, K.; Wang, W.T.; He, Z.H.; Liu, Z.T. Enhancing Water Oxidation of Ru Single Atoms via Oxygen-Coordination Bonding with NiFe Layered Double Hydroxide. ACS Catal. 2023, 13, 2771–2779. [Google Scholar] [CrossRef]
- Xiao, F.N.; Wang, K.; Wang, F.B.; Xia, X.H. Highly stable and luminescent layered hybrid materials for sensitive detection of TNT explosives. Anal. Chem. 2015, 87, 4530–4537. [Google Scholar] [CrossRef] [PubMed]
- Leach, A.R. Molecular Modelling: Principles and Applications, 2nd ed.; Prentice Hall: Harlow, UK; New York, NY, USA, 2001. [Google Scholar]
- Kräutler, V.; van Gunsteren, W.F.; Hünenberger, P.H. A Fast SHAKE Algorithm to Solve Distance Constraint Equations for Small Molecules in Molecular Dynamics Simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
- Andrea, T.A.; Swope, W.C.; Andersen, H.C. The Role of Long Ranged Forces in Determining the Structure and Properties of Liquid Water. J. Chem. Phys. 1983, 79, 4576–4584. [Google Scholar] [CrossRef]
Systems | No. of Water Molecules per Anion (Hydration Content) | Interlamellar Spacing (Å) |
---|---|---|
LDH intercalating ASP | ||
0_WAT | 0 (0%) | 9.06 |
1_WAT | 1 (10%) | 9.21 |
3.5_WAT | 3.5 (30%) | 11.21 |
6.5_WAT | 6.5 (80%) | 12.10 |
LDH intercalating GLU | ||
0_WAT | 0 (0%) | 9.08 |
1_WAT | 1 (10%) | 11.57 |
4.25_WAT | 4.25 (30%) | 12.35 |
6.5_WAT | 6.5 (80%) | 12.35 |
LDH intercalating SUC | ||
0_WAT | 0 (0%) | 8.87 |
2_WAT | 2 (10%) | 11.38 |
6.5_WAT | 6.5 (30%) | 11.98 |
Systems | Experimental Band Gap () | Computed Band Gap () |
---|---|---|
LDH intercalating ASP | ||
0_WAT | 196 | 210 |
1_WAT | 190 | 209 |
3.5_WAT | 188 | 197 |
6.5_WAT | 178 | 197 |
LDH intercalating GLU | ||
0_WAT | 211 | 213 |
1_WAT | 198 | 185 |
4.25_WAT | 198 | 192 |
6.5_WAT | 175 | 187 |
LDH intercalating SUC | ||
0_WAT | 230 | 257 |
2_WAT | 145 | 210 |
6.5_WAT | 145 | 200 |
8_WAT | 145 | 200 |
Systems | Parallel Orientation (%) |
---|---|
ASP | |
0_WAT | 55 |
1_WAT | 39 |
3.5_WAT | 9 |
6.5_WAT | 32 |
GLU | |
0_WAT | 86 |
1_WAT | 4 |
4.25_WAT | 15 |
6.5_WAT | 16 |
SUC | |
0_WAT | 100 |
2_WAT | 0 |
6.5_WAT | 15 |
8_WAT | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porwal, V.K.; André, E.; Carof, A.; Bastida Pascual, A.; Carteret, C.; Ingrosso, F. Structural and Vibrational Properties of Carboxylates Intercalated into Layered Double Hydroxides: A Joint Computational and Experimental Study. Molecules 2024, 29, 1853. https://doi.org/10.3390/molecules29081853
Porwal VK, André E, Carof A, Bastida Pascual A, Carteret C, Ingrosso F. Structural and Vibrational Properties of Carboxylates Intercalated into Layered Double Hydroxides: A Joint Computational and Experimental Study. Molecules. 2024; 29(8):1853. https://doi.org/10.3390/molecules29081853
Chicago/Turabian StylePorwal, Vishal K., Erwan André, Antoine Carof, Adolfo Bastida Pascual, Cédric Carteret, and Francesca Ingrosso. 2024. "Structural and Vibrational Properties of Carboxylates Intercalated into Layered Double Hydroxides: A Joint Computational and Experimental Study" Molecules 29, no. 8: 1853. https://doi.org/10.3390/molecules29081853
APA StylePorwal, V. K., André, E., Carof, A., Bastida Pascual, A., Carteret, C., & Ingrosso, F. (2024). Structural and Vibrational Properties of Carboxylates Intercalated into Layered Double Hydroxides: A Joint Computational and Experimental Study. Molecules, 29(8), 1853. https://doi.org/10.3390/molecules29081853