Volatile Fatty Acids Effective as Antibacterial Agents against Three Enteric Bacteria during Mesophilic Anaerobic Incubation
Abstract
:1. Introduction
2. Results
2.1. Effect of VFA Concentrations on Bacteria Kinetics
VFAs at 1, 2 and 4 g/L
2.2. Effect of VFA Types on Bacterial Strains
2.3. Effect of Bacterial Types on the Antibacterial Efficacy of VFAs
2.4. LC50, MBC, and Comparative Toxicity of VFAs
2.5. pH Dynamics during Bacterial Incubation
3. Discussion
3.1. The Antibacterial Effect of VFAs as a Function of Concentration and pH
3.2. Effect of Carbon Chain Length on VFAs Toxicity
3.3. Varied Susceptibility of Bacterial Strains to VFAs
3.4. LC50 and MBC as Indicators of VFA Toxicity
3.5. Influence of Incubation Time on VFAs Toxicity
4. Materials and Methods
4.1. Bacterial Strains and Culture Media
4.2. Volatile Fatty Acids (VFAs) Preparation
4.3. Preparation of Bacterial Broth Cultures
4.4. Experimental Design and Set Up
4.5. Sampling
4.5.1. Bacterial Enumeration
4.5.2. pH Measurement
4.6. Determination of Median Concentration and Minimum Bactericidal Concentration
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Dennehy, C.; Lawlor, P.G.; Hu, Z.; Yang, Q.; McCarthy, G.; Tan, S.P.; Zhan, X.; Gardiner, G.E. Inactivation of Salmonella during dry co-digestion of food waste and pig manure. Waste Manag. 2018, 82, 231–240. [Google Scholar] [CrossRef]
- Thomas, C.; Idler, C.; Ammon, C.; Herrmann, C.; Amon, T. Inactivation of ESBL-/AmpC-producing Escherichia coli during mesophilic and thermophilic anaerobic digestion of chicken manure. Waste Manag. 2019, 84, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Forster-Carneiro, T.; Riau, V.; Perez, M. Mesophilic anaerobic digestion of sewage sludge to obtain class B biosolids: Microbiological methods development. Biomass Bioenergy 2010, 34, 1805–1812. [Google Scholar] [CrossRef]
- Johansen, A.; Nielsen, H.B.; Hansen, C.M.; Andreasen, C.; Carlsgart, J.; Hauggard-Nielsen, H.; Roepstorff, A. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso and thermophilic conditions. Waste Manag. 2013, 33, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Slimane, K.; Fathya, S.; Assia, K.; Hamza, M. Influence of inoculums/substrate ratios on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: Process stability and biogas production. Energy Procedia 2014, 50, 57–63. [Google Scholar] [CrossRef]
- Chen, L.; Jian, S.; Bi, J.; Li, Y.; Chang, Z. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival. J. Environ. Sci. 2016, 43, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Riungu, J.; Ronteltap, M.; van Lier, J.B. Build-up and impact of volatile fatty acids on E. coli and A. lumbricoides during co-digestion of urine diverting dehydrating toilet (UDDT-F) faeces. J. Environ. Manag. 2018, 215, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Watcharasukarn, M.; Kaparaju, P.; Steyer, J.; Krogfelt, K.A.; Angelidaki, I. Screening Escherichia coli, Enterococcus faecalis and Clostridium perfringens as indicator organisms in evaluating pathogen-reducing capacity in biogas plant. Microb. Ecol. 2009, 58, 221–230. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, Z.; Yang, F.; Wang, Y.; Gao, X.; Wang, Y.; Chai, X.; Pan, G.; Zhu, Y. Sensitive and simplified detection of antibiotic influence on the dynamics and versatile changes of faecal short-chain fatty acids. PLoS ONE 2016, 11, e0167032. [Google Scholar] [CrossRef]
- Garcia-Aguirre, J.; Aymerich, E.; Gonzalez-Mtnez, J.; Esteban-Gutierrez, M. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresour. Technol. 2017, 244, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Cheah, Y.; Dosta, J.; Mata-Alvarez, J. Enhancement of volatile fatty acids production from food waste by mature compost addition. Molecules 2019, 24, 2986. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Q.; Wang, X.; Zhou, X.; Zhu, J. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Bioresour. Technol. 2020, 316, 123851. [Google Scholar] [CrossRef] [PubMed]
- Tenuta, M.; Conn, K.L.; Lazarovits, G. Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahlia. Phytopathology 2002, 92, 548–552. [Google Scholar] [CrossRef]
- Gómez-García, M.; Sol, C.; de Nova, P.J.G.; Puyato, M.; Mesas, L.; Puente, H.; Mencia-Ares, O.; Miranda, R.; Arguello, H.; Rubio, P.; et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porc. Health Manag. 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wang, J.; Chang, S.; Chang, F.; Fung, C.; Chuang, Y.; Chen, Y.; Shiau, Y.; Tan, M.; Wang, H.; et al. The antimicrobial susceptibility of Klebsiella pneumoniae from community settings in Taiwan, a trend analysis. Sci. Rep. 2016, 6, 36280. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, D.G. Propionic acid induces apoptosis-like death in Escherichia coli O157. J. Basic Microbiol. 2021, 62, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Yan, C.; Cui, J.; Xue, G.; Fu, H.; Du, B.; Yuan, J. Genetic diversity and pathogenic features in Klebsiella pneumoniae isolates from patients with pyogenic liver abscess and pneumonia. Microbiol. Spectr. 2022, 10, e02646-21. [Google Scholar] [CrossRef] [PubMed]
- Habas, E.; Rayani, A.; Habas, A.; Farfar, K.; El Marghani, A.; Elzouki, A.N. Hemolytic uremic syndrome: An updated review. Yemen J. Med. 2022, 1, 6–13. [Google Scholar] [CrossRef]
- Shen, J.; Zhi, S.; Guo, D.; Jiang, Y.; Xu, X.; Zhao, L.; Lv, J. Prevalence, antimicrobial resistance, and whole genome sequencing analysis of shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from imported foods in China during 2015–2021. Toxins 2022, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Abebaw, A.; Tesera, H.; Belachew, T.; Mihiretie, G.D. The bacterial profile and antibiotic susceptibility pattern among patients with suspected bloodstream infections, Gondar, north-west Ethiopia. Pathol. Lab. Med. Int. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Park, S.; Choi, M.; Park, J.; Park, K.; Chung, M.; Ryu, S.; Kang, D. Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on organic fresh apples and lettuce. J. Food Sci. 2011, 76, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Ajingi, Y.S.; Rodpan, S.; Usman, J.N.; Koga, Y.; Jongruja, N. Synergistic effect of Nisin with acetic acid and propionic acids inactivates Bacillus subtilis on meat and potato. Biocatal. Agric. Biotechnol. 2022, 41, 102317. [Google Scholar] [CrossRef]
- Fang, M.; Wang, R.; Agyekumwaa, A.K.; Yu, Y.; Xiao, X. Antibacterial effect of phenyllactic acid against Vibrio parahaemolyticus and its application on raw salmon fillets. LWT 2022, 154, 112586. [Google Scholar] [CrossRef]
- Thompson, J.L.; Hinton, M. Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. Br. Poult. Sci. 1997, 38, 59–65. [Google Scholar] [CrossRef]
- Immerseel, F.V.; Russel, J.B.; Flythe, M.D.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult. Sci. 2019, 98, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.P.; Bégin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 1997, 37, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Heir, E.; Solberg, L.E.; Jensen, M.R.; Skaret, J.; Grovlen, M.S.; Holck, A.L. Improved microbial and sensory quality of chicken meat by treatment with lactic acid, organic acid salts and modified atmosphere packaging. Int. J. Food Microbiol. 2022, 362, 109489. [Google Scholar] [CrossRef] [PubMed]
- Salsali, H.; Parker, W.J.; Sattar, S.A. The effect of volatile fatty acids on the inactivation of Clostridium perfringens in anaerobic digestion. World J. Microbiol. Biotechnol. 2008, 24, 659–665. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Rathod, J.; Jiang, Y.; Tsai, P.; Hung, Y.; Ko, W.; Paredes-Sabja, D.; Huang, I. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front. Microbiol. 2018, 8, 2635. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xin, H.; Yang, C.; Yang, X. Impact of essential oils and organic acids on the growth performance, digestive functions, and immunity of broiler chickens. Anim. Nutr. 2018, 4, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Kunte, D.P.; Yeole, T.Y.; Chiplonkar, S.A.; Ranade, D.R. Inactivation of Salmonella Typhi by high levels of volatile acids during anaerobic digestion. J. Appl. Microbiol. 1998, 84, 138–142. [Google Scholar] [CrossRef]
- Salsali, H.; Parker, W.J.; Sattar, S.A. Impact of concentration, temperature, and pH on inactivation of Salmonella spp. By volatile fatty acids in anaerobic digestion. Can. J. Microbiol. 2006, 52, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In vitro antimicrobial activities of organic acids and their derivatives on several species of Gram-negative and Gram-positive bacteria. Molecules 2019, 24, 3770. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Ozarowski, M.; Karpinski, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Brooun, A.; Liu, S.; Lewis, K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2000, 44, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Peh, E.; Kittler, S.; Relch, F.; Kehrenberg, C. Antimicrobial activity of organic acids against Campylobacter spp. and development of combinations—A synergistic effect? PLoS ONE 2020, 15, e0239312. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Naz SRaziq, F.; Qudratullah, Q.; Khan, N.A.; Laudadio, V.; Tufarelli, V.; Ragni, M. Prospects of organic acids as safe alternative to antibiotics in broiler chicken diet. Environ. Sci. Pollut. Res. 2022, 29, 32594–32604. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Wu, Y.; Zhong, K.; Xiao, K.; Liu, L.; Huang, Y.; Wang, Z.; Gao, H.A. A comparative study on the effects of quinic acid and shikimic acid on cellular functions of Staphylococcus aureus. J. Food Prot. 2018, 81, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Huang, S.; Wu, C.; Liu, H.; Jinn, T.; Chen, Y.; Lin, C. Inhibition of Klebsiella pneumoniae growth and capsular polysaccharide biosynthesis by Fructus mume. Evid. Based Complement. Altern. Med. 2013, 2013, 621701. [Google Scholar] [CrossRef]
- Morel, F.; Delmas, F.; Jobin, M.P.; Divies, C.; Guzzo, J. Improved acid tolerance of a recombinant strain of Escherichia coli expressing genes from the acidophilic bacterium Oenococcus oeni. Lett. Appl. Microbiol. 2001, 33, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lee, I.S.; Frey, J.; Slonczewski, J.L.; Foster, J.W. Comparative analysis of extreme acid survival in Salmonella Typhimurium, Shigella flexneri and Escherichia coli. J. Bacteriol. 1995, 177, 4097–4104. [Google Scholar] [CrossRef] [PubMed]
- Slabbert, R.S.; Theron, M.M.; Lues, J.F.R. Investigating the development of acid tolerance in food-borne pathogens Escherichia coli, Salmonella spp., and Pseudomonas aeruginosa and implication on the susceptibility to organic acids. Interim Interdiscip. J. 2010, 9, 64–73. [Google Scholar]
- Nair, M.K.M.; Joy, J.; Vasudevan, P.; Hinckley, L.; Hoagland, T.A.; Venkitanarayanan, K.S. Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J. Dairy Sci. 2005, 88, 3488–3495. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chang, T.; Yang, H.; Cui, M. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control 2015, 47, 231–236. [Google Scholar] [CrossRef]
- Al-Rousan, W.M.; Olaimat, A.N.; Osaili, T.M.; Al-Nabulsi, A.A.; Ajo, R.Y.; Holley, R.A. Use of acetic and citric acids to inhibit Escherichia coli O157:H7, Salmonella Typhimurium and Staphylococcus aureus in tabbouleh salad. Food Microbiol. 2018, 73, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, L.C.; Gasparotto, L.H. Pyroligneous acid and antibacterial activity: Criticism of a paper by Araujo et al. (2018). J. Appl. Microbiol. 2022, 132, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Breidt, F., Jr.; Hayes, J.S.; McFeeters, R.F. Independent effects of acetic acid and pH on survival of Escherichia coli in simulated acidified pickle products. J. Food Prot. 2004, 67, 12–18. [Google Scholar] [CrossRef] [PubMed]
- El-Adawy, M.; El-Aziz, M.A.; El-Shazly, L.; Ali, N.G.; El-MAgd, M.A. Dietary propionic acid enhances antibacterial and immunomodulatory effects of oxytetracycline on Nile tilapia, Oreochromis niloticus. Environ. Sci. Pollut. Res. 2018, 25, 34200–34211. [Google Scholar] [CrossRef] [PubMed]
- Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 2009, 75, 1932–1937. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lendormi, T.; Lanoiselle, J. Conventional and innovative hygienisation of feedstock for biogas production: Resistance of indicator bacteria to thermal pasteurisation, pulsed electric field treatment and anaerobic digestion. Energies 2021, 14, 1938. [Google Scholar] [CrossRef]
- Cinthi, M.; Coccitto, S.N.; Fioriti, S.; Morroni, G.; Simoni, S.; Vignaroli, C.; Giovanetti, E. Occurrence of a plasmid co-carrying cfr (D) and poxtA2 linezolid resistance genes in Enterococcus faecalis and Enterococcus casseliflavus from porcine manure, Italy. J. Antimicrob. Chemother. 2022, 77, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Mapipa, Q.; Digban, T.O.; Nwodo, U.U. Antibiogram and detection of virulence genes among Klebsiella pneumoniae isolates from rustic hospital drains. Gene Rep. 2022, 26, 101440. [Google Scholar] [CrossRef]
- Wang, C.; Wei, D.; Zhang, Z.; Wang, D.; Shi, J.; Kim, C.H.; Jiang, B.; Han, Z.; Hao, J. Production of xylonic acid by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 2016, 100, 10055–10063. [Google Scholar] [CrossRef] [PubMed]
- Krusong, W.; Teerarak, M.; Laosinwattana, C. Liquid and vapor-phase vinegar reduces Klebsiella pneumoniae on fresh coriander. Food Control 2015, 50, 502–508. [Google Scholar] [CrossRef]
- Patra, S.; Bala, A.; Sharma, N.; Haldar, P.K. Developmental toxicity assessment of Drymaria cordata (Linn.) Willd using zebrafish embryo. Curr. Drug Saf. 2023, 18, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Xu, Y.J.; Farha, A.K.; Sui, Z.Q.; Corke, H. Bactericidal and antibiofilm properties of Rumex japonicus Houtt on multidrug-resistant Staphylococcus aureus isolated from milk. J. Dairy Sci. 2022, 105, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Pelyuntha, W.; Vongkamjan, K. Combined effects of Salmonella phage cocktail and organic acid for controlling Salmonella Enteritidis in chicken meat. Food Control 2022, 133, 108653. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Yuan, Y.; Zhang, T.; Song, W.; Sheng, Q.; Yue, T. Inhibitory effects of lactobionic acid on Vibrio parahaemolyticus planktonic cells and biofilms. Food Microbiol. 2022, 103, 103963. [Google Scholar] [CrossRef] [PubMed]
- M26-A; Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Clinical and Laboratory Standard Institute (CSLI): Wayne, PA, USA, 1999; p. 19.
- Yin, F.; Li, Z.; Wang, D.; Olsen, T.; Dong, H. Performance of thermal pre-treatment and mesophilic fermentation system on pathogen inactivation and biogas production of faecal sludge: Initial laboratory result. Biosyst. Eng. 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Chen, L.; Meng, X.; Zhou, G.; Zhou, Z.; Zheng, T.; Bai, Y.; Yuan, H.; Huhe, T. Effects of organic loading rates on the anaerobic co-digestion of fresh vinegar residue and pig manure: Focus on the performance and microbial communities. Biochem. Eng. J. 2022, 183, 108441. [Google Scholar] [CrossRef]
- Finney, D.J. The estimation of the ED50 for a logistic response curve. Sankhyā Indian J. Stat. 1952, 12, 121–136. [Google Scholar]
Incubation Time (h) | VFA Type | VFA Concentration (g/L) | ||
---|---|---|---|---|
1 | 2 | 4 | ||
3 | Acetic | 24.93 (32.91) | 25.11 (4.91) | 76.71 (7.18) |
Propionic | 14.91 (18.23) | 40.86 (20.83) | 53.80 (7.27) | |
Butyric | 11.18 (20.25) | 33.48 (4.90) | 94.94 (0.81) | |
Valeric | −135.01 | 61.57 (7.41) | 94.99 (4.43) | |
Caproic | −101.60 | 62.14 (5.74) | 99.94 (0.06) | |
VFA cocktail | 38.17 (53.63) | 60.21 (5.47) | 94.82 (7.92) | |
6 | Acetic | 58.33 (10.75) | 57.90 (8.82) | 95.85 (0.31) |
Propionic | 6.10 (14.12) | 47.25 (14.59) | 75.36 (10.38) | |
Butyric | −25.97 | 60.83 (1.11) | 98.23 (0.47) | |
Valeric | −510.02 | −105.39 | 98.71 (0.58) | |
Caproic | −297.94 | 67.22 (13.27) | 87.09 (18.89) | |
VFA cocktail | 1.68 (8.21) | 73.44 (3.37) | 99.77 (0.23) | |
24 | Acetic | 59.79 (7.64) | 55.29 (8.69) | 98.75 (1.67) |
Propionic | −58.93 | 50.46 (9.10) | 97.42 (1.36) | |
Butyric | −187.50 | 74.60 (2.52) | 99.65 (0.12) | |
Valeric | −281.02 | 50.68 (41.83) | 100 | |
Caproic | −176.53 | 46.32 (41.56) | 91.13 (15.34) | |
VFA cocktail | −192.38 | 75.51 (2.33) | 100 | |
48 | Acetic | 76.71 (7.46) | 84.85 (3.38) | 99.96 (0.01) |
Propionic | −50.09 | 77.55 (9.74) | 99.71 (0.06) | |
Butyric | −25.45 | 78.51 (5.42) | 99.96 (0.01) | |
Valeric | −199.88 | 85.21 (5.37) | 100 | |
Caproic | −172.17 | 76.04 (35.10) | 100 | |
VFA cocktail | −74.89 | 85.63 (3.73) | 100 |
Incubation Time (h) | VFA Type | VFA Concentration (g/L) | ||
---|---|---|---|---|
1 | 2 | 4 | ||
3 | Acetic | −2.33 | 43.08 (21.43) | 73.00 (29.55) |
Propionic | −16.05 | −78.98 | 0.00 | |
Butyric | −24.61 | 39.65 (50.06) | 31.68 (38.12) | |
Valeric | −106.60 | −22.47 | 83.82 (3.09) | |
Caproic | −657.08 | −89.79 | 100 | |
VFA cocktail | −588.17 | 50.27 (18.64) | 100 | |
6 | Acetic | −7.82 | 60.84 (7.24) | 99.96 (0.05) |
Propionic | −91.40 | −11.81 | 84.59 (6.29) | |
Butyric | −804.28 | 75.22 (19.40) | 92.80 (3.53) | |
Valeric | −1839.00 | −45.09 | 100 | |
Caproic | −2632.90 | 53.51 (22.01) | 100 | |
VFA cocktail | −5650.18 | 81.29 (8.09) | 100 | |
24 | Acetic | −45.12 | 91.11 (4.19) | 100 |
Propionic | −9273.02 | 69.82 (9.75) | 100 | |
Butyric | −8295.16 | 87.50 (9.25) | 100 | |
Valeric | −3867.83 | 50.44 (31.53) | 100 | |
Caproic | −2413.23 | 88.92 (10.56) | 100 | |
VFA cocktail | −3038.80 | 12.96 (18.43) | 100 | |
48 | Acetic | −102.66 | 99.69 (0.47) | 100 |
Propionic | −9465.82 | 90.19 (3.05) | 100 | |
Butyric | −8962.35 | 98.31 (1.14) | 100 | |
Valeric | −4461.74 | 89.14 (16.19) | 100 | |
Caproic | −1932.47 | 97.39 (4.51) | 100 | |
VFA cocktail | −1539.65 | 100 | 100 |
Incubation Time (h) | VFA Type | VFA Concentration (g/L) | ||
---|---|---|---|---|
1 | 2 | 4 | ||
3 | Acetic | −8.03 | 13.00 (41.92) | 72.70 (34.68) |
Propionic | 36.35 (5.77) | 62.77 (1.53) | 97.51 (2.46) | |
Butyric | 66.59 (14.75) | 53.90 (14.80) | 100 | |
Valeric | 39.53 (3.23) | 44.87 (4.42) | 100 | |
Caproic | −2312.32 | −683.97 | 99.81 (0.05) | |
VFA cocktail | 5.51 (8.71) | 50.35 (13.21) | 100 | |
6 | Acetic | 15.01 (8.21) | 69.74 (17.10) | 98.35 (1.66) |
Propionic | 35.83 (8.71) | 51.93 (9.45) | 99.96 (0.06) | |
Butyric | 39.55 (17.28) | 73.77 (7.01) | 100 | |
Valeric | −44.17 | 71.52 (3.66) | 100 | |
Caproic | −1603.48 | 83.87 (9.88) | 99.98 (0.03) | |
VFA cocktail | −724.57 | 67.76 (15.16) | 100 | |
24 | Acetic | −13.80 | −19.80 | 99.42 (0.38) |
Propionic | 63.18 (8.97) | 88.86 (7.70) | 100 | |
Butyric | −123.88 | 99.79 (0.17) | 100 | |
Valeric | 62.35 (13.31) | 99.05 (0.55) | 100 | |
Caproic | −1615.55 | 100 | 100 | |
VFA cocktail | 98.36 (0.19) | 99.15 (0.67) | 100 | |
48 | Acetic | 97.71 (1.67) | 97.24 (2.40) | 99.90 (0.08) |
Propionic | −28.32 | 99.93 (0.12) | 100 | |
Butyric | 43.54 (76.74) | 100 | 100 | |
Valeric | 86.08 (9.37) | 100 | 100 | |
Caproic | −668.53 | 100 | 100 | |
VFA cocktail | 64.92 (20.72) | 99.90 | 100 |
VFA (4 g/L) | Most Effective Against | Least Effective Against |
---|---|---|
Acetic acid | E. coli | K. pneumoniae E. faecalis |
Propionic acid | E. faecalis E. coli K. pneumoniae | |
Butyric acid | K. pneumoniae | E. faecalis |
Valeric acid | E. faecalis E. coli K. pneumoniae | |
Caproic acids | E. faecalis E. coli K. pneumoniae | |
VFA cocktail | E. faecalis E. coli K. pneumoniae |
Time | 3 h | 6 h | 24 h | 48 h | ||||
---|---|---|---|---|---|---|---|---|
VFAs | LD 50 | MBC | LD 50 | MBC | LD 50 | MBC | LD 50 | MBC |
Acetic acid | 2.41 | >4 | 1.01 | >4 | 1.07 | >4 | 0.77 | 4 |
Propionic acid | 3.02 | >4 | 2.56 | >4 | 2.46 | >4 | 2.12 | >4 |
Butyric acid | 2.60 | >4 | 2.38 | >4 | 2.20 | >4 | 2.13 | 4 |
Valeric acid | 2.47 | >4 | 3.24 | >4 | 2.21 | 4 | 2.09 | 4 |
Caproic acid | 2.18 | 4 | 2.55 | >4 | 2.56 | >4 | 2.11 | 4 |
VFA cocktail | 1.35 | >4 | 1.71 | >4 | 2.13 | 4 | 2.09 | 4 |
Time | 3 h | 6 h | 24 h | 48 h | ||||
---|---|---|---|---|---|---|---|---|
VFAs | LD 50 | MBC | LD 50 | MBC | LD 50 | MBC | LD 50 | MBC |
Acetic acid | 2.88 | >4 | 2.20 | 4 | 1.94 | 4 | 1.90 | 4 |
Propionic acid | 5.50 | >4 | 4.01 | >4 | 2.15 | 4 | 2.06 | 4 |
Butyric acid | 4.41 | >4 | 2.44 | >4 | 2.07 | 4 | 1.94 | 4 |
Valeric acid | 4.01 | >4 | 2.94 | 4 | 2.20 | 4 | 2.06 | 4 |
Caproic acid | 2.94 | 4 | 2.20 | 4 | 2.07 | 4 | 1.99 | 4 |
VFA cocktail | 2.23 | 4 | 2.10 | 4 | 2.34 | 4 | 1.85 | 2 |
Time | 3 h | 6 h | 24 h | 48 h | ||||
---|---|---|---|---|---|---|---|---|
VFAs | LD 50 | MBC | LD 50 | MBC | LD 50 | MBC | LD 50 | MBC |
Acetic acid | 4.37 | >4 | 1.76 | >4 | 3.63 | >4 | 0.08 | 4 |
Propionic acid | 1.30 | >4 | 1.37 | 4 | 0.92 | 4 | 0.10 | 2 |
Butyric acid | 1.06 | 4 | 1.24 | 4 | 1.85 | 4 | 0.82 | 2 |
Valeric acid | 1.37 | 4 | 2.15 | 4 | 0.78 | 4 | 0.39 | 2 |
Caproic acid | 3.04 | >4 | 2.11 | 4 | 1.85 | 2 | 1.85 | 2 |
VFA cocktail | 1.71 | 4 | 1.85 | 4 | 0.09 | 4 | 0.65 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otite, S.V.; Lag-Brotons, A.J.; Ezemonye, L.I.; Martin, A.D.; Pickup, R.W.; Semple, K.T. Volatile Fatty Acids Effective as Antibacterial Agents against Three Enteric Bacteria during Mesophilic Anaerobic Incubation. Molecules 2024, 29, 1908. https://doi.org/10.3390/molecules29091908
Otite SV, Lag-Brotons AJ, Ezemonye LI, Martin AD, Pickup RW, Semple KT. Volatile Fatty Acids Effective as Antibacterial Agents against Three Enteric Bacteria during Mesophilic Anaerobic Incubation. Molecules. 2024; 29(9):1908. https://doi.org/10.3390/molecules29091908
Chicago/Turabian StyleOtite, Saanu Victoria, Alfonso José Lag-Brotons, Lawrence I. Ezemonye, Alastair D. Martin, Roger W. Pickup, and Kirk T. Semple. 2024. "Volatile Fatty Acids Effective as Antibacterial Agents against Three Enteric Bacteria during Mesophilic Anaerobic Incubation" Molecules 29, no. 9: 1908. https://doi.org/10.3390/molecules29091908
APA StyleOtite, S. V., Lag-Brotons, A. J., Ezemonye, L. I., Martin, A. D., Pickup, R. W., & Semple, K. T. (2024). Volatile Fatty Acids Effective as Antibacterial Agents against Three Enteric Bacteria during Mesophilic Anaerobic Incubation. Molecules, 29(9), 1908. https://doi.org/10.3390/molecules29091908