Preparation of S-C3N4/AgCdS Z-Scheme Heterojunction Photocatalyst and Its Effectively Improved Photocatalytic Performance
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Preparation of S-C3N4 Photocatalyst
3.2. Preparation of CdS and AgCdS Photocatalysts
3.3. Preparation of S-C3N4/CdS and S-C3N4/AgCdS Photocatalysts
3.4. Characterizations
3.5. Photocatalytic Degradation Performance Measurements
3.6. The Preparation and Photoelectrochemical Performance Measurement of the Photoelectrodes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rajeshwar, K.; Osugi, M.E.; Chanmanee, W.; Chenthamarakshan, C.R.; Zanoni, M.V.B.; Kajitvichyanukul, P.; Krishnan-Ayer, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008, 9, 171–192. [Google Scholar] [CrossRef]
- Loeb, S.K.; Alvarez, P.J.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environ. Sci. Technol. 2019, 53, 2937–2947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.B.; Wang, X.M.; Liu, H.N.; Liu, C.L.; Wan, Y.; Long, Y.Z.; Cai, Z.Y. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9, 2489. [Google Scholar] [CrossRef]
- Paiman, S.H.; Noor, S.F.M.; Ngadi, N.; Nordin, A.; Abdullah, N. Insight into photocatalysis technology as a promising approach to tackle microplastics pollution through degradation and upcycling. Chem. Eng. J. 2023, 467, 143534. [Google Scholar] [CrossRef]
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B 2015, 166, 603–643. [Google Scholar] [CrossRef]
- Shen, M.; Ding, T.; Rackers, W.H.; Tan, C.; Mahmood, K.; Lew, M.D.; Sadtler, B. Single-Molecule Colocalization of Redox Reactions on Semiconductor Photocatalysts Connects Surface Heterogeneity and Charge-Carrier Separation in Bismuth Oxybromide. J. Am. Chem. Soc. 2021, 143, 11393–11403. [Google Scholar] [CrossRef]
- Yu, F.; Ren, J.; Zhang, J.; Chen, H.; Tian, X.; Feng, C.; Li, C.; Zhang, J.; Tang, X.; Hou, X. Structural and optical properties of polyhedral N-doped ZnO@BiVO4 nanocomposite photocatalyst derived from ZIF-8. Vacuum 2024, 220, 112814. [Google Scholar] [CrossRef]
- Yang, X.X.; Sheng, L.A.; Ye, Y.L.; Sun, J.D.; Li, Z.J.; Ning, X.; Cao, J.; Sun, X.L. Recent advances in metal-free CDs/g-C3N4 photocatalysts: Synthetic strategies, mechanism insight, and applications. J. Mater. Sci. Technol. 2023, 150, 11–26. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Wang, J.; Li, Y.; Zhang, G. Novel Z-scheme AgI/Sb2WO6 heterostructure for efficient photocatalytic degradation of organic pollutants under visible light: Interfacial electron transfer pathway, DFT calculation and mechanism unveiling. Chemosphere 2023, 311, 137000. [Google Scholar] [CrossRef]
- Vu, N.N.; Kaliaguine, S.; Do, T.O. Synthesis of the g-C3N4/CdS Nanocomposite with a Chemically Bonded Interface for Enhanced Sunlight-Driven CO2 Photoreduction. ACS Appl. Energy Mater. 2020, 3, 6422–6433. [Google Scholar] [CrossRef]
- Wang, M.; Wang, M.; Peng, F.; Sun, X.; Han, J. Fabrication of g-C3N4 Nanosheets Anchored With Controllable CdS Nanoparticles for Enhanced Visible-Light Photocatalytic Performance. Front. Chem. 2021, 9, 746031. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs. Nano Micro Lett. 2017, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, X.; Zhu, Z.; Gao, Y.; Wang, Q.; Zhu, F.; Xie, Z. Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks. Sci. Rep. 2017, 7, 973. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Y.; Wu, L.C.; Jin, L.G.; Wu, K.J. Combination Mechanism and Enhanced Visible-Light Photocatalytic Activity and Stability of CdS/g-C3N4 Heterojunctions. J. Mater. Sci. Technol. 2017, 33, 30–38. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.D. CdS/g-C3N4 Hybrids with Improved Photostability and Visible Light Photocatalytic Activity. Eur. J. Inorg. Chem. 2015, 2015, 1744–1751. [Google Scholar] [CrossRef]
- Li, G.M.; Wang, B.; Zhang, J.; Wang, R.; Liu, H.L. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Appl. Surf. Sci. 2019, 478, 1056–1064. [Google Scholar] [CrossRef]
- Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W. Application of doped photocatalysts for organic pollutant degradation—A review. J. Environ. Manag. 2017, 198, 78–94. [Google Scholar] [CrossRef]
- Liu, G.; Niu, P.; Sun, C.; Smith, S.C.; Chen, Z.; Lu, G.Q.; Cheng, H.M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, Y.Q.; Du, Y.H.; Qing, M.; Yu, F.; Tian, Z.Q.; Shen, P.K. Highly active N,S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction. Electrochim. Acta 2019, 318, 272–280. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Chougule, S.S.; Vidyasagar, D.; Bak, N.H.; Jung, N.; Kim, Y.N.; Lee, J.H.; Kim, S.G.; Kim, M.D. UV light driven high-performance room temperature surface acoustic wave NH3 gas sensor using sulfur-doped g-C3N4 quantum dots. Nano Res. 2023, 16, 7682–7695. [Google Scholar] [CrossRef]
- El Mragui, A.; Logvina, Y.; Pinto da Silva, L.; Zegaoui, O.; Esteves da Silva, J.C.G. Synthesis of Fe- and Co-Doped TiO2 with Improved Photocatalytic Activity under Visible Irradiation Toward Carbamazepine Degradation. Materials 2019, 12, 3874. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Kim, J. Silver-doped ZnO for photocatalytic degradation of methylene blue. Korean J. Chem. Eng. 2020, 37, 1226–1232. [Google Scholar] [CrossRef]
- Shi, R.; Ye, H.F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y.; Lin, Z.; Fu, W.F.; Che, C.M.; Chen, Y. Interstitial P-Doped CdS with Long-Lived Photogenerated Electrons for Photocatalytic Water Splitting without Sacrificial Agents. Adv. Mater. 2018, 30, 1705941. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Q.; Zhao, Z.; Gao, L.; Li, X. Synthesis and photocatalytic activity study of S-doped WO3 under visible light irradiation. Environ. Sci. Pollut. Res. Int. 2020, 27, 15103–15112. [Google Scholar] [CrossRef]
- Murugesan, R.; Sivakumar, S.; Karthik, K.; Anandan, P.; Haris, M. Structural, optical and magnetic behaviors of Fe/Mn-doped and co-doped CdS thin films prepared by spray pyrolysis method. Appl. Phys. A 2019, 125, 281. [Google Scholar] [CrossRef]
- He, H.; Cao, J.; Guo, M.N.; Lin, H.L.; Zhang, J.F.; Chen, Y.; Chen, S.F. Distinctive ternary CdS/Ni2P/g-C3N4 composite for overall water splitting: Ni2P accelerating separation of photocarriers. Appl. Catal. B 2019, 249, 246–256. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, X.; Zi, G.; Zhou, C.; Liu, B.; Liu, G.; Wang, L.; Huang, W. One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity. J. Mater. Sci. Technol. 2022, 104, 155–162. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Li, M.; Wu, M.; Jin, B.; Luo, J.; Chen, M.; Zhou, X.; Zhang, Y.; Zhou, X. Synergistic effect of phosphorus doping and MoS2 co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting. J. Mater. Sci. Technol. 2023, 158, 171–179. [Google Scholar] [CrossRef]
- Alizadeh, T.; Nayeri, S.; Hamidi, N. Graphitic carbon nitride (g-C3N4)/graphite nanocomposite as an extraordinarily sensitive sensor for sub-micromolar detection of oxalic acid in biological samples. RSC Adv. 2019, 9, 13096–13103. [Google Scholar] [CrossRef]
- Li, J.X.; Zhang, R.L.; Pan, Z.J.; Liao, Y.; Xiong, C.B.; Chen, M.L.; Huang, R.; Pan, X.H.; Chen, Z. Preparation of CdS@C Photocatalyst Using Phytoaccumulation Cd Recycled From Contaminated Wastewater. Front. Chem. 2021, 9, 717210. [Google Scholar] [CrossRef]
- Thakur, P.; Joshi, S.S.; Patil, K.R. Investigations of CdS and Ag–CdS nanoparticles by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2010, 257, 1390–1394. [Google Scholar] [CrossRef]
- Li, W.; Feng, C.; Dai, S.; Yue, J.; Hua, F.; Hou, H. Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl. Catal. B 2015, 168–169, 465–471. [Google Scholar] [CrossRef]
- Ge, L.; Zuo, F.; Liu, J.K.; Ma, Q.; Wang, C.; Sun, D.Z.; Bartels, L.; Feng, P.Y. Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots. J. Phys. Chem. C 2012, 116, 13708–13714. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Ban, C.; Meng, J.; Li, Q.; Long, X.; Zhou, X.; Liu, N.; Li, Z. Construction of dual Z-scheme UNiMOF/BiVO4/S-C3N4 photocatalyst for visible-light photocatalytic tetracycline degradation and Cr(VI) reduction. Appl. Surf. Sci. 2023, 611, 155575. [Google Scholar] [CrossRef]
- Shao, B.B.; Liu, X.J.; Liu, Z.F.; Zeng, G.M.; Zhang, W.; Liang, Q.H.; Liu, Y.; He, Q.Y.; Yuan, X.Z.; Wang, D.B.; et al. Synthesis and characterization of 2D/0D g-C3N4/CdS-nitrogen doped hollow carbon spheres (NHCs) composites with enhanced visible light photodegradation activity for antibiotic. Chem. Eng. J. 2019, 374, 479–493. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Nasir, S.N.S.; Mohamed, N.A.; Tukimon, M.A.; Noh, M.F.M.; Arzaee, N.A.; Teridi, M.A.M. Direct extrapolation techniques on the energy band diagram of BiVO4 thin films. Physica B 2021, 604, 412719. [Google Scholar] [CrossRef]
- Gu, W.H.; Teng, F.; Liu, Z.L.; Liu, Z.; Yang, J.Y.; Teng, Y.R. Synthesis and photocatalytic properties of Bi2SiO5 and Bi12SiO20. J. Photochem. Photobiol. A 2018, 353, 395–400. [Google Scholar] [CrossRef]
- Jiang, W.S.; Zong, X.P.; An, L.; Hua, S.X.; Miao, X.; Luan, S.L.; Wen, Y.J.; Tao, F.F.; Sun, Z.C. Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction. ACS Catal. 2018, 8, 2209–2217. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Wan, L.; Yang, W.; Ding, H.; Lu, C.; Zhang, W.; Xing, Z. Double Z-Scheme g-C3N4/BiOI/CdS heterojunction with I3−/I− pairs for enhanced visible light photocatalytic performance. Green Energy Environ. 2022, 7, 1377–1389. [Google Scholar] [CrossRef]
- Zhao, W.; Niu, H.; Yang, Y.; Lv, H.; Lv, J.; Cai, Y. One-pot molten salt method for constructing CdS/C3N4 nanojunctions with highly enhanced photocatalytic performance for hydrogen evolution reaction. J. Environ. Sci. 2022, 112, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Naz, M.Y.; Shukrullah, S.; Munir, M.A.; Irfan, M.; Rahman, S.; Ghanim, A.A.J. Dual S-Scheme Heterojunction CdS/TiO2/g-C3N4 Photocatalyst for Hydrogen Production and Dye Degradation Applications. ACS Omega 2023, 8, 43139–43150. [Google Scholar] [CrossRef] [PubMed]
- He, Q.S.; Yi, Y.Y.; Wang, R.S.; Sun, P.F.; Dong, X.P. Piezocatalytic degradation of 2,4-dichlorophenol in a water environment by a g-C3N4/CdS heterojunction catalyst: Interfacial electric field boosting mechanism. Environ. Sci. Nano. 2023, 10, 3366–3378. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Chen, Z.; Feng, C.; Ma, L.; Jing, J.; Hou, J.; Xu, L.; Sun, M.; Chen, D. Preparation of S-C3N4/AgCdS Z-Scheme Heterojunction Photocatalyst and Its Effectively Improved Photocatalytic Performance. Molecules 2024, 29, 1931. https://doi.org/10.3390/molecules29091931
Lin Y, Chen Z, Feng C, Ma L, Jing J, Hou J, Xu L, Sun M, Chen D. Preparation of S-C3N4/AgCdS Z-Scheme Heterojunction Photocatalyst and Its Effectively Improved Photocatalytic Performance. Molecules. 2024; 29(9):1931. https://doi.org/10.3390/molecules29091931
Chicago/Turabian StyleLin, Yuhong, Zhuoyuan Chen, Chang Feng, Li Ma, Jiangping Jing, Jian Hou, Likun Xu, Mingxian Sun, and Dongchu Chen. 2024. "Preparation of S-C3N4/AgCdS Z-Scheme Heterojunction Photocatalyst and Its Effectively Improved Photocatalytic Performance" Molecules 29, no. 9: 1931. https://doi.org/10.3390/molecules29091931
APA StyleLin, Y., Chen, Z., Feng, C., Ma, L., Jing, J., Hou, J., Xu, L., Sun, M., & Chen, D. (2024). Preparation of S-C3N4/AgCdS Z-Scheme Heterojunction Photocatalyst and Its Effectively Improved Photocatalytic Performance. Molecules, 29(9), 1931. https://doi.org/10.3390/molecules29091931