Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Acetone and Aqueous Extractions
3.2. Total Flavonoid Content
3.3. Phenolic Content
3.4. HPLC Analysis of Phenolic Contents
3.5. Blood Collection and Plasma Preparation
3.6. Prothrombin Time
3.7. Activated Partial Thromboplastin Time
3.8. Lipase Activity
3.9. Amylase Activity
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, H.; Garg, S. Obesity and overweight—Their impact on individual and corporate health. J. Public. Health 2020, 28, 211–218. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Shaito, A.; Thuan, D.T.B.; Phu, H.T.; Nguyen, T.H.D.; Hasan, H.; Halabi, S.; Abdelhady, S.; Nasrallah, G.K.; Eid, A.H.; Pintus, G. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front. Pharmacol. 2020, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase inhibitors for obesity: A review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef] [PubMed]
- Siegień, J.; Buchholz, T.; Popowski, D.; Granica, S.; Osińska, E.; Melzig, M.F.; Czerwińska, M.E. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chem. 2021, 355, 129414. [Google Scholar] [CrossRef] [PubMed]
- Altay, M. Acarbose is again on the stage. World J. Diabetes 2022, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and cardiovascular disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [PubMed]
- Chan, N.; Sobieraj-Teague, M.; Eikelboom, J.W. Direct oral anticoagulants: Evidence and unresolved issues. Lancet 2020, 396, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M.; Sut, A.; Kosiorek, A.; Saluk-Bijak, J.; Golanski, J. Dual anticoagulant/antiplatelet activity of polyphenolic grape seeds extract. Nutrients 2019, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Noad, R.L.; Rooney, C.; McCall, D.; Young, I.S.; McCance, D.; McKinley, M.C.; Woodside, J.V.; McKeown, P.P. Beneficial effect of a polyphenol-rich diet on cardiovascular risk: A randomised control trial. Heart 2016, 102, 1371–1379. [Google Scholar] [CrossRef]
- Shah, S.B.; Sartaj, L.; Ali, F.; Shah, S.I.A.; Khan, M.T. Plant extracts are the potential inhibitors of α-amylase: A review. MOJ Bioequiv. Bioavailab. 2018, 5, 270–273. [Google Scholar]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase. Crit. Rev. Food Sci. Nutr. 2013, 53, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Sosnowska, D.; Podsędek, A.; Kucharska, A.Z. Proanthocyanidins as the main pancreatic lipase inhibitors in chokeberry fruits. Food Funct. 2022, 13, 5616–5625. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, Y.; Shen, S.; Zhi, Z.; Cheng, H.; Chen, S.; Ye, X. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chem. 2020, 326, 126785. [Google Scholar] [CrossRef]
- Noorolahi, Z.; Sahari, M.A.; Barzegar, M.; Ahmadi Gavlighi, H. Tannin fraction of pistachio green hull extract with pancreatic lipase inhibitory and antioxidant activity. J. Food Biochem. 2020, 44, e13208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kang, M.J.; Kim, M.J.; Kim, M.E.; Song, J.H.; Lee, Y.M.; Kim, J.I. Pancreatic lipase inhibitory activity of Taraxacum officinale in vitro and in vivo. Nutr. Res. Pract. 2008, 2, 200–203. [Google Scholar] [CrossRef]
- Pukalskienė, M.; Slapšytė, G.; Dedonytė, V.; Lazutka, J.R.; Mierauskienė, J.; Venskutonis, P.R. Genotoxicity and antioxidant activity of five Agrimonia and Filipendula species plant extracts evaluated by comet and micronucleus assays in human lymphocytes and Ames Salmonella/microsome test. Food Chem. Toxicol. 2018, 113, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Pukalskienė, M.; Venskutonis, P.R.; Pukalskas, A. Phytochemical composition and antioxidant properties of Filipendula vulgaris as a source of healthy functional ingredients. J. Funct. Foods 2015, 15, 233–242. [Google Scholar] [CrossRef]
- Bijttebier, S.; Van der Auwera, A.; Voorspoels, S.; Noten, B.; Hermans, N.; Pieters, L.; Apers, S. A first step in the quest for the active constituents in Filipendula ulmaria (Meadowsweet): Comprehensive phytochemical identification by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry. Planta Medica 2016, 82, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kruglova, M.Y. A new quercetin glycoside and other phenolic compounds from the genus Filipendula. Chem. Nat. Compd. 2013, 49, 610–616. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 10th ed.; Directorate for the Quality of Medicines and HealthCare of the Council of Europe (EDQM): Strasbourg, France, 2020; Volume 1, p. 1533.
- Ložienė, K.; Būdienė, J.; Vaitiekūnaitė, U.; Pašakinskienė, I. Variations in Yield, Essential Oil, and Salicylates of Filipendula ulmaria Inflorescences at Different Blooming Stages. Plants 2023, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Katanić, J.; Boroja, T.; Stanković, N.; Mihailović, V.; Mladenović, M.; Kreft, S.; Vrvić, M.M. Bioactivity, stability and phenolic characterization of Filipendula ulmaria (L.) Maxim. Food Funct. 2015, 6, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Rashid, A. Anti-coagulant activity of plants: Mini review. J. Throm Thrombolysis 2017, 44, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Agnieszka, M.; Michał, S.; Robert, K. Selection of conditions of ultrasound-assisted, three-step extraction of ellagitannins from selected berry fruit of the Rosaceae family using the Response Surface Methodology. Food Anal. Methods 2020, 13, 1650–1665. [Google Scholar] [CrossRef]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Optimisation of the aqueous extraction conditions of phenols from meadowsweet (Filipendula ulmaria L.) for incorporation into beverages. Food Chem. 2009, 116, 722–727. [Google Scholar] [CrossRef]
- Da Porto, A.; Cavarape, A.; Colussi, G.; Casarsa, V.; Catena, C.; Sechi, L.A. Polyphenols rich diets and risk of type 2 diabetes. Nutrients 2021, 13, 1445. [Google Scholar] [CrossRef] [PubMed]
- Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed]
- Dzobo, K. The role of natural products as sources of therapeutic agents for innovative drug discovery. Compr. Pharmacol. 2022, 408–422. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Meadowsweet teas as new functional beverages: Comparative analysis of nutrients, phytochemicals and biological effects of four Filipendula species. Molecules 2016, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Gainche, M.; Ogeron, C.; Ripoche, I.; Senejoux, F.; Cholet, J.; Decombat, C.; Delort, L.; Berthon, J.Y.; Saunier, E.; Caldefie Chezet, F.; et al. Xanthine oxidase inhibitors from Filipendula ulmaria (L.) Maxim. and their efficient detections by HPTLC and HPLC analyses. Molecules 2021, 26, 1939. [Google Scholar] [CrossRef] [PubMed]
- Katanić, J.; Pferschy-Wenzig, E.M.; Mihailović, V.; Boroja, T.; Pan, S.P.; Nikles, S.; Kretschmer, N.; Rosić, G.; Selaković, D.; Joksimović, J.; et al. Phytochemical analysis and anti-inflammatory effects of Filipendula vulgaris Moench extracts. Food Chem. Toxicol. 2018, 122, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Blazics, B.; Papp, I.; Kéry, Á. LC–MS qualitative analysis and simultaneous determination of six Filipendula salicylates with two standards. Chromatographia 2010, 71, 61–67. [Google Scholar] [CrossRef]
- Álvarez-Fernández, M.A.; Hornedo-Ortega, R.; Cerezo, A.B.; Troncoso, A.M.; García-Parrilla, M.C. Effects of the strawberry (Fragaria ananassa) purée elaboration process on non-anthocyanin phenolic composition and antioxidant activity. Food Chem. 2014, 164, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Villalba, R.; Espín, J.C.; Aaby, K.; Alasalvar, C.; Heinonen, M.; Jacobs, G.; Voorspoels, S.; Koivumäki, T.; Kroon, P.A.; Pelvan, E.; et al. Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. J. Agric. Food Chem. 2015, 63, 6555–6566. [Google Scholar] [CrossRef]
- de Souza, L.M.; Cipriani, T.R.; Iacomini, M.; Gorin, P.A.; Sassaki, G.L. HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. J. Pharm. Biomed. Anal. 2008, 47, 59–67. [Google Scholar] [CrossRef]
- Katanić, J.; Matić, S.; Pferschy-Wenzig, E.M.; Kretschmer, N.; Boroja, T.; Mihailović, V.; Stanković, V.; Stanković, N.; Mladenović, M.; Stanić, S.; et al. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis. Food Chem. Toxicol. 2017, 99, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Savina, T.; Lisun, V.; Feduraev, P.; Skrypnik, L. Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.). Molecules 2023, 28, 3512. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, U.; Woźniak, M.; Tomczyk, M.; Granica, S. Chemical composition of edible aerial parts of meadow bistort (Persicaria bistorta (L.) Samp.). Food Chem. 2017, 230, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, L.L.; Vilegas, W.; Dokkedal, A.L. Characterization of flavonoids and phenolic acids in Myrcia bella cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules 2013, 18, 8402–8416. [Google Scholar] [CrossRef] [PubMed]
- de Bont, J.; Jaganathan, S.; Dahlquist, M.; Persson, Å.; Stafoggia, M.; Ljungman, P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J. Intern. Med. 2022, 291, 779–800. [Google Scholar] [CrossRef] [PubMed]
- Kudriashov, B.A.; Liapina, L.A.; Azieva, L.D. The content of a heparin-like anticoagulant in the flowers of the meadowsweet (Filipendula ulmaria). Famakol Toksikol. 1990, 53, 39–41. [Google Scholar]
- Pochet, L.; Frédérick, R.; Masereel, B. Coumarin and isocoumarin as serine protease inhibitors. Curr. Pharm. Des. 2004, 10, 3781–3796. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M.; Bobrowski, M.; Borowiecka, M.; Podsędek, A.; Golański, J.; Nowak, P. Anticoagulant effect of polyphenols-rich extracts from black chokeberry and grape seeds. Fitoterapia 2011, 82, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Pawlaczyk, I.; Czerchawski, L.; Pilecki, W.; Lamer-Zarawska, E.; Gancarz, R. Polyphenolic-polysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae families: Chemical characterization and blood anticoagulant activity. Carbohydr. Polym. 2009, 77, 568–575. [Google Scholar] [CrossRef]
- Seo, E.S.; Lee, J.H.; Park, J.Y.; Kim, D.; Han, H.J.; Robyt, J.F. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. J. Biotechnol. 2005, 117, 31–38. [Google Scholar] [CrossRef]
- Veličković, D.; Dimitrijević, A.; Bihelović, F.; Bezbradica, D.; Jankov, R.; Milosavić, N. A highly efficient diastereoselective synthesis of α-isosalicin by maltase from Saccharomyces cerevisiae. Process Biochem. 2011, 46, 1698–1702. [Google Scholar] [CrossRef]
- Rudeekulthamrong, P.; Kaulpiboon, J. Application of amylomaltase for the synthesis of salicin-α-glucosides as efficient anticoagulant and anti-inflammatory agents. Carbohydr. Res. 2016, 432, 55–61. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chemposov, V.V.; Chirikova, N.K. Metabolites of prickly rose: Chemodiversity and digestive-enzyme-inhibiting potential of Rosa acicularis and the main ellagitannin rugosin D. Plants 2021, 10, 2525. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Hatano, T.; Ogawa, N. Rugosin D, E, F and G, dimeric and trimeric hydrolyzable tannins. Chem. Pharm. Bull. 1982, 30, 4234–4237. [Google Scholar] [CrossRef]
- Ochir, S.; Nishizawa, M.; Park, B.J.; Ishii, K.; Kanazawa, T.; Funaki, M.; Yamagishi, T. Inhibitory effects of Rosa gallica on the digestive enzymes. J. Nat. Med. 2010, 64, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Kato, E.; Yama, M.; Nakagomi, R.; Shibata, T.; Hosokawa, K.; Kawabata, J. Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica. Bioorg. Med. Chem. Lett. 2012, 22, 6410–6412. [Google Scholar] [CrossRef]
- Singh, G.U.; Suresh, S.; Bayineni, V.K.; Kadeppagari, R.K. Lipase inhibitors from plants and their medical applications. Int. J. Pharm. Pharm. Sci. 2015, 7, 1–5. [Google Scholar]
- Moreno-Córdova, E.N.; Arvizu-Flores, A.A.; Valenzuela-Soto, E.M.; García-Orozco, K.D.; Wall-Medrano, A.; Alvarez-Parrilla, E.; Ayala-Zavala, J.F.; Domínguez-Avila, J.A.; González-Aguilar, G.A. Gallotannins are uncompetitive inhibitors of pancreatic lipase activity. Biophys. Chem. 2020, 264, 106409. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.F.; Gonçalves, G.A.; Inácio, F.D.; Koehnlein, E.A.; De Souza, C.G.M.; Bracht, A.; Peralta, R.M. lipase. Nutrients 2015, 7, 5601–5614. [Google Scholar] [CrossRef]
- Aksenov, A.A.; Krol, T.A. Composition and content of phenolic compounds in the leaves of three Cornus species. In Proceedings of the Modern Trends in the Development of Health Saving Technologies, Moscow, Russia, 16–17 December 2021; pp. 152–160. [Google Scholar]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Mammen, D.; Daniel, M. A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chem. 2012, 135, 1365–1368. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Ojha, S.; Raj, A.; Roy, A.; Roy, S. Extraction of total phenolics, flavonoids and tannins from Paederia foetida L. Leaves and their relation with antioxidant activity. Pharmacogn. J. 2018, 10, 541–547. [Google Scholar] [CrossRef]
- Panteghini, M.; Bonora, R.; Pagani, F. Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate. Ann. Clin. Biochem. 2001, 38, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Morishita, Y.; Iinuma, Y.; Nakashima, N.; Majima, K.; Mizuguchi, K.; Kawamura, Y. Total and pancreatic amylase measured with 2-chloro-4-nitrophenyl-4-O-β-D-galactopyranosylmaltoside. Clin. Chem. 2000, 46, 928–933. [Google Scholar] [CrossRef] [PubMed]
Yield (mg/g) | Total Polyphenol Contents (Gallic Acid eq, mg/g d.w.) | Flavonoid Contents (Quercetin eq, mg/g d.w.) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Species | Water | Acetone | Water | Acetone | Water | Acetone | ||||||
Leaf | Flower | Leaf | Flower | Leaf | Flower | Leaf | Flower | Leaf | Flower | Leaf | Flower | |
F. ulmaria | 301.2 | 350.1 | 450.8 | 477.3 | 202.0 ± 4.1 | 289.4 ± 7.3 | 216.6 ± 8.7 | 320.5 ± 5.0 | 34.4 ± 4.3 | 29.9 ± 2.0 | 41.9 ± 0.6 | 42.3 ± 1.9 |
F. palmata | 217.1 | 377.9 | 326.3 | 513.7 | 109.3 ± 5.2 | 381.1 ± 4.7 | 209.0 ± 2.7 | 371.1 ± 13.9 | 31.3 ± 6.1 | 38.2 ± 5.6 | 53.3 ± 0.9 | 34.3 ± 4.5 |
F. camtschatica | 305.9 | 368.3 | 372.3 | 483.7 | 188.1 ± 9.5 | 248.7 ± 10.5 | 243.3 ± 7.3 | 260.8 ± 4.7 | 7.2 ± 0.1 | 16.7 ± 1.3 | 23.3 ± 4.3 | 19.6 ± 1.5 |
F. stepposa | 200.7 | 448.4 | 330.4 | 531.2 | 122.3 ± 4.3 | 215.9 ± 13.3 | 159.0 ± 4.2 | 289.3 ± 10.9 | 15.5 ± 1.7 | 20.4 ± 1.3 | 33.6 ± 2.9 | 22.5 ± 3.7 |
No. | Compound (Ref.) | RT, min | Mass Spectrum | F. stepposa | F. ulmaria | F. camtsch. | F. palmata | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ac 1 | Aq 1 | Ac | Aq | Ac | Aq | Ac | Aq | |||||||||||||||
[M − H]−/[2M − H]− (m/z) | [M − 2H]2− (m/z) | [M+H]+ (m/z) | Fragm. (m/z) | L 1 | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | |||
Phenolic acids and their derivatives | ||||||||||||||||||||||
1 | Gallic acid [23,36] | 2.65 | 169/339 | - | - | - | ||||||||||||||||
5 | Dihydrocaffeic acid -glucuronide, isomer 1; HMDB 1 | 4.96 | 357/715 | - | - | - | ||||||||||||||||
7 | Dihydroxybenzoic acid-glucoside, isomer 1; HMDB | 5.65 | 315/- | - | - | - | ||||||||||||||||
8 | Dihydrocaffeic acid -glucuronide, isomer 2, HMDB | 5.78 | 357/715 | - | - | - | ||||||||||||||||
11 | Dihydrocaffeic acid -glucuronide, isomer 3, HMDB | 6.00 | 357/715 | - | - | - | ||||||||||||||||
12 | Bergenin, HMDB | 6.67 | 327/655 | - | - | - | ||||||||||||||||
13 | Dihydroxybenzoic acid-glucoside, isomer 2, HMDB | 6.88 | 315/- | - | - | - | ||||||||||||||||
14 | Caffeoyl-threonic acid, isomer 1 [22,23] | 7.31 | 297/595 | - | - | - | ||||||||||||||||
15 | Isosalicin, isomer 1 [23] | 7.57 | 285/- | - | - | - | ||||||||||||||||
17 | Caffeoyl-threonic acid, isomer 2 [22,23] | 7.79 | 297/- | - | - | - | ||||||||||||||||
18 | Caffeoyl-threonic acid, isomer 3 [22,23] | 8.14 | 297/595 | - | - | - | ||||||||||||||||
19 | Isosalicin, isomer 2 [23] | 8.31 | 285/- | - | - | - | ||||||||||||||||
20 | Dihydrocaffeic acid -glucuronide, isomer 4, HMDB | 8.37 | 357/- | - | - | - | ||||||||||||||||
21 | Caffeoyl pentoside, isomer [37] | 8.56 | 311/- | - | 313 | 181 | ||||||||||||||||
22 | Salicylic acid hexoside [23,38] | 8.59 | 299/- | - | - | - | ||||||||||||||||
23 | Dihydrocaffeic acid -glucuronide, isomer 5, HMDB | 8.78 | 357/- | - | 359 | 181 | ||||||||||||||||
28 | Coumaroyltreonic acid, isomer 1 [23] | 9.20 | 281/- | - | - | - | ||||||||||||||||
29 | Caffeic acid hexoside, isomer 1, HMDB; [39] | 9.40 | 341/- | - | 343 | 181 | ||||||||||||||||
30 | Caffeic acid hexoside, isomer 2, HMDB; [39] | 9.67 | 341/- | - | - | - | ||||||||||||||||
32 | Coumaroyltreonic acid, isomer 2 [23] | 9.91 | 281/- | - | 283 | 165 | ||||||||||||||||
33 | Coumaroyltreonic acid, isomer 3 [23] | 10.02 | 281/563 | - | - | 165 | ||||||||||||||||
37 | Caffeic acid hexoside, isomer 3, HMDB; [39] | 10.21 | 341/- | - | - | - | ||||||||||||||||
38 | caffeoyl-threonic acid, isomer 4 [22,23] | 10.55 | 297/595 | - | 299/597 | 181 | ||||||||||||||||
40 | Caffeic acid hexoside, isomer 4, HMDB; [39] | 10.65 | 341/- | - | 343 | 181 | ||||||||||||||||
43 | Caffeoyl-threonic acid, isomer 5 [23] | 11.20 | 297/- | - | - | - | ||||||||||||||||
45 | Coumaroyl hexoside [39] | 11.37 | 325/- | - | 327 | 165 | ||||||||||||||||
46 | Caffeic acid hexoside, isomer 5, HMDB; [39] | 11.37 | 341/- | - | - | - | ||||||||||||||||
58 | Coumaroyltreonic acid, isomer 4 [23] | 12.72 | 281/- | - | - | 165 | ||||||||||||||||
70 | Ellagic acid [21] | 14.50 | 301/- | - | - | - | ||||||||||||||||
15 | Isosalicin, isomer 1 [23] | 7.57 | 285/- | - | - | - | ||||||||||||||||
Hydrolyzable tannins | ||||||||||||||||||||||
2 | Monogalloylhexoside, isomer 1 [23] | 2.67 | 331/663 | - | - | - | ||||||||||||||||
3 | Monogalloylhexoside, isomer 2 [23] | 3.17 | 331/- | - | - | - | ||||||||||||||||
4 | Digalloylhexoside, isomer 1, [23] | 4.32 | 483/- | - | - | - | ||||||||||||||||
6 | Galloyl-threonic acid [23] | 5.28 | 287/575 | - | - | - | ||||||||||||||||
9 | Digalloylhexoside, isomer 2 [23] | 5.88 | 483/- | - | - | - | ||||||||||||||||
10 | Monogalloylhexoside, isomer 3 [23] | 5.97 | 331/- | - | - | - | ||||||||||||||||
26 | Digalloylhexoside, isomer 3 [23] | 9.13 | 483/- | - | - | - | ||||||||||||||||
36 | Trigalloylhexoside, isomer 1 [23] | 10.19 | 635/- | - | - | - | ||||||||||||||||
39 | Tellimagrandin I, isomer 1 [21,23,35] | 10.55 | 785/1571 | 392 | - | - | ||||||||||||||||
48 | Ellagic acid-pentoside [37,40] | 11.64 | 433/- | - | - | - | ||||||||||||||||
50 | Tellimagrandin I, isomer 2 [35,36] | 11.86 | 785/1571 | 392 | 787 | - | ||||||||||||||||
52 | Rugosin B, isomer 1 [23,35,36] | 12.09 | 953/1907 | 476 | - | - | ||||||||||||||||
55 | Trigalloylhexoside, isomer 2 [23] | 12.23 | 635/- | - | - | - | ||||||||||||||||
57 | Rugosin B, isomer 2 [35] | 12.53 | 953/- | 476 | - | - | ||||||||||||||||
64 | Tellimagrandin I, isomer 3 [23] | 13.59 | 785/- | - | - | - | ||||||||||||||||
66 | Galloyl-caffeoyl-threonic acid, isomer 1 [23,36] | 14.11 | 449/899 | - | - | 181 | ||||||||||||||||
67 | Galloyl-caffeoyl-threonic acid, isomer 2 [23] | 14.27 | 449/- | - | - | 181 | ||||||||||||||||
68 | Galloyl-bis-HHDP-glucose, isomer 1 [23] | 14.3 | 935/- | 467 | - | - | ||||||||||||||||
75 | Rugosin E, isomer 1, [21,23,35,36] | 15.24 | 1722/- | 860 | - | - | ||||||||||||||||
77 | Rugosin E, isomer 2 [35] | 15.43 | 1722/- | 860 | - | - | ||||||||||||||||
79 | Galloyl-bis-HHDP-glucose, isomer 2 [23] | 15.48 | 935/- | 467 | - | - | ||||||||||||||||
80 | Tetragalloylglucose [23] | 15.7 | 787/- | - | - | - | ||||||||||||||||
81 | Tellimagrandin II [21,23,36] | 15.75 | 937/1875 | 468 | - | - | ||||||||||||||||
82 | Rugosin A [23,36] | 16.05 | 1105/- | 552 | - | - | ||||||||||||||||
91 | Rugosin D [21,36] | 17.31 | 1874/- | 936 | - | - | ||||||||||||||||
93 | Pentagalloylglucose [23] | 17.78 | 939/- | 469 | - | - | ||||||||||||||||
94 | Digalloyl-caffeoyl-threonic acid [23] | 17.8 | 601/- | - | - | - | ||||||||||||||||
98 | Bicornin [23] | 18.36 | 1087/- | 543 | - | - | ||||||||||||||||
Flavanols and proanthocyanidins | ||||||||||||||||||||||
24 | (Epi)catechin-(epi)catechin, isomer 1 [23] | 8.81 | 577/- | - | 579 | 291; 289 | ||||||||||||||||
25 | Catechin [23,36] | 8.98 | 289/579 | - | 291 | - | ||||||||||||||||
27 | (Epi)catechin-(epi)catechin, isomer 2 [22] | 9.2 | 577/- | - | 579 | 291; 289 | ||||||||||||||||
34 | Procyanidin trimer, isomer 1 [23,37] | 10.04 | 865/- | - | - | - | ||||||||||||||||
35 | Procyanidin trimer, isomer 2 [23] | 10.14 | 865/- | - | 867 | 579; 283 | ||||||||||||||||
41 | (Epi)afzelechin-(epi)catechin, isomer [37,41] | 11.00 | 561/- | - | 563 | 273 | ||||||||||||||||
47 | (Epi)catechin [23] | 11.44 | 289/- | - | 291 | - | ||||||||||||||||
51 | (Epi)afzelechin-(epi)catechin-(epi)catechin, isomer [37] | 11.89 | 849/- | - | 851 | 579; 273 | ||||||||||||||||
53 | (Epi)catechin-(epi)catechin, isomer 3 [22] | 12.09 | 577- | - | - | - | ||||||||||||||||
60 | (Epi)afzelechin-(epi)afzelechin-(epi)catechin, isomer 1 [42] | 13.16 | 833/- | - | 835 | 563; 273 | ||||||||||||||||
61 | (Epi)afzelechin-(epi)afzelechin-(epi)catechin, isomer 2 [42] | 13.39 | 833/- | - | 835 | 563; 291; 273 | ||||||||||||||||
63 | (Epi)catechin-(epi)catechin-gallate, isomer [37] | 13.56 | 729/- | - | 731 | 291 | ||||||||||||||||
Kaempferol derivatives | ||||||||||||||||||||||
42 | Kaempferol-rhamnoside [35] | 11.14 | 431/- | - | - | - | ||||||||||||||||
89 | Kaempferol-glucuronide, HMDB | 17.11 | 461/923 | - | 463 | 287 | ||||||||||||||||
90 | Kaempferol-glucoside [35,43] | 17.14 | 447/- | - | 449 | 287 | ||||||||||||||||
97 | Kaempherol-acetyl-hexoside, HMDB | 18.17 | 489/- | - | - | 287 | ||||||||||||||||
100 | Kaempferol derivative [23,42] | 18.56 | 447/895 | - | 449 | 317; 287 | ||||||||||||||||
Quercetin derivatives | ||||||||||||||||||||||
69 | Quercetin-galloylglucoside, isomer 1 [42] | 14.35 | 615/- | - | 617 | 303 | ||||||||||||||||
71 | Quercetin-galloylglucoside, isomer 2 [42] | 14.57 | 615/- | - | 617 | 303 | ||||||||||||||||
72 | Quercetin-rutinoside, isomer 1 [42] | 14.77 | 609/- | - | 611 | 303 | ||||||||||||||||
73 | Quercetin-rutinoside, isomer 2 [42,43] | 15.02 | 609/1219 | - | 611 | 303 | ||||||||||||||||
74 | Quercetin-glucoside, isomer 1 [35,42,43] | 15.21 | 463/927 | - | 465 | 303 | ||||||||||||||||
76 | Quercetin-glucuronide, isomer [35] | 15.33 | 477/955 | - | 479 | 303 | ||||||||||||||||
78 | Quercetin-glucoside, isomer 2 [43] | 15.48 | 463/- | - | 465 | 303 | ||||||||||||||||
83 | Quercetin-galloyldihexoside, isomer [23] | 16.1 | 761/- | - | - | 303 | ||||||||||||||||
84 | Quercetin-pentoside, isomer 1 [35] | 16.13 | 433/867 | - | 435 | 303 | ||||||||||||||||
85 | Quercetin-pentoside, isomer 2 [35] | 16.7 | 433/- | - | 435 | 303 | ||||||||||||||||
87 | Quercetin-acetyl-glucoside, isomer, HMDB | 16.77 | 505/- | - | - | - | ||||||||||||||||
88 | Quercetin-3-O-malonylglucoside, isomer [44] | 16.86 | 549/1099 | - | 551 | 303 | ||||||||||||||||
92 | Quercetin-rhamnoside, isomer [35] | 17.35 | 447/- | - | 449 | 303 | ||||||||||||||||
95 | Quercetin-O-(O-galloyl)-pentoside, isomer [45] | 17.92 | 585/- | - | 587 | 303 | ||||||||||||||||
102 | Quercetin-3-O-(5″-O-malonyl)-arabinofuranoside, isomer [44] | 19.30 | 519/- | - | 521 | 303 | ||||||||||||||||
103 | Quercetin-3-O-(4″-O-malonyl)-rhamnoside, isomer [44] | 19.87 | 533/1067 | - | 535 | 303 | ||||||||||||||||
Other | ||||||||||||||||||||||
54 | Valoneic acid dilactone, HMDB | 12.20 | 469/- | - | - | - | ||||||||||||||||
Unknown phenolic compounds | ||||||||||||||||||||||
16 | Unknown | 7.65 | 633/- | - | - | - | ||||||||||||||||
31 | Unknown | 9.69 | 439/879 | - | 439 | - | ||||||||||||||||
44 | Unknown | 11.29 | 447/- | - | 449 | - | ||||||||||||||||
49 | Unknown | 11.71 | 431/- | - | - | - | ||||||||||||||||
56 | Unknown | 12.50 | 491/- | - | - | - | ||||||||||||||||
59 | Unknown | 12.92 | 491/- | - | - | - | ||||||||||||||||
62 | Unknown | 13.54 | 377/- | - | - | - | ||||||||||||||||
65 | Unknown | 13.71 | 461/- | - | - | - | ||||||||||||||||
86 | Unknown | 16.71 | 1329/- | - | - | - | ||||||||||||||||
96 | Unknown | 18.02 | 463/927 | - | 465 | 303; 287 | ||||||||||||||||
99 | Unknown | 18.53 | 475/- | - | - | - | ||||||||||||||||
101 | Unknown | 18.98 | 601/- | - | - | 317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolova, E.; Krol, T.; Adamov, G.; Minyazeva, Y.; Baleev, D.; Sidelnikov, N. Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties. Molecules 2024, 29, 2013. https://doi.org/10.3390/molecules29092013
Sokolova E, Krol T, Adamov G, Minyazeva Y, Baleev D, Sidelnikov N. Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties. Molecules. 2024; 29(9):2013. https://doi.org/10.3390/molecules29092013
Chicago/Turabian StyleSokolova, Ekaterina, Tatiana Krol, Grigorii Adamov, Yulia Minyazeva, Dmitry Baleev, and Nikolay Sidelnikov. 2024. "Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties" Molecules 29, no. 9: 2013. https://doi.org/10.3390/molecules29092013
APA StyleSokolova, E., Krol, T., Adamov, G., Minyazeva, Y., Baleev, D., & Sidelnikov, N. (2024). Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties. Molecules, 29(9), 2013. https://doi.org/10.3390/molecules29092013