Chemical Constituents and Anticancer Activities of Marine-Derived Fungus Trichoderma lixii
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioassay-Guided Isolation, Structure Identification and Distribution in Nature
2.2. Antiproliferative Activity of Isolated Compounds against Three Cancer Cell Lines (KMS-11, HT-29, and PANC-1) and Human Umbilical Vein Endothelial Cells (HUVEC)
2.3. Anti-Austerity Activity of Isolated Compounds against PANC-1 Cancer Cell Line
3. Materials and Methods
3.1. Instrumentation and General Experimental Techniques
3.2. Fungus Culture
3.3. Extraction, Isolation and Structure Identification
3.4. Anticancer Activities
3.4.1. Cell Lines and Cell Culture
3.4.2. Antiproliferative Assay
3.4.3. Anti-Austerity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; The International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Gakuubi, M.M.; Munusamy, M.; Liang, Z.-X.; Ng, S.B. Fungal endophytes: A promising frontier for discovery of novel bioactive compounds. J. Fungi 2021, 7, 786. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, A.; Evidente, A.; Vurro, M.; Mathieu, V.; Cimmino, A.; Evidente, M.; van Otterlo, W.A.; Dasari, R.; Lefranc, F.; Kiss, R. Toward a cancer drug of fungal origin. Med. Res. Rev. 2015, 35, 937–967. [Google Scholar] [CrossRef] [PubMed]
- Bissett, J.; Gams, W.; Jaklitsch, W.; Samuels, G.J. Accepted Trichoderma names in the year 2015. IMA Fungus 2015, 6, 263–295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Tang, W.L.; Huang, Q.R.; Li, Y.Z.; Wei, M.L.; Jiang, L.L.; Liu, C.; Yu, X.; Zhu, H.W.; Chen, G.Z.; et al. Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance. Front. Microbiol. 2021, 12, 723828. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.T.; Li, Y.; Zhou, Y.; Zhu, Y.H.; Zheng, X.J.; Chang, X.L.; Zhang, S.R.; Gong, G.S. Diversity of Trichoderma species associated with soil in the Zoige alpine wetland of Southwest China. Sci. Rep. 2022, 12, 21709. [Google Scholar] [CrossRef]
- Tyskiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Scisel, J. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, L.; Tangherlini, M.; Colantuono, C.; Esposito, A.; Sangiovanni, M.; Miralto, M.; Sansone, C.; Chiusano, M.L. Bioinformatics for marine products: An overview of resources, bottlenecks, and perspectives. Mar. Drugs 2019, 17, 576. [Google Scholar] [CrossRef]
- Su, D.; Ding, L.; He, S. Marine-derived Trichoderma species as a promising source of bioactive secondary metabolites. Mini Rev. Med. Chem. 2018, 18, 1702–1713. [Google Scholar] [CrossRef] [PubMed]
- Chaverri, P.; Branco-Rocha, F.; Jaklitsch, W.; Gazis, R.; Degenkolb, T.; Samuels, G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015, 107, 558–590. [Google Scholar] [CrossRef] [PubMed]
- Katoch, M.; Singh, D.; Kapoor, K.K.; Vishwakarma, R.A. Trichoderma lixii (IIIM-B4), an endophyte of Bacopa monnieri L. producing peptaibols. BMC Microbiol. 2019, 19, 98. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Kimishima, A.; Ishida, R.; Setiawan, A.; Arai, M. Selective cytotoxicity of epidithiodiketopiperazine DC1149B, produced by marine-derived Trichoderma lixii on the cancer cells adapted to glucose starvation. J. Nat. Med. 2020, 74, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Li, C.P.; Shi, Z.Z.; Fang, S.T.; Song, Y.P.; Ji, N.Y. Lipids and terpenoids from the deep-sea fungus Trichoderma lixii R22 and their antagonism against two wheat pathogens. Molecules 2023, 28, 6220. [Google Scholar] [CrossRef] [PubMed]
- Garo, E.; Starks, C.M.; Jensen, P.R.; Fenical, W.; Lobkovsky, E.; Clardy, J. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J. Nat. Prod. 2003, 66, 423–426. [Google Scholar] [CrossRef]
- Capon, R.J.; Ratnayake, R.; Stewart, M.; Lacey, E.; Tennant, S.; Gill, J.H. Aspergillazines A-E: Novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis. Org. Biomol. Chem. 2005, 3, 123–129. [Google Scholar] [CrossRef]
- Liu, R.; Gu, Q.Q.; Zhu, W.M.; Cui, C.B.; Fan, G.T. Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans. Arch. Pharm. Res. 2005, 28, 1042–1046. [Google Scholar] [CrossRef]
- Yamazaki, H.; Rotinsulu, H.; Takahashi, O.; Kirikoshi, R.; Namikoshi, M. Induced production of a new dipeptide with a disulfide bridge by long-term fermentation of marine-derived Trichoderma cf. brevicompactum. Tetrahedron Lett. 2016, 57, 5764–5767. [Google Scholar] [CrossRef]
- Yamazaki, H.; Takahashi, O.; Murakami, K.; Namikoshi, M. Induced production of a new unprecedented epitrithiodiketopiperazine, chlorotrithiobrevamide, by a culture of the marine-derived Trichoderma cf. brevicompactum with dimethyl sulfoxide. Tetrahedron Lett. 2015, 56, 6262–6265. [Google Scholar] [CrossRef]
- Kim, D.S.; Baek, N.I.; Oh, S.R.; Jung, K.Y.; Lee, I.S.; Kim, J.H.; Lee, H.K. Anticomplementary activity of ergosterol peroxide from Naematoloma fasciculare and reassignment of NMR data. Arch. Pharm. Res. 1997, 20, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.S.; Jo, Y.S.; Kim, Y.H.; Hyun, J.W.; Kim, H.W. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes. Life Sci. 2001, 69, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; Kim, J.P.; Na, M.K.; Jung, H.J.; Min, B.S.; Bae, K.H. Cytotoxicity of ergosterol derivatives from the fruiting bodies of Hygrophorus russula. Nat. Prod. Sci. 2011, 17, 85–89. [Google Scholar]
- Jiang, T.; Li, T.; Li, J.; Fu, H.Z.; Pei, Y.H.; Lin, W.H. Cerebroside analogues from marine-derived fungus Aspergillus flavipes. J. Asian Nat. Prod. Res. 2004, 6, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, Y.; Tanahashi, T.; Nagakura, N.; Hamada, N. 2, 3-Dialkylchromones from mycobiont cultures of the lichen Graphis scripta. Heterocycles 2000, 53, 1589–1593. [Google Scholar] [CrossRef]
- Ui, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Nagamitsu, T.; Takano, D.; Sunazuka, T.; Namikoshi, M.; Omura, S. Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus niger FT-0554. J. Antibiot. 2001, 54, 234–238. [Google Scholar] [CrossRef]
- Damour, H.; Okoye, F.; Proksch, P.; Hakiki, A.; Mosaddak, M.; Hegazy, M.; Debbab, A. Pretrichodermamide A and nafuredin from Trichoderma sp, an endophyte of Cola nitida. J. Mater. Environ. Sci. 2015, 6, 779–783. [Google Scholar]
- Li, B.; Huang, Q.X.; Gao, D.; Liu, D.; Ji, Y.B.; Liu, H.G.; Lin, W.H. New C13 lipids from the marine-derived fungus Trichoderma harzianum. J. Asian Nat. Prod. Res. 2015, 17, 468–474. [Google Scholar] [CrossRef]
- Seephonkai, P.; Kongsaeree, P.; Prabpai, S.; Isaka, M.; Thebtaranonth, Y. Transformation of an irregularly bridged epidithiodiketopiperazine to trichodermamide A. Org. Lett. 2006, 8, 3073–3075. [Google Scholar] [CrossRef] [PubMed]
- Li, D.L.; Chen, Y.C.; Tao, M.H.; Li, H.H.; Zhang, W.M. Two new octahydronaphthalene derivatives from Trichoderma spirale, an endophytic fungus derived from Aquilaria sinensis. Helv. Chim. Acta 2012, 95, 805–809. [Google Scholar] [CrossRef]
- Yamazaki, H.; Rotinsulu, H.; Narita, R.; Takahashi, R.; Namikoshi, M. Induced production of halogenated epidithiodiketopiperazines by a marine-derived Trichoderma cf. brevicompactum with sodium halides. J. Nat. Prod. 2015, 78, 2319–2321. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Pei, Y.; Li, E.; Li, W.; Hyde, K.D.; Yin, W.B.; Liu, X. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Sci. Rep. 2016, 6, 37369. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Takahashi, O.; Kirikoshi, R.; Yagi, A.; Ogasawara, T.; Bunya, Y.; Rotinsulu, H.; Uchida, R.; Namikoshi, M. Epipolythiodiketopiperazine and trichothecene derivatives from the NaI-containing fermentation of marine-derived Trichoderma cf. brevicompactum. J. Antibiot. 2020, 73, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Ma, J.; Jing, Q.Q.; Cao, X.Z.; Chen, L.; Chao, R.; Zheng, J.Y.; Shao, C.L.; He, X.X.; Wei, M.Y. Integrating activity-guided strategy and fingerprint analysis to target potent cytotoxic brefeldin A from a fungal library of the medicinal mangrove Acanthus ilicifolius. Mar. Drugs 2022, 20, 432. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.J.; Fu, S.J.; Xu, M.Y.; Liang, W.L.; Lam, C.K.; Zhong, G.H.; Xu, J.; Yang, D.P.; Li, H.J. Five new cytotoxic metabolites from the marine fungus Neosartorya pseudofischeri. Mar. Drugs 2016, 14, 18. [Google Scholar] [CrossRef]
- Ghule, M.R.; Sawant, I.S.; Oulkar, D.; Hingmire, S.; Shabeer, A.; Holkar, S. Identification of secondary metabolites in mycoparasites Fusarium strains and antifungal activity of fusaric acid against Plasmopara viticola. Arch. Phytopathol. Plant Prot. 2021, 55, 1283–1297. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Sun, K.; Zhu, W. Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans. Mar. Drugs 2011, 9, 535–542. [Google Scholar] [CrossRef]
- Ma, L.; Liu, W.; Huang, Y.; Rong, X. Two acid sorbicillin analogues from saline lands-derived fungus Trichoderma sp. J. Antibiot. 2011, 64, 645–647. [Google Scholar] [CrossRef]
- Kaushik, N.; Diaz, C.E.; Chhipa, H.; Julio, L.F.; Andres, M.F.; Gonzalez-Coloma, A. Chemical composition of an aphid antifeedant extract from an endophytic fungus, Trichoderma sp. EFI671. Microorganisms 2020, 8, 420. [Google Scholar] [CrossRef] [PubMed]
- Zahran, E.M.; Sayed, A.M.; Abdelwahab, M.F.; Albohy, A.; Abdulrazik, B.S.; Ibrahim, A.M.; Bringmann, G.; Abdelmohsen, U.R. Identifying the specific-targeted marine cerebrosides against SARS-CoV-2: An integrated computational approach. RSC Adv. 2021, 11, 36042–36059. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.Y.; Yang, K.L.; Wang, C.Y.; Shao, C.L. Secondary metabolites of the zoanthid-derived fungus Trichoderma sp. TA26-28 collected from the South China Sea. Chem. Nat. Compd. 2014, 50, 961–964. [Google Scholar] [CrossRef]
- Zhang, J.C.; Chen, G.Y.; Li, X.Z.; Hu, M.; Wang, B.Y.; Ruan, B.H.; Zhou, H.; Zhao, L.X.; Zhou, J.; Ding, Z.T.; et al. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat. Prod. Res. 2017, 31, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.R.; Miao, F.P.; Song, Y.P.; Guo, Z.Y.; Ji, N.Y. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27. Nat. Prod. Res. 2016, 30, 1605–1610. [Google Scholar] [CrossRef]
- Ding, Z.; Tao, T.; Wang, L.; Zhao, Y.; Huang, H.; Zhang, D.; Liu, M.; Wang, Z.; Han, J. Bioprospecting of novel and bioactive metabolites from endophytic fungi isolated from rubber tree Ficus elastica leaves. J. Microbiol. Biotechnol. 2019, 29, 731–738. [Google Scholar] [CrossRef]
- Siebatcheu, E.C.; Wetadieu, D.; Youassi Youassi, O.; Bedine Boat, M.A.; Bedane, K.G.; Tchameni, N.S.; Sameza, M.L. Secondary metabolites from an endophytic fungus Trichoderma erinaceum with antimicrobial activity towards Pythium ultimum. Nat. Prod. Res. 2023, 37, 657–662. [Google Scholar] [CrossRef]
- Omura, S.; Miyadera, H.; Ui, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Nagamitsu, T.; Takano, D.; Sunazuka, T.; Harder, A.; et al. An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria. Proc. Natl. Acad. Sci. USA 2001, 98, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Takano, D.; Nagamitsu, T.; Ui, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Kuwajima, I.; Ōmura, S. Total synthesis of nafuredin, a selective NADH-fumarate reductase inhibitor. Org. Lett. 2001, 3, 2289–2291. [Google Scholar] [CrossRef]
- Nagamitsu, T.; Takano, D.; Shiomi, K.; Ui, H.; Yamaguchi, Y.; Masuma, R.; Harigaya, Y.; Kuwajima, I.; Ōmura, S. Total synthesis of nafuredin-γ, a γ-lactone related to nafuredin with selective inhibitory activity against NADH-fumarate reductase. Tetrahedron Lett. 2003, 44, 6441–6444. [Google Scholar] [CrossRef]
- Nagamitsu, T.; Takano, D.; Seki, M.; Arima, S.; Ohtawa, M.; Shiomi, K.; Harigaya, Y.; Ōmura, S. The total synthesis and biological evaluation of nafuredin-γ and its analogues. Tetrahedron 2008, 64, 8117–8127. [Google Scholar] [CrossRef]
- Ohtawa, M.; Arima, S.; Shimizu, R.; Hanatani, N.; Shimizu, E.; Shiomi, K.; Kita, K.; Omura, S.; Nagamitsu, T. Development of a new air-stable structure-simplified nafuredin-γ analog as a potent and selective nematode complex I inhibitor. J. Antibiot. 2017, 70, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Lamboni, Y.; Nielsen, K.F.; Linnemann, A.R.; Gezgin, Y.; Hell, K.; Nout, M.J.; Smid, E.J.; Tamo, M.; van Boekel, M.A.; Hoof, J.B.; et al. Diversity in secondary metabolites including mycotoxins from strains of Aspergillus Section Nigri isolated from raw cashew nuts from Benin, West Africa. PLoS ONE 2016, 11, e0164310. [Google Scholar] [CrossRef]
- Zhao, D.L.; Zhang, X.F.; Huang, R.H.; Wang, D.; Wang, X.Q.; Li, Y.Q.; Zheng, C.J.; Zhang, P.; Zhang, C.S. Antifungal nafuredin and epithiodiketopiperazine derivatives from the mangrove-derived fungus Trichoderma harzianum D13. Front. Microbiol. 2020, 11, 1495. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Shi, T.; Zhou, Y.; Xu, Y.; Zhao, D.L.; Wang, C.Y. Naphthalene derivatives and halogenate quinoline from the coral-derived fungus Trichoderma harzianum (XS-20090075) through OSMAC approach. J. Asian Nat. Prod. Res. 2021, 23, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Luo, X.; Yasheng, M.; Zhao, J.; Li, J.; Li, J. Ergosterol peroxide from Pleurotus ferulae inhibits gastrointestinal tumor cell growth through induction of apoptosis via reactive oxygen species and endoplasmic reticulum stress. Food Funct. 2020, 11, 4171–4184. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wen, B.; Zhang, Z.; Cai, J. Ergosterol peroxide: An effect-directed detecting method from Anoectochilus elwesii and evaluation of anticancer activity. Nat. Prod. Res. 2022, 36, 3177–3182. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Yang, S.Q.; Li, X.M.; Hu, X.Y.; Li, X.; Wang, B.G. Aromatic polyketides from the deep-sea cold-seep mussel associated endozoic fungus Talaromyces minioluteus CS-138. Mar. Drugs 2022, 20, 529. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Yang, X.Q.; Li, S.Y.; Sun, L.J.; Cen, R.H.; Zhao, L.X.; Yang, Y.B.; Ding, Z.T. Three new azaphilone phytotoxins from coculture of the phytopathogens Nigrospora oryzae and Colletotrichum gloeosporioides and antifungal activities against N. oryzae. Chem. Nat. Compd. 2022, 58, 848–852. [Google Scholar] [CrossRef]
- Zhang, Z.; He, X.; Zhang, G.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Inducing secondary metabolite production by combined culture of Talaromyces aculeatus and Penicillium variabile. J. Nat. Prod. 2017, 80, 3167–3171. [Google Scholar] [CrossRef]
- Ohtawa, M.; Matsunaga, M.; Fukunaga, K.; Shimizu, R.; Shimizu, E.; Arima, S.; Ohmori, J.; Kita, K.; Shiomi, K.; Omura, S.; et al. Design, synthesis, and biological evaluation of air-stable nafuredin-γ analogs as complex I inhibitors. Bioorg. Med. Chem. 2015, 23, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.R.; Danai, L.V.; Lewis, C.A.; Chan, S.H.; Gui, D.Y.; Kunchok, T.; Dennstedt, E.A.; Vander Heiden, M.G.; Muir, A. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 2019, 8, e44235. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Owada, S.; Inagaki, Y.; Shida, Y.; Tatemichi, M. Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Sci. Rep. 2018, 8, 10122. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.X.; Zhao, C.F.; Chen, W.B.; Liu, Q.C.; Li, Q.W.; Lin, Y.Y.; Gao, F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J. Gastroenterol. 2021, 27, 4298–4321. [Google Scholar] [CrossRef]
- Izuishi, K.; Kato, K.; Ogura, T.; Kinoshita, T.; Esumi, H. Remarkable tolerance of tumor cells to nutrient deprivation: Possible new biochemical target for cancer therapy. Cancer Res. 2000, 60, 6201–6207. [Google Scholar]
Crude Extracts | Antiproliferative Activity (% Inhibition ± SE) | Anti-Austerity Activity (% Cytotoxicity ± SE) | ||||
---|---|---|---|---|---|---|
KMS-11 | HT-29 | PANC-1 | PANC-1 | |||
Glucose − | Glucose + | Selectivity | ||||
acetone | 58.88 ± 4.37 | 53.11 ± 2.96 | 37.91 ± 4.07 | 79.51 ± 5.73 | 15.32 ± 0.68 | selective |
EtOAc | 100.47 ± 1.00 | 90.44 ± 4.43 | 71.02 ± 4.78 | 95.21 ± 1.21 | 40.57 ± 6.16 | selective |
water | 5.83 ± 5.85 | 3.96 ± 6.64 | 12.17 ± 5.43 | −0.50 ± 4.63 | 0.92 ± 2.38 | ND |
n-hexane | 72.42 ± 6.69 | 23.56 ± 6.09 | 30.44 ± 0.46 | 40.88 ± 4.20 | 22.12 ± 1.87 | selective |
MeOH-1 | 99.88 ± 1.30 | 93.48 ± 2.10 | 84.87 ± 2.83 | 100.53 ± 2.88 | 71.14 ± 2.80 | selective |
MeOH-2 | 75.93 ± 0.44 | 102.40 ± 1.59 | 99.54 ± 0.47 | 99.09 ± 0.43 | 65.71 ± 4.28 | selective |
sub-fraction A | NT | 100.63 ± 2.03 | 41.26 ± 1.30 | selective | ||
sub-fraction B | 62.99 ± 5.55 | 3.72 ± 6.38 | selective | |||
sub-fraction C | 97.59 ± 2.21 | 26.13 ± 4.10 | selective | |||
sub-fraction D | 68.75 ± 2.72 | 37.39 ± 5.66 | selective |
Compounds | Antiproliferative Activity (IC50 ± SE) | |||||||
---|---|---|---|---|---|---|---|---|
KMS-11 | HT-29 | PANC-1 | HUVEC | |||||
1 | >100 | μM | >100 | μM | >100 | μM | >100 | μM |
2 | 1.38 ± 0.12 | μM | 0.73 ± 0.12 | μM | 3.58 ± 0.32 | μM | 1.69 ± 0.26 | μM |
3 | 37.97 ± 7.72 | μM | 22.20 ± 3.09 | μM | 50.29 ± 4.21 | μM | 26.20 ± 5.51 | μM |
4 | 7.60 ± 0.40 | μM | 39.18 ± 4.60 | μM | 24.67 ± 4.44 | μM | 6.94 ± 0.86 | μM |
5 | >100 | μM | >100 | μM | >100 | μM | >100 | μM |
6/7 | 21.05 ± 3.21 | μg/mL | >100 | μg/mL | >100 | μg/mL | 31.27 ± 2.99 | μg/mL |
8 | >100 | μM | >100 | μM | >100 | μM | >100 | μM |
9 | 6.90 ± 1.84 | μM | 11.88 ± 0.55 | μM | 15.27 ± 0.44 | μM | 2.45 ± 0.16 | μM |
10/11 | 16.41 ± 2.23 | μg/mL | 32.51 ± 1.68 | μg/mL | 39.27 ± 2.57 | μg/mL | 15.32 ± 0.64 | μg/mL |
Cisplatin | 4.91 ± 1.06 | μM | 10.59 ± 0.83 | μM | 28.62 ± 3.43 | μM | 13.72 ± 2.57 | μM |
Compounds | Anti-Austerity Activity (IC50 ± SE) | ||||
---|---|---|---|---|---|
Glucose − | Glucose + | Selectivity | |||
1 | >100 | μM | >100 | μM | ND |
2 | 17.76 ± 4.75 | μM | 11.58 ± 1.59 | μM | not selective |
3 | 75.59 ± 4.08 | μM | >400 | μM | selective (SI ≥ 5) |
4 | 22.43 ± 2.50 | μM | 213.37 ± 4.07 | μM | selective (SI = 10) |
5 | >100 | μM | >100 | μM | ND |
6/7 | >100 | μg/mL | >100 | μg/mL | ND |
8 | >100 | μM | >100 | μM | ND |
9 | 48.97 ± 1.31 | μM | 76.66 ± 3.22 | μM | selective (SI = 2) |
10/11 | >100 | μg/mL | >100 | μg/mL | ND |
Antimycin A | 16.23 ± 0.26 | nM | >300 | μM | selective (SI ≥ 18,480) |
Cisplatin | >100 | μM | >100 | μM | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirimangkalakitti, N.; Lin, J.; Harada, K.; Setiawan, A.; Arisawa, M.; Arai, M. Chemical Constituents and Anticancer Activities of Marine-Derived Fungus Trichoderma lixii. Molecules 2024, 29, 2048. https://doi.org/10.3390/molecules29092048
Sirimangkalakitti N, Lin J, Harada K, Setiawan A, Arisawa M, Arai M. Chemical Constituents and Anticancer Activities of Marine-Derived Fungus Trichoderma lixii. Molecules. 2024; 29(9):2048. https://doi.org/10.3390/molecules29092048
Chicago/Turabian StyleSirimangkalakitti, Natchanun, Jianyu Lin, Kazuo Harada, Andi Setiawan, Mitsuhiro Arisawa, and Masayoshi Arai. 2024. "Chemical Constituents and Anticancer Activities of Marine-Derived Fungus Trichoderma lixii" Molecules 29, no. 9: 2048. https://doi.org/10.3390/molecules29092048
APA StyleSirimangkalakitti, N., Lin, J., Harada, K., Setiawan, A., Arisawa, M., & Arai, M. (2024). Chemical Constituents and Anticancer Activities of Marine-Derived Fungus Trichoderma lixii. Molecules, 29(9), 2048. https://doi.org/10.3390/molecules29092048