Optimization of Cyanocobalamin (Vitamin B12) Sorption onto Mesoporous Superparamagnetic Iron Oxide Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. Characteristics of IONPs
2.2. Optimization of Cyanocobalamin Sorption by IONPs
2.3. Adsorption Isotherms
2.4. Selectivity of the Sorption onto IONPs
2.5. Desorption Conditions
2.6. FT-IR/ATR Analysis
2.7. Application of the Spectrophotometric Method for the Determination of Cyanocobalamin in Urine Sample
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Iron Oxide Nanoparticles (IONPs)
4.3. UV-VIS Spectroscopy
4.4. HPLC-DAD
4.5. Sorption Isotherms
4.6. FT-IR/ATR Analysis
4.7. Magnetic Measurements
4.8. DLS Measurements
4.9. The Recommended Procedure for Recovery of Cyanocobalamin from the Urine Sample
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5311498, Cyanocobalamin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cyanocobalamin (accessed on 11 July 2022).
- Beck, W.S. Cobalamin (Vitamin B12). In Handbook of Vitamins, 3rd ed.; Rucker, R.B., Suttie, J.W., McCormick, D.B., Machlin, L.J., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2001; Volume 3, pp. 466–476. [Google Scholar]
- Raux, E.; Schubert, H.L.; Warren, M. Biosynthesis of cobalamin (vitamin B12): A bacterial conundrum. Cell. Mol. Life Sci. 2000, 57, 1880–1893. [Google Scholar] [CrossRef] [PubMed]
- Yamini, Y.; Tahmasebi, E.; Ranjbar, L. Magnetic Nanoparticle-Based Solid-Phase Extraction of Vitamin B12 from Pharmaceutical Formulations. Biol. Trace Elem. Res. 2011, 147, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Cabello, A.; Manzano-Gamero, V.; Puche-Cañas, E. Vitamin B12: For more than just the treatment of megaloblastic anemia? Rev. Clínica Española (Engl. Ed.) 2023, 223, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Fedosov, S.N.; Nexo, E.; Heegaard, C.W. Kinetics of Cellular Cobalamin Uptake and Conversion: Comparison of Aquo/Hydroxocobalamin to Cyanocobalamin. Nutrients 2024, 16, 378. [Google Scholar] [CrossRef] [PubMed]
- Fidaleo, M.; Tacconi, S.; Sbarigia, C.; Passeri, D.; Rossi, M.; Tata, A.M.; Dini, L. Current Nanocarrier Strategies Improve Vitamin B12 Pharmacokinetics, Ameliorate Patients’ Lives, and Reduce Costs. Nanomaterials 2021, 11, 743. [Google Scholar] [CrossRef]
- Hoteit, M.; Khadra, R.; Fadlallah, Z.; Mourad, Y.; Chahine, M.; Skaiki, F.; Al Manasfi, E.; Chahine, A.; Poh, O.B.J.; Tzenios, N. Prevalence and Time Trends of Low Serum B12 Levels and Inadequate B12 Dietary Intake in Lebanese Adults amidst the Food Insecurity Situation: Findings from a Nationally Representative Cross-Sectional Study. Nutrients 2024, 16, 226. [Google Scholar] [CrossRef] [PubMed]
- Chouraqui, J.-P. Risk Assessment of Micronutrients Deficiency in Vegetarian or Vegan Children: Not So Obvious. Nutrients 2023, 15, 2129. [Google Scholar] [CrossRef] [PubMed]
- Bor, M.; Nexø, E. Vitamin B12–cobalamin. In Vitamins in the Prevention of Human Diseases; Herrmann, W., Obeid, R., Eds.; Walter de Gruyter: Berlin, Germany, 2011; pp. 187–271. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products NaA. Scientific opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA J. 2015, 13, 4150–4214. [Google Scholar]
- Lahner, E.; Annibale, B. Pernicious anemia: New insights from a gastroenterological point of view. World J. Gastroenterol. 2009, 15, 5121. [Google Scholar] [CrossRef]
- Watanabe, F.; Yabuta, Y.; Tanioka, Y.; Bito, T. Biologically Active Vitamin B12 Compounds in Foods for Preventing Deficiency among Vegetarians and Elderly Subjects. J. Agric. Food Chem. 2013, 61, 6769–6775. [Google Scholar] [CrossRef]
- Ramalho, M.J.; Andrade, S.; Coelho, M.A.; Loureiro, J.A.; Pereira, M.C. Molecular interactions between Vitamin B12 and membrane models: A biophysical study for new insights into the bioavailability of Vitamin. Colloids Surf. B Biointerfaces 2020, 194, 111187. [Google Scholar] [CrossRef]
- Morris, M.C.; Schneider, J.A.; Tangney, C.C. Thoughts on B-vitamins and dementia. J. Alzheimer’s Dis. 2006, 9, 429–433. [Google Scholar] [CrossRef]
- Smith, A.D. The Worldwide Challenge of the Dementias: A Role for B Vitamins and Homocysteine? Food Nutr. Bull. 2008, 29, S143–S172. [Google Scholar] [CrossRef]
- Blasko, I.; Hinterberger, M.; Kemmler, G.; Jungwirth, S.; Krampla, W.; Leitha, T.; Tragl, K.H.; Fischer, P. Conversion from mild cognitive impairment to dementia: Influence of folic acid and vitamin B12 use in the vita cohort. J. Nutr. Health Aging 2012, 16, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Quadri, P.; Fragiacomo, C.; Pezzati, R.; Zanda, E.; Tettamanti, M.; Lucca, U. Homocysteine and B vitamins in mild cognitive impairment and dementia. Clin. Chem. Lab. Med. 2005, 43, 1096–1100. [Google Scholar] [CrossRef]
- Available online: https://www.mayocliniclabs.com/test-catalog/overview/9154#Clinical-and-Interpretive (accessed on 30 January 2024).
- United States National Library of Medicine. Vitamin B12 Level. 2014. Available online: https://www.nlm.nih.gov/medlineplus/ency/article/003705.htm (accessed on 5 March 2024).
- Australian Government Department of Health and Ageing. MBS Review: Vitamin B12 Testing Protocol. 2013. Available online: http://www.health.gov.au/internet/main/publishing.nsf/Content/VitaminB12testing (accessed on 26 February 2020).
- Sobczyńska-Malefora, A.; Delvin, E.; McCaddon, A.; Ahmadi, K.R.; Harrington, D.J. Vitamin B12status in health and disease: A critical review. Diagnosis of deficiency and insufficiency—Clinical and laboratory pitfalls. Crit. Rev. Clin. Lab. Sci. 2021, 58, 399–429. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, B.P.; Scott, J.M.; O’Broin, S.D. Cryo-preservation of Lactobacillus leichmannii for vitamin B12 microbiological assay. Med. Lab. Sci. 1990, 47, 90–96. [Google Scholar]
- Marszałł, M.L.; Lebiedzińska, A.; Czarnowski, W.; Szefer, P. High-performance liquid chromatography method for the simultaneous determination of thiamine hydrochloride, pyridoxine hydrochloride and cyanocobalamin in pharmaceutical formulations using coulometric electrochemical and ultraviolet detection. J. Chromatogr. A 2005, 1094, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Zafra-Gómez, A.; Garballo, A.; Morales, J.C.; García-Ayuso, L.E. Simultaneous Determination of Eight Water-Soluble Vitamins in Supplemented Foods by Liquid Chromatography. J. Agric. Food Chem. 2006, 54, 4531–4536. [Google Scholar] [CrossRef]
- Pakin, C.; Bergaentzlé, M.; Aoudé-Werner, D.; Hasselmann, C. α-Ribazole, a fluorescent marker for the liquid chromatographic determination of vitamin B12 in foodstuffs. J. Chromatogr. A 2005, 1081, 182–189. [Google Scholar] [CrossRef]
- Yanes, E.G.; Miller-Ihli, N.J. Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2004, 59, 891–899. [Google Scholar] [CrossRef]
- Kumar, S.S.; Chouhan, R.S.; Thakur, M.S. Enhancement of chemiluminescence for vitamin B12 analysis. Anal. Biochem. 2009, 388, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Jiang, S.-J. Determination of Cobalamin in Nutritive Supplements and Chlorella Foods by Capillary Electrophoresis−Inductively Coupled Plasma Mass Spectrometry. J. Agric. Food Chem. 2008, 56, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, F.; Gokavi, S.; Chow, A.; Sheng, Q.; Guo, M. Quantification of water-soluble vitamins in milk-based infant formulae using biosensor-based assays. Food Chem. 2008, 110, 769–776. [Google Scholar] [CrossRef]
- Tsiminis, G.; Schartner, E.P.; Brooks, J.L.; Hutchinson, M.R. Measuring and tracking vitamin B12: A review of current methods with a focus on optical spectroscopy. Appl. Spectrosc. Rev. 2016, 52, 439–455. [Google Scholar] [CrossRef]
- Carkeet, C.; Dueker, S.R.; Lango, J.; Buchholz, B.A.; Miller, J.W.; Green, R.; Hammock, B.D.; Roth, J.R.; Anderson, P.J. Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled (14)C-cobalamin. Proc. Natl. Acad. Sci. USA 2006, 103, 5694–5699. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.S.S.; Thakur, M. Competitive immunoassay for analysis of vitamin B12. Anal. Biochem. 2011, 418, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, B.P.; Broin, S.D. Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J. Clin. Pathol. 1991, 44, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Akbay, N.; Gök, E. Determination of vitamin B12 using a chemiluminescence flow system. J. Anal. Chem. 2008, 63, 1073–1077. [Google Scholar] [CrossRef]
- Tsai, C.-W.; Morris, M.D. Application of resonance Raman spectrometry to the determination of vitamin b12. Anal. Chim. Acta 1975, 76, 193–198. [Google Scholar] [CrossRef]
- Chatzimichalakis, P.F.; Samanidou, V.F.; Verpoorte, R.; Papadoyannis, I.N. Development of a validated HPLC method for the determination of B-complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. J. Sep. Sci. 2004, 27, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.; Adjalla, C.; Felden, F.; Benhayoun, S.; Nicolas, J.; Guéant, J. Identification of vitamin B12 and analogues by high- performance capillary electrophoresis and comparison with high-performance liquid chromatography. J. Chromatogr. A 1992, 608, 311–315. [Google Scholar] [CrossRef]
- Bin Shang, Z.; Wen, Y.J.; Yan, X.Q.; Sun, H.H.; Wang, Y.; Jin, W.J. Synthesis of a novel fluorescent probe based on 7-nitrobenzo-2-oxa-1,3-diazole skeleton for the rapid determination of vitamin B12 in pharmaceuticals. Luminescence 2013, 29, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Cannon, M.J.; Myszka, D.G.; Bagnato, J.D.; Alpers, D.H.; West, F.G.; Grissom, C.B. Equilibrium and Kinetic Analyses of the Interactions between Vitamin B12 Binding Proteins and Cobalamins by Surface Plasmon Resonance. Anal. Biochem. 2002, 305, 1–9. [Google Scholar] [CrossRef]
- Hadjmohammadi, M.; Sharifi, V. Use of solid phase extraction for sample clean-up and preconcentration of vitamin B12 in multivitamin tablet before HPLC-UV, UV and atomic absorption spectrophotometry. J. Food Drug Anal. 2007, 15, 7. [Google Scholar] [CrossRef]
- Heudi, O.; Kilinç, T.; Fontannaz, P.; Marley, E. Determination of Vitamin B12 in food products and in premixes by reversed-phase high performance liquid chromatography and immunoaffinity extraction. J. Chromatogr. A 2006, 1101, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, R.; Shu, W.; Chen, X.; Lin, Y.; Wan, J. Designed Nanomaterials-Assisted Proteomics and Metabolomics Analysis for In Vitro Diagnosis. Small Methods 2023, 8, e2301192. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shu, W.; Zhao, L.; Wan, J. Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis. View 2022, 4, 20220038. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Qian, K. Nanozymes: Applications in clinical biomarker detection. Interdiscip. Med. 2023, 1, e20230020. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Gao, W.; He, J.; Chen, L.; Meng, X.; Ma, Y.; Cheng, L.; Tu, K.; Gao, X.; Liu, C.; Zhang, M.; et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 2023, 14, 160. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Hou, Y.; Tang, G.; Zhang, R.; Yang, Y.; Yan, X.; Fan, K. A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv. Mater. 2023, 36, 2210144. [Google Scholar] [CrossRef]
- Aguirre, M.; Canals, A. Magnetic deep eutectic solvents in microextraction techniques. TrAC Trends Anal. Chem. 2021, 146, 116500. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, G.; Gao, M.; Huang, X.; Xu, D. Recent Advances and Applications of Magnetic Metal-Organic Frameworks in Adsorption and Enrichment Removal of Food and Environmental Pollutants. Crit. Rev. Anal. Chem. 2019, 50, 472–484. [Google Scholar] [CrossRef]
- Faraji, M.; Yamini, Y.; Rezaee, M. Extraction of trace amounts of mercury with sodium dodecyle sulphate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry. Talanta 2010, 81, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, Y.; Wang, T.; Cai, Y.; Jiang, G. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J. Chromatogr. A 2008, 1188, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, C.; Chen, L.; Liu, J.; Jin, H.; Xu, H.; Ding, L. Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction. Anal. Chim. Acta 2009, 638, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, Y.; Cai, Y.; Mou, S. Cetyltrimethylammonium Bromide-Coated Magnetic Nanoparticles for the Preconcentration of Phenolic Compounds from Environmental Water Samples. Environ. Sci. Technol. 2008, 42, 1201–1206. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, S.; Tchounwou, P.; Liu, Y.-M. A nanoparticle-based solid-phase extraction method for liquid chromatography–electrospray ionization-tandem mass spectrometric analysis. J. Chromatogr. A 2007, 1166, 79–84. [Google Scholar] [CrossRef]
- Faraji, M.; Yamini, Y.; Saleh, A.; Rezaee, M.; Ghambarian, M.; Hassani, R. A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal. Chim. Acta 2010, 659, 172–177. [Google Scholar] [CrossRef]
- Flieger, J.; Pasieczna-Patkowska, S.; Żuk, N.; Panek, R.; Korona-Głowniak, I.; Suśniak, K.; Pizoń, M.; Franus, W. Characteristics and Antimicrobial Activities of Iron Oxide Nanoparticles Obtained via Mixed-Mode Chemical/Biogenic Synthesis Using Spent Hop (Humulus lupulus L.) Extracts. Antibiotics 2024, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Żuk, N.; Pasieczna-Patkowska, S.; Kuśmierz, M.; Panek, R.; Franus, W.; Baj, J.; Buszewicz, G.; Teresiński, G.; Płaziński, W. Selective Removal of Chlorophyll and Isolation of Lutein from Plant Extracts Using Magnetic Solid Phase Extraction with Iron Oxide Nanoparticles. Int. J. Mol. Sci. 2024, 25, 3152. [Google Scholar] [CrossRef]
- Sandler, S.E.; Fellows, B.D.; Mefford, O.T. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal. Chem. 2019, 91, 14159–14169. [Google Scholar] [CrossRef]
- McKay, G. Adsorption of dyestuffs from aqueous solutions with activated carbon I: Equilibrium and batch contact-time studies. J. Chem. Technol. Biotechnol. 1982, 32, 759–772. [Google Scholar] [CrossRef]
- Rani, R.D.; Sasidhar, P. Sorption of Cesium on Clay Colloids: Kinetic and Thermodynamic Studies. Aquat. Geochem. 2012, 18, 281–296. [Google Scholar] [CrossRef]
- Murphy, O.P.; Vashishtha, M.; Palanisamy, P.; Kumar, K.V. A Review on the Adsorption Isotherms and Design Calculations for the Optimization of Adsorbent Mass and Contact Time. ACS Omega 2023, 8, 17407–17430. [Google Scholar] [CrossRef]
- Mpelane, S.; Mketo, N.; Bingwa, N.; Nomngongo, P.N. Synthesis of mesoporous iron oxide nanoparticles for adsorptive removal of levofloxacin from aqueous solutions: Kinetics, isotherms, thermodynamics and mechanism. Alex. Eng. J. 2022, 61, 8457–8468. [Google Scholar] [CrossRef]
- Hwang, S.W.; Umar, A.; Dar, G.N.; Kim, S.H.; Badran, R.I. Synthesis and Characterization of Iron Oxide Nanoparticles for Phenyl Hydrazine Sensor Applications. Sens. Lett. 2014, 12, 97–101. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Carlan, I.; Blaga, A.; Rocha, F. Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technol. 2016, 289, 71–78. [Google Scholar] [CrossRef]
- Jin, L.; Lu, P.; You, H.; Chen, Q.; Dong, J. Vitamin B12 diffusion and binding in crosslinked poly(acrylic acid)s and poly(acrylic acid-co-N-vinyl pyrrolidinone)s. Int. J. Pharm. 2009, 371, 82–88. [Google Scholar] [CrossRef]
- Gharagozlou, M.; Naghibi, S. Preparation of vitamin B12–TiO2 nanohybrid studied by TEM, FTIR and optical analysis techniques. Mater. Sci. Semicond. Process. 2015, 35, 166–173. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley&Sons, Ltd.: Chichester, UK, 2004. [Google Scholar]
- Wang, M.; Schuster, K.; Asam, S.; Rychlik, M. Challenges in the determination of total vitamin B12 by cyanidation conversion: Insights from stable isotope dilution assays. Anal. Bioanal. Chem. 2023, 415, 5797–5807. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, H.I.; Gülle, S.; Yilmaz, E.; Soylak, M. Trace determination of vitamin B12 in food samples by using Fe3O4 magnetic particles including multi-walled carbon nanotubes and nanodiamonds. Anal. Methods 2019, 11, 5108–5117. [Google Scholar] [CrossRef]
- Pourreza, N.; Mirzajani, R.; Burromandpiroze, J. Fluorescence detection of vitamin B12 in human plasma and urine samples using silver nanoparticles embedded in chitosan in micellar media. Anal. Methods 2017, 9, 4052–4059. [Google Scholar] [CrossRef]
- Lupaşcu, T.; Petuhov, O.; Ţîmbaliuc, N.; Cibotaru, S.; Rotaru, A. Adsorption Capacity of Vitamin B12 and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials. Molecules 2020, 25, 3095. [Google Scholar] [CrossRef]
- Honda, K.; Imanishi, M.; Takeda, T.; Kimura, M. Determination of Vitamin B12 in Serum by HPLC/ICP–MS. Anal. Sci. 2001, 17, 1983–1985. [Google Scholar]
- Mandal, S.M.; Mandal, M.; Ghosh, A.K.; Dey, S. Rapid determination of vitamin B2 and B12 in human urine by isocratic liquid chromatography. Anal. Chim. Acta 2009, 640, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Berton, P.; Monasterio, R.P.; Wuilloud, R.G. Selective extraction and determination of vitamin B12 in urine by ionic liquid-based aqueous two-phase system prior to high-performance liquid chromatography. Talanta 2012, 97, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Lawrance, P. An Evaluation of Procedures for the Determination of Vitamin B12 in Foods, Supplements, Premixes Using HPLC and UPLC after Selective Extraction with Immunoaffinity Cartridges. A Government Chemist Programme Report LGC/R/2011/171. Available online: https://assets.publishing.service.gov.uk/media/5a7e3256ed915d74e6224bb4/B12_in_foods.pdf (accessed on 28 November 2011).
- Guggisberg, D.; Risse, M.; Hadorn, R. Determination of Vitamin B12 in meat products by RP-HPLC after enrichment and purification on an immunoaffinity column. Meat Sci. 2012, 90, 279–283. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Liu, J. Simultaneous determination of four cobalamins in rat plasma using online solid phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry: Application to pentylenetetrazole-induced seizures in Sprague-Dawley rats. PLoS ONE 2022, 17, e0269645. [Google Scholar] [CrossRef]
- Nakos, M.; Pepelanova, I.; Beutel, S.; Krings, U.; Berger, R.; Scheper, T. Isolation and analysis of vitamin B12 from plant samples. Food Chem. 2016, 216, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Hungerbühler, K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ. Int. 2013, 60, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fletcher, T.; Mucs, D.; Scott, K.; Lindh, C.; Tallving, P.; Jakobsson, K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup. Environ. Med. 2017, 75, 46–51. [Google Scholar] [CrossRef]
- Foreman, J.E.; Chang, S.-C.; Ehresman, D.J.; Butenhoff, J.L.; Anderson, C.R.; Palkar, P.S.; Kang, B.-H.; Gonzalez, F.J.; Peters, J.M. Differential Hepatic Effects of Perfluorobutyrate Mediated by Mouse and Human PPAR-α. Toxicol. Sci. 2009, 110, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Butenhoff, J.L.; Bjork, J.A.; Chang, S.-C.; Ehresman, D.J.; Parker, G.A.; Das, K.; Lau, C.; Lieder, P.H.; van Otterdijk, F.M.; Wallace, K.B. Toxicological evaluation of ammonium perfluorobutyrate in rats: Twenty-eight-day and ninety-day oral gavage studies. Reprod. Toxicol. 2011, 33, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Liu, S.; Zhou, Y.; Wang, T. Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk? Ecotoxicol. Environ. Saf. 2019, 181, 194–201. [Google Scholar] [CrossRef]
- Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ. Sci. Pollut. Res. 2015, 22, 14546–14559. [Google Scholar] [CrossRef] [PubMed]
- Weatherly, L.M.; Shane, H.L.; Lukomska, E.; Baur, R.; Anderson, S.E. Systemic toxicity induced by topical application of heptafluorobutyric acid (PFBA) in a murine model. Food Chem. Toxicol. 2021, 156, 112528. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected β-blockers. J. Chromatogr. A 2010, 1217, 540–549. [Google Scholar] [CrossRef]
- Flieger, J. The effect of chaotropic mobile phase additives on the separation of selected alkaloids in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2006, 1113, 37–44. [Google Scholar] [CrossRef]
- Anderson, P.R.; Christensen, T.H. Distribution coefficients of Cd, Co, Ni, and Zn in soils. Eur. J. Soil Sci. 1988, 39, 15–22. [Google Scholar] [CrossRef]
- Gomes, P.C.; Fontes, M.P.F.; Da Silva, A.G.; Mendonça, E.S.; Netto, R.A. Selectivity sequence and competitive sorption of heavy metals by Brazilian soils. Soil Sci. Soc. Am. J. 2001, 65, 1115–1121. [Google Scholar] [CrossRef]
Kinetic Model | Parameter | HFBA | TCAA |
---|---|---|---|
Pseudo-1st-order | qe mg g−1 | 1.3200 | 1.1800 |
k1 min−1 | 0.0904 | 0.1061 | |
R2 | 0.9688 | 0.9736 | |
Pseudo-2nd-order | qe mg g−1 | 2.0760 | 2.0360 |
k2 mg g−1 min−1 | 0.2240 | 0.4912 | |
R2 | 0.9981 | 0.9992 |
Isotherm Type | Coefficient | Unit | HFBA | TCAA |
---|---|---|---|---|
Freundlich | n | range from 0 to 1 | 1.0469 | 0.5236 |
Kf | (mg g−1)/(L mg−1)n | 0.7158 | 2.6203 | |
R2 | - | 0.6472 | 0.6577 | |
Langmuir | qm | mg g−1 | 8.9047 | 7.6923 |
KL | L mg−1 | 0.2203 | 0.5996 | |
R2 | - | 0.6982 | 0.899 |
Vitamin B12 Added | Vitamin B12 Found | Relative Error [%] | Recovery [%] | RSD [%] |
---|---|---|---|---|
8.00 µg mL−1 | 8.64 µg mL−1 | 8.0 | 107.99 | 5.43 |
40.00 µg mL−1 | 40.59 µg mL−1 | 1.5 | 101.47 | 1.25 |
90.00 µg mL−1 | 91.43 µg mL−1 | 1.6 | 101.59 | 1.80 |
Parameter | DAD Detection [360 nm] | DAD Detection [218 nm] | FL Detection λex = 250 nm, λem = 360 nm | Spectrophotometry λem = 361 nm |
---|---|---|---|---|
linearity range | 0.39–100 μg mL−1 | 1.56–50 μg mL−1 | 95.35 ng mL−1–25 μg mL−1 | 5–100 μg mL−1 |
calibration equation | Y = 86,725 (±1353) + 146,879 (±52100) | y= 129,767 (±5846) + 111,312 (±137,786) | y = 78,930,496 (±1,518,746) + 858,972 (±17,146) | y = 18.195 (±0.297)x + 0.0148 (±0.015) |
correlation coefficient | 0.9983 | 0.9919 | 0.9989 | 0.9987 |
Se | 127,744 | 242,297 | 32,458 | 0.027 |
F | 4104 | 492 | 2701 | 3741 |
LOD 1 | 72.97 ng mL−1 | 26.86 ng mL−1 | 12.89 ng mL−1 | 2.64 μg mL−1 |
LOQ 1 | 243.24 ng mL−1 | 80.58 ng mL−1 | 42.95 ng mL−1 | 8.24 μg mL−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flieger, J.; Żuk, N.; Pasieczna-Patkowska, S.; Flieger, M.; Panek, R.; Klepka, T.; Franus, W. Optimization of Cyanocobalamin (Vitamin B12) Sorption onto Mesoporous Superparamagnetic Iron Oxide Nanoparticles. Molecules 2024, 29, 2094. https://doi.org/10.3390/molecules29092094
Flieger J, Żuk N, Pasieczna-Patkowska S, Flieger M, Panek R, Klepka T, Franus W. Optimization of Cyanocobalamin (Vitamin B12) Sorption onto Mesoporous Superparamagnetic Iron Oxide Nanoparticles. Molecules. 2024; 29(9):2094. https://doi.org/10.3390/molecules29092094
Chicago/Turabian StyleFlieger, Jolanta, Natalia Żuk, Sylwia Pasieczna-Patkowska, Michał Flieger, Rafał Panek, Tomasz Klepka, and Wojciech Franus. 2024. "Optimization of Cyanocobalamin (Vitamin B12) Sorption onto Mesoporous Superparamagnetic Iron Oxide Nanoparticles" Molecules 29, no. 9: 2094. https://doi.org/10.3390/molecules29092094
APA StyleFlieger, J., Żuk, N., Pasieczna-Patkowska, S., Flieger, M., Panek, R., Klepka, T., & Franus, W. (2024). Optimization of Cyanocobalamin (Vitamin B12) Sorption onto Mesoporous Superparamagnetic Iron Oxide Nanoparticles. Molecules, 29(9), 2094. https://doi.org/10.3390/molecules29092094