The Role of Nanomedicine in Benign Gynecologic Disorders
Abstract
:1. Introduction
2. Nanoparticles Overview
3. Uterine Leiomyoma
3.1. Brief Background on Uterine Leiomyoma
3.2. Nanomedicine for Uterine Leiomyoma
3.2.1. Liposomal 2-Methoxyestradiol (2-ME) Therapy
3.2.2. Liposomal Simvastatin Therapy
3.2.3. Suicide Gene Therapy
4. Endometriosis
4.1. Brief Background on Endometriosis
4.2. Nanotherapeutics for Endometriosis Diagnosis
4.3. Nanomedicine for Endometriosis Treatment
5. PCOS
5.1. Brief Background on PCOS
5.2. Nanomedicine for PCOS Diagnosis
5.3. Nanomedicine for PCOS Treatment
6. Menopause
6.1. Brief Background on Menopause
6.2. Nanomedicine for Menopause Treatment
6.2.1. Systemic and Local Hormonal Treatment
6.2.2. Selective Estrogen Receptor Modulators
7. Potential Toxicity of Nanoparticles
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afzal, O.; Altamimi, A.S.A.; Nadeem, M.S.; Alzarea, S.I.; Almalki, W.H.; Tariq, A.; Mubeen, B.; Murtaza, B.N.; Iftikhar, S.; Riaz, N.; et al. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials 2022, 12, 4494. [Google Scholar] [CrossRef] [PubMed]
- Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanomedicine based approaches for the delivery of siRNA in cancer. J. Intern. Med. 2010, 267, 44–53. [Google Scholar] [CrossRef]
- Kara, G.; Ozpolat, B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomed. Microdevices 2024, 26, 16. [Google Scholar] [CrossRef]
- Murthy, S.K. Nanoparticles in modern medicine: State of the art and future challenges. Int. J. Nanomed. 2007, 2, 129–141. [Google Scholar]
- Jia, Y.; Jiang, Y.; He, Y.; Zhang, W.; Zou, J.; Magar, K.T.; Boucetta, H.; Teng, C.; He, W. Approved Nanomedicine against Diseases. Pharmaceutics 2023, 15, 774. [Google Scholar] [CrossRef] [PubMed]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Barenholz, Y. (Chezy) Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Parodi, A.; Kolesova, E.P.; Voronina, M.V.; Frolova, A.S.; Kostyushev, D.; Trushina, D.B.; Akasov, R.; Pallaeva, T.; Zamyatnin, A.A. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. Int. J. Mol. Sci. 2022, 23, 13368. [Google Scholar] [CrossRef]
- Al Enazy, S.A.; Kirschen, G.W.; Vincent, K.; Yang, J.; Saada, J.; Shah, M.; Oberhauser, A.F.; Bujalowski, P.J.; Motamedi, M.; Salama, S.A.; et al. PEGylated Polymeric Nanoparticles Loaded with 2-Methoxyestradiol for the Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model. J. Pharm. Sci. 2023, 112, 2552–2560. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Demessie, A.A.; Luo, A.; Taratula, O.R.; Moses, A.S.; Do, P.; Campos, L.; Jahangiri, Y.; Wyatt, C.R.; Albarqi, H.A.; et al. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. Small 2022, 18, e2107808. [Google Scholar] [CrossRef]
- Raja, M.A.; Maldonado, M.; Chen, J.; Zhong, Y.; Gu, J. Development and Evaluation of Curcumin Encapsulated Self-assembled Nanoparticles as Potential Remedial Treatment for PCOS in a Female Rat Model. Int. J. Nanomed. 2021, 16, 6231–6247. [Google Scholar] [CrossRef]
- Botelho, M.A.; Queiroz, D.B.; Barros, G.; Guerreiro, S.; Fechine, P.; Umbelino, S.; Lyra, A.; Borges, B.; Freitas, A.; de Queiroz, D.C.; et al. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: A confocal Raman spectroscopy study. Clinics 2014, 69, 75–82. [Google Scholar] [CrossRef] [PubMed]
- García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials 2019, 9, 638. [Google Scholar] [CrossRef]
- Agrawal, S.; Garg, A.; Varshney, V. Recent Updates on Applications of Lipid-Based Nanoparticles for Site- Specific Drug Delivery. Pharm. Nanotechnol. 2022, 10, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S. Polymer Nanoparticles: Synthesis and Applications. Polymers 2022, 14, 5449. [Google Scholar] [CrossRef]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef] [PubMed]
- Girija, A.R. 12—Medical Applications of Polymer/Functionalized Nanoparticle Systems. In Polymer Composites with Functionalized Nanoparticles; Pielichowski, K., Majka, T.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 381–404. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Padín-González, E.; Lancaster, P.; Bottini, M.; Gasco, P.; Tran, L.; Fadeel, B.; Wilkins, T.; Monopoli, M.P. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front. Bioeng. Biotechnol. 2022, 10, 882363. Available online: https://www.frontiersin.org/articles/10.3389/fbioe.2022.882363 (accessed on 10 March 2024). [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. Available online: https://www.frontiersin.org/articles/10.3389/fchem.2020.00341 (accessed on 28 February 2024). [CrossRef] [PubMed]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Borahay, M.A.; Vincent, K.L.; Motamedi, M.; Tekedereli, I.; Salama, S.A.; Ozpolat, B.; Kilic, G.S. Liposomal 2-Methoxyestradiol Nanoparticles for Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model. Reprod. Sci. 2021, 28, 271–277. [Google Scholar] [CrossRef] [PubMed]
- El Sabeh, M.; Vincent, K.L.; Afrin, S.; Motamedi, M.; Saada, J.; Yang, J.; Ozpolat, B.; Kilic, G.S.; Borahay, M.A. Simvastatin-loaded liposome nanoparticles treatment for uterine leiomyoma in a patient-derived xenograft mouse model: A pilot study. J. Obstet. Gynaecol. 2022, 42, 2139–2143. [Google Scholar] [CrossRef] [PubMed]
- Egorova, A.; Shtykalova, S.; Maretina, M.; Freund, S.; Selutin, A.; Shved, N.; Selkov, S.; Kiselev, A. Serum-Resistant Ternary DNA Polyplexes for Suicide Gene Therapy of Uterine Leiomyoma. Int. J. Mol. Sci. 2024, 25, 34. [Google Scholar] [CrossRef] [PubMed]
- Moses, A.S.; Taratula, O.R.; Lee, H.; Luo, F.; Grenz, T.; Korzun, T.; Lorenz, A.S.; Sabei, F.Y.; Bracha, S.; Alani, A.W.G.; et al. Nanoparticle-Based Platform for Activatable Fluorescence Imaging and Photothermal Ablation of Endometriosis. Small 2020, 16, e1906936. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, H.J.; Lee, J.M.; Chang, Y.; Woo, S.T. Ultrasmall superparamagnetic iron oxides enhanced MR imaging in rats with experimentally induced endometriosis. Magn. Reson. Imaging 2012, 30, 860–868. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Sun, W.; Hu, Y.; Zhang, G.; Shen, M.; Shi, X. Hyaluronic acid-modified magnetic iron oxide nanoparticles for MR imaging of surgically induced endometriosis model in rats. PLoS ONE 2014, 9, e94718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, S.; Li, Y.; Lai, M.; Li, Q.; Fu, C.; Yao, Z.; Zhang, J. Endometriosis-targeted MRI imaging using bevacizumab-modified nanoparticles aimed at vascular endothelial growth factor. Nanoscale Adv. 2023, 5, 3994–4001. [Google Scholar] [CrossRef]
- Marquardt, R.M.; Nafiujjaman, M.; Kim, T.H.; Chung, S.-J.; Hadrick, K.; Kim, T.; Jeong, J.-W. A mouse model of endometriosis with nanoparticle labeling for in vivo photoacoustic imaging. Reprod. Sci. 2022, 29, 2947–2959. [Google Scholar] [CrossRef]
- Egorova, A.; Petrosyan, M.; Maretina, M.; Bazian, E.; Krylova, I.; Baranov, V.; Kiselev, A. iRGD-Targeted Peptide Nanoparticles for Anti-Angiogenic RNAi-Based Therapy of Endometriosis. Pharmaceutics 2023, 15, 2108. [Google Scholar] [CrossRef]
- Chaudhury, K.; Babu, K.N.; Singh, A.K.; Das, S.; Kumar, A.; Seal, S. Mitigation of endometriosis using regenerative cerium oxide nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Avila-Tavares, R.; Gibran, L.; Brito, L.G.O.; Tavoni, T.M.; Gonçalves, M.O.; Baracat, E.C.; Maranhão, R.C.; Podgaec, S. Pilot study of treatment of patients with deep infiltrative endometriosis with methotrexate carried in lipid nanoparticles. Arch. Gynecol. Obstet. 2024, 309, 659–667. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Xue, N.; Zhu, X.; Li, F.; Dai, Q.; Qing, X.; Chen, D.; Liu, X.; Wei, Z.; et al. Highly specific neutrophil-mediated delivery of albumin nanoparticles to ectopic lesion for endometriosis therapy. J. Nanobiotechnol. 2023, 21, 81. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S.; Jain, U.; Balayan, S.; Chauhan, N. Ultra-sensitive nano- molecular imprinting polymer-based electrochemical sensor for Follicle-Stimulating Hormone (FSH) detection. Biochem. Eng. J. 2022, 180, 108329. [Google Scholar] [CrossRef]
- Deswal, R.; Narwal, V.; Dang, A.S.; Pundir, C.S. An ultrasensitive electrochemical immunosensor for detection of sex hormone binding globulin. Microchem. J. 2019, 149, 104010. [Google Scholar] [CrossRef]
- Alwan, S.H.; Al-Saeed, M.H. Silver Nanoparticles Biofabricated from Cinnamomum zeylanicum Reduce IL-6, IL-18, and TNF-ɑ in Female Rats with Polycystic Ovarian Syndrome. Int. J. Fertil. Steril. 2023, 17, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A.; ESTRASORB Study Group. Estradiol in micellar nanoparticles: The efficacy and safety of a novel transdermal drug-delivery technology in the management of moderate to severe vasomotor symptoms. Menopause 2006, 13, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, X.; Hu, Y.; Yuan, W.; Qiu, X.; Jiang, T.; Xia, C.; Xiong, L.; Li, F.; Gao, Y. EDTA-Modified 17β-Estradiol-Laden Upconversion Nanocomposite for Bone-Targeted Hormone Replacement Therapy for Osteoporosis. Theranostics 2020, 10, 3281–3292. [Google Scholar] [CrossRef] [PubMed]
- Prakapenka, A.V.; Quihuis, A.M.; Carson, C.G.; Patel, S.; Bimonte-Nelson, H.A.; Sirianni, R.W. Poly(lactic-co-glycolic Acid) Nanoparticle Encapsulated 17β-Estradiol Improves Spatial Memory and Increases Uterine Stimulation in Middle-Aged Ovariectomized Rats. Front. Behav. Neurosci. 2020, 14, 597690. Available online: https://www.frontiersin.org/articles/10.3389/fnbeh.2020.597690 (accessed on 21 February 2024). [CrossRef]
- Abou-Taleb, H.A.; Fathalla, Z.; Naguib, D.M.; Fatease, A.A.; Abdelkader, H. Chitosan/Solid-Lipid Nanoparticles Hybrid Gels for Vaginal Delivery of Estradiol for Management of Vaginal Menopausal Symptoms. Pharmaceuticals 2023, 16, 1284. [Google Scholar] [CrossRef] [PubMed]
- Saini, D.; Fazil, M.; Ali, M.M.; Baboota, S.; Ali, J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015, 22, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Afza, R.; Moneeb Khan, M.; Khan, S.U.; Khan, M.W.; Ali, Z.; Batool, S.; ud Din, F. Investigation of the treatment potential of Raloxifene-loaded polymeric nanoparticles in osteoporosis: In-vitro and in-vivo analyses. Heliyon 2023, 9, e20107. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Chang, C.-H.; Young, T.-H.; Wang, C.-H.; Tseng, T.-H.; Wang, M.-L. Human serum albumin-based nanoparticles alter raloxifene administration and improve bioavailability. Drug Deliv. 2022, 29, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Gao, N.; Song, X. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability. Drug Deliv. 2021, 28, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Vilos, G.A.; Allaire, C.; Laberge, P.-Y.; Leyland, N.; Vilos, A.G.; Murji, A.; Chen, I. The management of uterine leiomyomas. J. Obstet. Gynaecol. Can. 2015, 37, 157–178. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.-C.; Li, H.-Y.; Gong, Q.-Q.; Huang, C.-Y.; Zhang, C.; Yan, J.-Z. Global, Regional, and National Burden of Uterine Fibroids in the Last 30 Years: Estimates from the 1990 to 2019 Global Burden of Disease Study. Front. Med. 2022, 9, 1003605. Available online: https://www.frontiersin.org/articles/10.3389/fmed.2022.1003605 (accessed on 13 February 2024). [CrossRef]
- Gupta, S.; Jose, J.; Manyonda, I. Clinical presentation of fibroids. Best Pract. Res. Clin. Obstet. Gynaecol. 2008, 22, 615–626. [Google Scholar] [CrossRef]
- Murji, A.; Bedaiwy, M.; Singh, S.S.; Bougie, O. CAPTURE Registry Steering Committee Influence of Ethnicity on Clinical Presentation and Quality of Life in Women With Uterine Fibroids: Results From a Prospective Observational Registry. J. Obstet. Gynaecol. Can. 2020, 42, 726–733.e1. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Ciebiera, M.; Bariani, M.V.; Ali, M.; Elkafas, H.; Boyer, T.G.; Al-Hendy, A. Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment. Endocr. Rev. 2021, 43, 678–719. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.S.D.D.L.; Buchanan, E.M. Uterine Fibroids: Diagnosis and Treatment. Am. Fam. Physician 2017, 95, 100–107. [Google Scholar] [PubMed]
- Di Spiezio Sardo, A.; Ciccarone, F.; Muzii, L.; Scambia, G.; Vignali, M. Use of oral GnRH antagonists combined therapy in the management of symptomatic uterine fibroids. Facts Views Vis. Obgyn 2023, 15, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Sohn, G.S.; Cho, S.; Kim, Y.M.; Cho, C.-H.; Kim, M.-R.; Lee, S.R.; Working Group of Society of Uterine Leiomyoma. Current medical treatment of uterine fibroids. Obstet. Gynecol. Sci. 2018, 61, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, R.; Chittawar, P.B.; Farquhar, C. GnRH agonists for uterine fibroids. Cochrane Database Syst. Rev. 2017, 2017, CD012846. [Google Scholar] [CrossRef]
- Gonadotropin Releasing Hormone (GnRH) Analogues. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. Available online: http://www.ncbi.nlm.nih.gov/books/NBK547863/ (accessed on 13 February 2024).
- Wright, D.; Kim, J.W.; Lindsay, H.; Catherino, W.H. A Review of GnRH Antagonists as Treatment for Abnormal Uterine Bleeding-Leiomyoma (AUB-L) and Their Influence on the Readiness of Service Members. Mil. Med. 2023, 188, e1620–e1624. [Google Scholar] [CrossRef] [PubMed]
- Management of Symptomatic Uterine Leiomyomas: ACOG Practice Bulletin, Number 228. Obstet. Gynecol. 2021, 137, e100–e115. [CrossRef] [PubMed]
- Mas, A.; Tarazona, M.; Dasí Carrasco, J.; Estaca, G.; Cristóbal, I.; Monleón, J. Updated approaches for management of uterine fibroids. Int. J. Womens Health 2017, 9, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Siskin, G.P.; Englander, M.; Stainken, B.F.; Ahn, J.; Dowling, K.; Dolen, E.G. Embolic Agents Used for Uterine Fibroid Embolization. Am. J. Roentgenol. 2000, 175, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Keung, J.J.; Spies, J.B.; Caridi, T.M. Uterine artery embolization: A review of current concepts. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 46, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, P.E.; Huff, T.J.; Shanahan, M.M.; Stavas, J.M. Pregnancy success and outcomes after uterine fibroid embolization: Updated review of published literature. Br. J. Radiol. 2020, 93, 20190551. [Google Scholar] [CrossRef] [PubMed]
- Baxter, B.L.; Seaman, S.J.; Arora, C.; Kim, J.H. Radiofrequency ablation methods for uterine sparing fibroid treatment. Curr. Opin. Obstet. Gynecol. 2022, 34, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Klauber, N.; Parangi, S.; Flynn, E.; Hamel, E.; D’Amato, R.J. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997, 57, 81–86. [Google Scholar] [PubMed]
- Borahay, M.A.; Asoglu, M.R.; Mas, A.; Adam, S.; Kilic, G.S.; Al-Hendy, A. Estrogen Receptors and Signaling in Fibroids: Role in Pathobiology and Therapeutic Implications. Reprod. Sci. 2017, 24, 1235–1244. [Google Scholar] [CrossRef]
- Salama, S.A.; Kamel, M.W.; Botting, S.; Salih, S.M.; Borahay, M.A.; Hamed, A.A.; Kilic, G.S.; Saeed, M.; Williams, M.Y.; Diaz-Arrastia, C.R. Catechol-o-methyltransferase expression and 2-methoxyestradiol affect microtubule dynamics and modify steroid receptor signaling in leiomyoma cells. PLoS ONE 2009, 4, e7356. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Islam, M.S.; Patzkowsky, K.; Malik, M.; Catherino, W.H.; Segars, J.H.; Borahay, M.A. Simvastatin ameliorates altered mechanotransduction in uterine leiomyoma cells. Am. J. Obstet. Gynecol. 2020, 223, e1–e733. [Google Scholar] [CrossRef]
- Borahay, M.A.; Kilic, G.S.; Yallampalli, C.; Snyder, R.R.; Hankins, G.D.V.; Al-Hendy, A.; Boehning, D. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells. J. Biol. Chem. 2014, 289, 35075–35086. [Google Scholar] [CrossRef]
- Malik, M.; Britten, J.; Borahay, M.; Segars, J.; Catherino, W.H. Simvastatin, at clinically relevant concentrations, affects human uterine leiomyoma growth and extracellular matrix production. Fertil. Steril. 2018, 110, 1398–1407.e1. [Google Scholar] [CrossRef]
- Burney, R.O.; Giudice, L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef] [PubMed]
- França, P.R.d.C.; Lontra, A.C.P.; Fernandes, P.D. Endometriosis: A Disease with Few Direct Treatment Options. Molecules 2022, 27, 4034. [Google Scholar] [CrossRef]
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Moses, A.S.; Demessie, A.A.; Taratula, O.; Korzun, T.; Slayden, O.D.; Taratula, O. Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. Small 2021, 17, e2004975. [Google Scholar] [CrossRef] [PubMed]
- Hillemanns, P.; Weingandt, H.; Stepp, H.; Baumgartner, R.; Xiang, W.; Korell, M. Assessment of 5-aminolevulinic acid-induced porphyrin fluorescence in patients with peritoneal endometriosis. Am. J. Obstet. Gynecol. 2000, 183, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Prajapati, B.G.; Singh, S.; Anjum, M.M. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: A critical review on biosynthesis, detection, and therapeutic applications. J. Cancer Res. Clin. Oncol. 2023, 149, 17607–17634. [Google Scholar] [CrossRef] [PubMed]
- Sahni, M.; Day, E.S. Nanotechnologies for the detection and treatment of endometriosis. Front. Biomater. Sci. 2023, 2, 1279358. Available online: https://www.frontiersin.org/articles/10.3389/fbiom.2023.1279358 (accessed on 12 February 2024). [CrossRef]
- Deswal, R.; Narwal, V.; Dang, A.; Pundir, C.S. The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. J. Hum. Reprod. Sci. 2020, 13, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment with Emphasis on Adolescent Girls. J. Endocr. Soc. 2019, 3, 1545–1573. [Google Scholar] [CrossRef] [PubMed]
- Ndefo, U.A.; Eaton, A.; Green, M.R. Polycystic ovary syndrome: A review of treatment options with a focus on pharmacological approaches. Pharm. Ther. 2013, 38, 336–355. [Google Scholar]
- ACOG Practice Bulletin No. 108: Polycystic ovary syndrome. Obstet. Gynecol. 2009, 114, 936. [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Sheehan, M.T. Polycystic Ovarian Syndrome: Diagnosis and Management. Clin. Med. Res. 2004, 2, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Sydora, B.C.; Wilke, M.S.; McPherson, M.; Chambers, S.; Ghosh, M.; Vine, D.F. Challenges in diagnosis and health care in polycystic ovary syndrome in Canada: A patient view to improve health care. BMC Women’s Health 2023, 23, 569. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.A.; Carmina, E. The Importance of Diagnosing the Polycystic Ovary Syndrome. Ann. Intern. Med. 2000, 132, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Abdelazim, I.A.; Alanwar, A.; AbuFaza, M.; Amer, O.O.; Bekmukhambetov, Y.; Zhurabekova, G.; Shikanova, S.; Karimova, B. Elevated and diagnostic androgens of polycystic ovary syndrome. Przegląd Menopauzalny 2020, 19, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Z.; Feng, W.; Long, S.; Mo, Z.-C. Sex hormone-binding globulin and polycystic ovary syndrome. Clin. Chim. Acta 2019, 499, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Javid-Naderi, M.J.; Mahmoudi, A.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome. J. Drug Deliv. Sci. Technol. 2023, 79, 104014. [Google Scholar] [CrossRef]
- Shen, W.; Qu, Y.; Jiang, H.; Wang, H.; Pan, Y.; Zhang, Y.; Wu, X.; Han, Y.; Zhang, Y. Therapeutic effect and safety of curcumin in women with PCOS: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 1051111. [Google Scholar] [CrossRef] [PubMed]
- Akter, T.; Zahan, M.S.; Nawal, N.; Rahman, M.H.; Tanjum, T.N.; Arafat, K.I.; Moni, A.; Islam, M.N.; Uddin, M.J. Potentials of curcumin against polycystic ovary syndrome: Pharmacological insights and therapeutic promises. Heliyon 2023, 9, e16957. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef] [PubMed]
- Yanat, M.; Schroën, K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React. Funct. Polym. 2021, 161, 104849. [Google Scholar] [CrossRef]
- Lashen, H. Role of metformin in the management of polycystic ovary syndrome. Ther. Adv. Endocrinol. Metab. 2010, 1, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.P. Metformin use in women with polycystic ovary syndrome. Ann. Transl. Med. 2014, 2, 56. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Sahin, S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv. 2016, 23, 2796–2805. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Epperson, C.N.; Mathews, S.B. Menopausal Symptoms and Their Management. Endocrinol. Metab. Clin. N. Am. 2015, 44, 497–515. [Google Scholar] [CrossRef] [PubMed]
- National Institute on Aging. Research Explores the Impact of Menopause on Women’s Health and Aging. 6 May 2022. Available online: https://www.nia.nih.gov/news/research-explores-impact-menopause-womens-health-and-aging (accessed on 21 February 2024).
- Gold, E.B. The Timing of the Age at Which Natural Menopause Occurs. Obstet. Gynecol. Clin. N. Am. 2011, 38, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Crandall, C.J.; Mehta, J.M.; Manson, J.E. Management of Menopausal Symptoms: A Review. JAMA 2023, 329, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Flores, V.A.; Pal, L.; Manson, J.E. Hormone Therapy in Menopause: Concepts, Controversies, and Approach to Treatment. Endocr. Rev. 2021, 42, 720–752. [Google Scholar] [CrossRef]
- Paciuc, J. Hormone Therapy in Menopause. In Hormonal Pathology of the Uterus; Deligdisch-Schor, L., Mareş Miceli, A., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; pp. 89–120. [Google Scholar] [CrossRef]
- Pan, M.; Zhou, J.; Pan, X.; Wang, J.; Qi, Q.; Wang, L. Drugs for the treatment of postmenopausal symptoms: Hormonal and non-hormonal therapy. Life Sci. 2023, 312, 121255. [Google Scholar] [CrossRef] [PubMed]
- Sobel, T.H.; Shen, W. Transdermal estrogen therapy in menopausal women at increased risk for thrombotic events: A scoping review. Menopause 2022, 29, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Chen, L.-R.; Chen, K.-H. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef] [PubMed]
- Wattanakumtornkul, S.; Pinto, A.B.; Williams, D.B. Intranasal hormone replacement therapy. Menopause 2003, 10, 88. [Google Scholar] [PubMed]
- Maher, R.; Moreno-Borrallo, A.; Jindal, D.; Mai, B.T.; Ruiz-Hernandez, E.; Harkin, A. Intranasal Polymeric and Lipid-Based Nanocarriers for CNS Drug Delivery. Pharmaceutics 2023, 15, 746. [Google Scholar] [CrossRef] [PubMed]
- Angelou, K.; Grigoriadis, T.; Diakosavvas, M.; Zacharakis, D.; Athanasiou, S. The Genitourinary Syndrome of Menopause: An Overview of the Recent Data. Cureus 2020, 12, e7586. [Google Scholar] [CrossRef] [PubMed]
- Naumova, I.; Castelo-Branco, C. Current treatment options for postmenopausal vaginal atrophy. Int. J. Womens Health 2018, 10, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Nappi, R.E.; Tiranini, L.; Martini, E.; Bosoni, D.; Cassani, C.; Cucinella, L. Different local estrogen therapies for a tailored approach to GSM. Climacteric 2023, 26, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Khorsand, I.; Kashef, R.; Ghazanfarpour, M.; Mansouri, E.; Dashti, S.; Khadivzadeh, T. The Beneficial and Adverse Effects of Raloxifene in Menopausal Women: A Mini Review. J. Menopausal Med. 2018, 24, 183–187. [Google Scholar] [CrossRef] [PubMed]
- An, K.-C. Selective Estrogen Receptor Modulators. Asian Spine J. 2016, 10, 787–791. [Google Scholar] [CrossRef]
- Grady, D.; Ettinger, B.; Moscarelli, E.; Plouffe, L.; Sarkar, S.; Ciaccia, A.; Cummings, S.; Multiple Outcomes of Raloxifene Evaluation Investigators. Safety and adverse effects associated with raloxifene: Multiple outcomes of raloxifene evaluation. Obstet. Gynecol. 2004, 104, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; et al. Safety of nanoparticles in medicine. Curr. Drug Targets 2015, 16, 1671–1681. [Google Scholar] [CrossRef] [PubMed]
- De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Murphy, F.A.; Duffin, R.; Poland, C.A. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.H.; Seaton, A.; Stone, V.; Brown, S.; Macnee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Steiner, R.A.; Tadir, Y.; Tromberg, B.J.; Krasieva, T.; Ghazains, A.T.; Wyss, P.; Berns, M.W. Photosensitization of the rat endometrium following 5-aminolevulinic acid induced photodynamic therapy. Lasers Surg. Med. 1996, 18, 301–308. [Google Scholar] [CrossRef]
- Wyss, P.; Tromberg, B.J.; Wyss, M.T.; Krasieva, T.; Schell, M.; Berns, M.W.; Tadir, Y. Photodynamic destruction of endometrial tissue with topical 5-aminolevulinic acid in rats and rabbits. Am. J. Obstet. Gynecol. 1994, 171, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Hamad, I.; Hunter, A.C.; Szebeni, J.; Moghimi, S.M. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol. Immunol. 2008, 46, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef] [PubMed]
Nano-Therapy | Benign Gynecologic Disorder | Type of Nanoparticle | Original Study |
---|---|---|---|
Liposomal 2-ME nanoparticle | Uterine Leiomyoma | Lipid-based | [23] |
PEGy-PLGA nanoparticles loaded with 2-ME | Uterine Leiomyoma | Polymeric | [9] |
Simvastatin-loaded liposomal nanoparticles | Uterine Leiomyoma | Lipid-based | [24] |
Peptide-based vectors for suicide gene therapy | Uterine Leiomyoma | Polymeric | [25] |
Silicon naphthalocyanine loaded PEG-PCL | Endometriosis | Polymeric | [26] |
Ultra-small Super-magnetic iron oxide nanoparticles | Endometriosis | Metal-based | [27] |
Hyaluronic acid modified iron oxide nanoparticles | Endometriosis | Metal-based with Polymeric modification | [28] |
NaGdF4@PEG@bevacizumab–Cy5.5 nanoparticles | Endometriosis | Metal-based with Polymeric modification | [29] |
Gold nanoparticles conjugated with a fluorescein isothiocyanate dye | Endometriosis | Metal-based | [30] |
Iron oxide-based magnetic nanoparticles encapsulated into PEG-PCL-based nanocarriers targeting VEGF 2 | Endometriosis | Metal-based with Polymeric modification | [10] |
SiRNA RGD1-R6 nanoparticle carriers | Endometriosis | Polymeric | [31] |
Cerium oxide nanoparticles | Endometriosis | Metal-based | [32] |
Methotrexate carried in lipid nanoparticles | Endometriosis | Lipid-based | [33] |
Albumin-glucose oxidase-nanoparticles | Endometriosis | Lipid-based | [34] |
NiCosO4/rGO modified indium tin oxide nanomaterial | PCOS | Metal-based | [35] |
CS/copper-NPs/Fe3O4-NPs/GrO-NPs nanocomposite | PCOS | Metal-based | [36] |
Silver nanoparticles derived from Cinnamomum zeylanicum | PCOS | Metal-based | [37] |
Curcumin-encapsulated arginine and N-acetyl histidine-modified CS | PCOS | Polymeric | [11] |
Micellar nanoparticle estradiol emulsion | Menopause | Polymeric | [38] |
Nanostructured transdermal hormone replacement therapy | Menopause | Lipid-based | [12] |
EDTA-modified 17β-estradiol (E2)-laden mesoporous silica-coated upconversion nanoparticles | Menopause | Metal-based | [39] |
E2-loaded PLGA nanoparticles | Menopause | Polymeric | [40] |
Solid lipid nanoparticles | Menopause | Lipid-based | [41] |
CS nanoparticles loaded with RLX | Menopause | Metal-based | [42] |
RLX-loaded polymeric nanoparticles | Menopause | Polymeric | [43] |
Human serum albumin-based nanoparticles | Menopause | Polymeric | [44] |
RLX bio adhesive nanoparticles | Menopause | Polymeric | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lulseged, B.A.; Ramaiyer, M.S.; Michel, R.; Saad, E.E.; Ozpolat, B.; Borahay, M.A. The Role of Nanomedicine in Benign Gynecologic Disorders. Molecules 2024, 29, 2095. https://doi.org/10.3390/molecules29092095
Lulseged BA, Ramaiyer MS, Michel R, Saad EE, Ozpolat B, Borahay MA. The Role of Nanomedicine in Benign Gynecologic Disorders. Molecules. 2024; 29(9):2095. https://doi.org/10.3390/molecules29092095
Chicago/Turabian StyleLulseged, Bethlehem A., Malini S. Ramaiyer, Rachel Michel, Eslam E. Saad, Bulent Ozpolat, and Mostafa A. Borahay. 2024. "The Role of Nanomedicine in Benign Gynecologic Disorders" Molecules 29, no. 9: 2095. https://doi.org/10.3390/molecules29092095
APA StyleLulseged, B. A., Ramaiyer, M. S., Michel, R., Saad, E. E., Ozpolat, B., & Borahay, M. A. (2024). The Role of Nanomedicine in Benign Gynecologic Disorders. Molecules, 29(9), 2095. https://doi.org/10.3390/molecules29092095