Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition of the A. manihot Root
2.2. Optimization of Extraction Conditions for A. manihot Root
2.3. Characterization of the Extract
2.3.1. Monosaccharide Characterization
2.3.2. Degree of Esterification
2.3.3. Infrared Spectroscopy Analysis
2.4. In Vitro Skincare Effect Experiments
2.4.1. Moisture Retention Effect
2.4.2. Total Phenolic Content Quantification and DPPH-Free Radical Scavenging Activity
2.4.3. Hyaluronidase Inhibition and Elastase Inhibition Activities
3. Materials and Methods
3.1. Materials
3.2. Proximate Composition of the A. manihot Root
3.3. Polysaccharides Extraction
3.4. Characterization of the Extract
3.4.1. Monosaccharide Composition
3.4.2. Degree of Esterification
3.4.3. Infrared Spectroscopy Analysis
3.5. In Vitro Skincare Effect Experiments
3.5.1. Moisturizing Test
3.5.2. Total Phenolic Content Quantification
3.5.3. DPPH-Free Radical Scavenging Activity
3.5.4. Hyaluronidase Inhibition Assay
3.5.5. Elastase Inhibition Assay
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horváth, I.T. Introduction: Sustainable Chemistry. Chem. Rev. 2018, 118, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Blum, C.; Bunke, D.; Hungsberg, M.; Roelofs, E.; Joas, A.; Joas, R.; Blepp, M.; Stolzenberg, H.-C. The concept of sustainable chemistry: Key drivers for the transition towards sustainable development. Sustain. Chem. Pharm. 2017, 5, 94–104. [Google Scholar] [CrossRef]
- Marion, P.; Bernela, B.; Piccirilli, A.; Estrine, B.; Patouillard, N.; Guilbot, J.; Jérôme, F. Sustainable chemistry: How to produce better and more from less? Green Chem. 2017, 19, 4973–4989. [Google Scholar] [CrossRef]
- Clark, J.H. Green chemistry for the second generation biorefinery—Sustainable chemical manufacturing based on biomass. J. Chem. Technol. Biotechnol. 2007, 82, 603–609. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Zaidouni, S.; Basaid, K.; Mir, Y. Deep eutectic solvents as sustainable extraction media for plants and food samples: A review. Sustain. Chem. Pharm. 2023, 31, 100937. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, G.-Y.; Liu, H.-L.; Wang, Z.-H. Complete chloroplast genomes of three important species, Abelmoschus moschatus, A. manihot and A. sagittifolius: Genome structures, mutational hotspots, comparative and phylogenetic analysis in Malvaceae. PLoS ONE 2020, 15, e0242591. [Google Scholar] [CrossRef]
- Luan, F.; Wu, Q.; Yang, Y.; Lv, H.; Liu, D.; Gan, Z.; Zeng, N. Traditional Uses, Chemical Constituents, Biological Properties, Clinical Settings, and Toxicities of Abelmoschus manihot L.: A Comprehensive Review. Front. Pharmacol. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Tu, Y.; Sun, W.; Wan, Y.-G.; Che, X.-Y.; Pu, H.-P.; Yin, X.-J.; Chen, H.-L.; Meng, X.-J.; Huang, Y.-R.; Shi, X.-M. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, ameliorates adriamycin-induced renal inflammation and glomerular injury via inhibiting p38MAPK signaling pathway activity in rats. J. Ethnopharmacol. 2013, 147, 311–320. [Google Scholar] [CrossRef]
- Ai, G.; Liu, Q.; Hua, W.; Huang, Z.; Wang, D. Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus Manihot (L.) Medic: In vitro and in vivo studies. J. Ethnopharmacol. 2013, 146, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Fu, Z.; Zhu, X.; Zhang, J.; Bai, W.; Song, B. The flower of Abelmoschus manihot (L.) medik exerts antioxidant effects by regulating the Nrf2 signalling pathway in scald injury. Wound Repair Regen. 2024, 32, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, P.; Xing, C.-Y.; Zhao, J.-Y.; He, Y.-N.; Wang, J.-Q.; Wu, X.-F.; Liu, Z.-S.; Zhang, A.-P.; Lin, H.-L.; et al. Efficacy and Safety of Abelmoschus manihot for Primary Glomerular Disease: A Prospective, Multicenter Randomized Controlled Clinical Trial. Am. J. Kidney Dis. 2014, 64, 57–65. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, X.-R.; Hu, J.-J.; Sun, L.; Du, G.-H. Neuroprotective Effects of Hyperoside on Sodium Azide-Induced Apoptosis in PC12 Cells. Chin. J. Nat. Med. 2011, 9, 450–455. [Google Scholar] [CrossRef]
- Taroreh, M.I.R.; Widiyantoro, A.; Murdiati, A.; Hastuti, P.; Raharjo, S. Identification of flavonoid from leaves of gedi (Abelmoschus manihot L.) and its antioxidant activity. AIP Conf. Proc. 2016, 1755, 080010. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, Z.; Lv, N.; Shan, J.; Zhou, H.; Zhang, J.; Shi, L. Exploring the total flavones of Abelmoschus manihot against IAV-induced lung inflammation by network pharmacology. BMC Complement. Med. Ther. 2022, 22, 36. [Google Scholar] [CrossRef]
- Rubiang-Yalambing, L.; Arcot, J.; Greenfield, H.; Holford, P. Aibika (Abelmoschus manihot L.): Genetic variation, morphology and relationships to micronutrient composition. Food Chem. 2016, 193, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Xu, D.; Zhou, Y.-M.; Zhang, Y.-B.; Zhang, H.; Chen, Y.-B.; Cui, Y.-L. Antioxidant Activities of Natural Polysaccharides and Their Derivatives for Biomedical and Medicinal Applications. Antioxidants 2022, 11, 2491. [Google Scholar] [CrossRef]
- Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxidative Med. Cell. Longev. 2016, 2016, 5692852. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. The antiviral activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 115, 77–82. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, X.; Kang, J.; Ding, H.; Liu, Y.; Wang, N.; Cui, S.W. Immunomodulatory and antivirus activities of bioactive polysaccharides and structure-function relationship. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100301. [Google Scholar] [CrossRef]
- Albuquerque, P.B.S.; de Oliveira, W.F.; dos Santos Silva, P.M.; dos Santos Correia, M.T.; Kennedy, J.F.; Coelho, L.C.B.B. Skincare application of medicinal plant polysaccharides—A review. Carbohydr. Polym. 2022, 277, 118824. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Kunduru, K.R.; Abtew, E.; Domb, A.J. Polysaccharide-Based Conjugates for Biomedical Applications. Bioconjugate Chem. 2015, 26, 1396–1412. [Google Scholar] [CrossRef]
- Tiwari, S.; Patil, R.; Bahadur, P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers 2019, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, Z.; Li, S.; Wang, L.; Lv, J.; Li, J.; Ma, X.; Fan, L.; Qian, F. Identification and characterization of a cytotoxic polysaccharide from the flower of Abelmoschus manihot. Int. J. Biol. Macromol. 2016, 82, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.-X.; Tao, J.-H.; Jiang, S.; Zhu, Y.; Qian, D.-W.; Duan, J.-A. Characterization and immunomodulatory activity of polysaccharides from the stems and leaves of Abelmoschus manihot and a sulfated derivative. Int. J. Biol. Macromol. 2018, 107, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Hendrawati, T.Y.; Nuraini, A.; Hakim, R.J.; Fithriyah, N.H. Characterization and properties of Gedi (Abelmoschus manihot L.) leaf extract with liquid chromatography mass spectrometry using quadrupole time-of-flight technology (LCMS-QToF). Food Sci. Technol. 2020, 8, 79–86. [Google Scholar] [CrossRef]
- Giehl, R.F.; von Wirén, N. Root nutrient foraging. Plant Physiol. 2014, 166, 509–517. [Google Scholar] [CrossRef]
- Romdhane, M.H.; Chahdoura, H.; Barros, L.; Dias, M.I.; Carvalho Gomes Corrêa, R.; Morales, P.; Ciudad-Mulero, M.; Flamini, G.; Majdoub, H.; Ferreira, I.C.F.R. Chemical Composition, Nutritional Value, and Biological Evaluation of Tunisian Okra Pods (Abelmoschus esculentus L. Moench). Molecules 2020, 25, 4739. [Google Scholar] [CrossRef]
- Shi, H.; Li, J.; Yu, J.; Li, H.; Huang, G.; Zhang, T. Extraction, purification and antioxidant activity of polysaccharides from different parts of Hibiscus Manihot L. J. Mol. Struct. 2024, 1295, 136598. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, W.; Wu, Z.; Liu, R.; Yang, C.; Hui, A.; Huang, X.; Xian, Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int. J. Biol. Macromol. 2021, 181, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.A.; Foster, T.J.; Harding, S.E. The effect of the degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocoll. 2000, 14, 227–235. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Zhang, C.-C.; Fu, Y.-J.; Cui, Q. Comparative analysis of phytochemical profile, antioxidant and anti-inflammatory activity from Hibiscus manihot L. Flower. Arab. J. Chem. 2022, 15, 103503. [Google Scholar] [CrossRef]
- Aspé, E.; Fernández, K. The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind. Crops Prod. 2011, 34, 838–844. [Google Scholar] [CrossRef]
- Bravo, K.; Alzate, F.; Osorio, E. Fruits of selected wild and cultivated Andean plants as sources of potential compounds with antioxidant and anti-aging activity. Ind. Crops Prod. 2016, 85, 341–352. [Google Scholar] [CrossRef]
- Fujitani, N.; Sakaki, S.; Yamaguchi, Y.; Takenaka, H. Inhibitory effects of microalgae on the activation of hyaluronidase. J. Appl. Phycol. 2001, 13, 489–492. [Google Scholar] [CrossRef]
- Kraunsoe, J.A.E.; Claridge, T.D.W.; Lowe, G. Inhibition of Human Leukocyte and Porcine Pancreatic Elastase by Homologues of Bovine Pancreatic Trypsin Inhibitor. Biochemistry 1996, 35, 9090–9096. [Google Scholar] [CrossRef]
Moisture | Ash | Lipid | Protein | TDF | Carbohydrates | |
---|---|---|---|---|---|---|
%dw | 6.98 ± 0.21 | 18.34 ± 0.45 | 1.38 ± 0.11 | 10.31 ± 0.68 | 55.13 ± 0.03 | 7.86 ± 0.61 |
Entry | Factors | ||
---|---|---|---|
A. SL Ratio (g/mL) | B. Temperature (°C) | C. Time (min) | |
1 | 1:10 | 20 | 20 |
2 | 1:15 | 30 | 40 |
3 | 1:20 | 40 | 60 |
Entry | A. SL Ratio (g/mL) | B. Temperature (°C) | C. Time (min) | Yields (%) 2 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 6.99 ± 0.43 |
2 | 1 | 2 | 3 | 10.86 ± 0.55 |
3 | 1 | 3 | 2 | 9.68 ± 0.36 |
4 | 2 | 1 | 2 | 10.85 ± 0.68 |
5 | 2 | 2 | 1 | 12.42 ± 0.54 |
6 | 2 | 3 | 3 | 11.71 ± 1.00 |
7 | 3 | 1 | 3 | 10.94 ± 0.86 |
8 | 3 | 2 | 2 | 13.41 ± 0.24 |
9 | 3 | 3 | 1 | 12.04 ± 0.33 |
K1 | 9.18 | 9.59 | 10.48 | |
K2 | 11.66 | 12.23 | 11.31 | |
K3 | 12.13 | 11.14 | 11.17 | |
R | 2.95 | 2.64 | 0.83 |
Material | Anti-Hyaluronidase (%) 1 | Anti-Elastase (%) 1 |
---|---|---|
A. manihot root extract | 72.16 ± 1.79 | 42.02 ± 1.84 |
DPG | 79.91 ± 1.49 | NT 2 |
EGCG | NT 2 | 87.83 ± 1.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liao, E.; Ren, Z.; Wang, Q.; Xu, Z.; Wu, S.; Yu, C.; Yin, Y. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.). Molecules 2024, 29, 2109. https://doi.org/10.3390/molecules29092109
Wang J, Liao E, Ren Z, Wang Q, Xu Z, Wu S, Yu C, Yin Y. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.). Molecules. 2024; 29(9):2109. https://doi.org/10.3390/molecules29092109
Chicago/Turabian StyleWang, Junjie, Enhui Liao, Zixuan Ren, Qiong Wang, Zenglai Xu, Shufang Wu, Chaoguang Yu, and Yunlong Yin. 2024. "Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.)" Molecules 29, no. 9: 2109. https://doi.org/10.3390/molecules29092109
APA StyleWang, J., Liao, E., Ren, Z., Wang, Q., Xu, Z., Wu, S., Yu, C., & Yin, Y. (2024). Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.). Molecules, 29(9), 2109. https://doi.org/10.3390/molecules29092109