Coordination Polymer Based on a Triangular Carboxylate Core {Fe(μ3-O)(μ-O2CR)6} and an Aliphatic Diamine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of 1–3
2.2. Crystal Structures of 1–3
2.3. Powder X-ray Diffraction Analysis
2.4. Thermal Behavior
3. Materials and Methods
3.1. General Remarks
3.2. Synthesis of [Fe2(piv)4(Phen)2] (1)
3.3. Synthesis of [Fe3O(piv)6(dahx)1.5]n (2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agafonov, M.A.; Alexandrov, E.V.; Artyukhova, N.A.; Bekmukhamedov, G.E.; Blatov, V.A.; Butova, V.V.; Gayfulin, Y.M.; Garibyan, A.A.; Gafurov, Z.N.; Gorbunova, Y.G.; et al. Metal-Organic Frameworks in Russia: From the Synthesis and Structure to Functional Properties and Materials. J. Struct. Chem. 2022, 63, 671–843. [Google Scholar] [CrossRef]
- Dulcevscaia, G.M.; Filippova, I.G.; Speldrich, M.; van Leusen, J.; Kravtsov, V.C.; Baca, S.G.; Kögerler, P.; Liu, S.-X.; Decurtins, S. Cluster-Based Networks: 1D and 2D Coordination Polymers Based on {MnFe2(Μ3-O)}-Type Clusters. Inorg. Chem. 2012, 51, 5110–5117. [Google Scholar] [CrossRef] [PubMed]
- Lytvynenko, A.S.; Kolotilov, S.V.; Kiskin, M.A.; Cador, O.; Golhen, S.; Aleksandrov, G.G.; Mishura, A.M.; Titov, V.E.; Ouahab, L.; Eremenko, I.L.; et al. Redox-Active Porous Coordination Polymers Prepared by Trinuclear Heterometallic Pivalate Linking with the Redox-Active Nickel(II) Complex: Synthesis, Structure, Magnetic and Redox Properties, and Electrocatalytic Activity in Organic Compound Dehalogenatio. Inorg. Chem. 2014, 53, 4970–4979. [Google Scholar] [CrossRef]
- Polunin, R.A.; Kolotilov, S.V.; Kiskin, M.A.; Cador, O.; Golhen, S.; Shvets, O.V.; Ouahab, L.; Dobrokhotova, Z.V.; Ovcharenko, V.I.; Eremenko, I.L.; et al. V Structural Flexibility and Sorption Properties of 2D Porous Coordination Polymers Constructed from Trinuclear Heterometallic Pivalates and 4,4′-Bipyridine. Eur. J. Inorg. Chem. 2011, 2011, 4985–4992. [Google Scholar] [CrossRef]
- Petrov, P.A.; Nikolaevskii, S.A.; Yambulatov, D.S.; Starikova, A.A.; Sukhikh, T.S.; Kiskin, M.A.; Sokolov, M.N.; Eremenko, I.L. Heteroleptic Anionic Cobalt(II) Pivalate Complex with a Bridging Trimethylsiloxy Ligand: Synthesis, Structure, and Formation Mechanism. Russ. J. Inorg. Chem. 2023, 68, 1255–1264. [Google Scholar] [CrossRef]
- Voronina, J.K.; Gavronova, A.S.; Yambulatov, D.S.; Nikolaevskii, S.A.; Kiskin, M.A.; Eremenko, I.L. Reactivity of 1,4-Diaza-1,3-Butadienes towards Cu(II) Pivalate: A Rare Case of Polymeric Structure Formed by Bridging Diazabutadiene Ligands. Russ. J. Coord. Chem. 2022, 48, 916–923. [Google Scholar] [CrossRef]
- Adonin, S.A.; Novikov, A.S.; Smirnova, Y.K.; Tushakova, Z.R.; Fedin, V.P. Heteroligand Cu(II) Complexes with 2-Halogenopyridines: Crystal Structure and Features of Halogen⋯Halogen Contacts in the Solid State. J. Struct. Chem. 2020, 61, 712–718. [Google Scholar] [CrossRef]
- Adonin, S.A.; Usoltsev, A.N.; Novikov, A.S.; Kolesov, B.A.; Fedin, V.P.; Sokolov, M.N. One- and Two-Dimensional Iodine-Rich Iodobismuthate(III) Complexes: Structure, Optical Properties, and Features of Halogen Bonding in the Solid State. Inorg. Chem. 2020, 59, 3290–3296. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Z.; Yu, Y.; Yuan, H.; Nezamzadeh-Ejhieh, A.; Liu, J.; Pan, Y.; Lan, Q. Recent Advances in Zn-MOFs and Their Derivatives for Cancer Therapeutic Applications. Mater. Adv. 2023, 4, 5050–5093. [Google Scholar] [CrossRef]
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A New Cd(II)-Based Coordination Polymer for Efficient Photocatalytic Removal of Organic Dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, S.; Hu, F.; Han, J.; Li, F. Circularly Polarized Luminescence Polymers: From Design to Applications. Coord. Chem. Rev. 2023, 485, 215116. [Google Scholar] [CrossRef]
- Liu, J.-Q.; Luo, Z.-D.; Pan, Y.; Kumar Singh, A.; Trivedi, M.; Kumar, A. Recent Developments in Luminescent Coordination Polymers: Designing Strategies, Sensing Application and Theoretical Evidences. Coord. Chem. Rev. 2020, 406, 213145. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Fedin, V.P. Zn(II) Coordination Polymer with π-Stacked 4,4′-Bipyridine Dimers: Synthesis, Structure and Luminescent Properties. Polyhedron 2022, 219, 115793. [Google Scholar] [CrossRef]
- Demakov, P.A.; Ryadun, A.A.; Dorovatovskii, P.V.; Lazarenko, V.A.; Samsonenko, D.G.; Brylev, K.A.; Fedin, V.P.; Dybtsev, D.N. Intense Multi-Colored Luminescence in a Series of Rare-Earth Metal–Organic Frameworks with Aliphatic Linkers. Dalton Trans. 2021, 50, 11899–11908. [Google Scholar] [CrossRef] [PubMed]
- Emerson, A.J.; Chahine, A.; Batten, S.R.; Turner, D.R. Synthetic Approaches for the Incorporation of Free Amine Functionalities in Porous Coordination Polymers for Enhanced CO2 Sorption. Coord. Chem. Rev. 2018, 365, 1–22. [Google Scholar] [CrossRef]
- Agarwal, R.A.; Gupta, N.K. CO2 Sorption Behavior of Imidazole, Benzimidazole and Benzoic Acid Based Coordination Polymers. Coord. Chem. Rev. 2017, 332, 100–121. [Google Scholar] [CrossRef]
- Zaguzin, A.S.; Mahmoudi, G.; Sukhikh, T.S.; Sakhapov, I.F.; Zherebtsov, D.A.; Zubkov, F.I.; Valchuk, K.S.; Sokolov, M.N.; Fedin, V.P.; Adonin, S.A. 2D and 3D Zn(II) Coordination Polymers Based on 4′-(Thiophen-2-Yl)-4,2′:6′,4′’-Terpyridine: Structures and Features of Sorption Behavior. J. Mol. Struct. 2022, 1255, 132459. [Google Scholar] [CrossRef]
- Zaguzin, A.S.; Sukhikh, T.; Sokolov, M.N.; Fedin, V.P.; Adonin, S.A. Zn(II) Three-Dimensional Metal-Organic Frameworks Based on 2,5-Diiodoterephthalate and N,N Linkers: Structures and Features of Sorption Behavior. Inorganics 2023, 11, 192. [Google Scholar] [CrossRef]
- Yambulatov, D.S.; Voronina, J.K.; Goloveshkin, A.S.; Svetogorov, R.D.; Veber, S.L.; Efimov, N.N.; Matyukhina, A.K.; Nikolaevskii, S.A.; Eremenko, I.L.; Kiskin, M.A. Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int. J. Mol. Sci. 2023, 24, 215. [Google Scholar] [CrossRef]
- Bazyakina, N.L.; Makarov, V.M.; Ketkov, S.Y.; Bogomyakov, A.S.; Rumyantcev, R.V.; Ovcharenko, V.I.; Fedushkin, I.L. Metal–Organic Frameworks Derived from Calcium and Strontium Complexes of a Redox-Active Ligand. Inorg. Chem. 2021, 60, 3238–3248. [Google Scholar] [CrossRef]
- Alborés, P.; Rentschler, E. Structural and Magnetic Characterization of a μ-1,5-Dicyanamide-Bridged Iron Basic Carboxylate [Fe3O(O2C(CH3)3)6] 1D Chain. Inorg. Chem. 2008, 47, 7960–7962. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, Y.; Xiang, R.; Li, Y.; Qin, T.; Dong, X.Y.; Sakiyama, H.; Muddassir, M.; Liu, J. Synthesis, Structure, and Investigation of Unique Magnetic Properties in Two Novel Mn-Based Coordination Polymers. CrystEngComm 2023, 25, 6777–6785. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, J.; Davis, K.; Bonifacio, M.G.; Zajaczkowski, C. Practical and Selective Hydroboration of Aldehydes and Ketones in Air Catalysed by an Iron(II) Coordination Polymer. Green Chem. 2019, 21, 1114–1121. [Google Scholar] [CrossRef]
- Zhao, N.; Li, Y.; Gu, J.; Kirillova, M.V.; Kirillov, A.M. Synthesis, Structural Features, and Catalytic Activity of an Iron(II) 3D Coordination Polymer Driven by an Ether-Bridged Pyridine-Dicarboxylate. Crystals 2019, 9, 369. [Google Scholar] [CrossRef]
- Wu, Q.; Han, Y.; Shao, Z.; Li, J.; Hou, H. Stable Fe(II)-Based Coordination Polymers: Synthesis, Structural Diversity and Catalytic Applications in Homo-Coupling Reactions. Dalton Trans. 2018, 47, 8063–8069. [Google Scholar] [CrossRef] [PubMed]
- Scheins, S.; Overgaard, J.; Timco, G.A.; Stash, A.; Chen, Y.-S.; Larsen, F.K.; Christensen, M.; Jørgensen, M.R.V.; Madsen, S.R.; Schmøkel, M.S.; et al. Pressure versus Temperature Effects on Intramolecular Electron Transfer in Mixed-Valence Complexes. Chem.-A Eur. J. 2013, 19, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Poyraz, M.; Sowrey, F.E.; Anson, C.E.; Wocadlo, S.; Powell, A.K.; Jayasooriya, U.A.; Cannon, R.D.; Nakamoto, T.; Katada, M.; et al. Electron Localization and Delocalization in Mixed-Valence Transition Metal Clusters: Structural and Spectroscopic Studies of Oxo-Centered Trinuclear Complexes [Fe3O(OOCCMe3)6(Py)3]+/0 and [Mn3O(OOCCMe3)6(Py)3]+/0. Inorg. Chem. 1998, 37, 1913–1921. [Google Scholar] [CrossRef]
- Lim, A.R.; Kim, A.Y. Structural Geometry and Molecular Dynamics of Hybrid Organic–Inorganic [NH3(CH2)6NH3]CdCl4 Crystals Close to Phase Transition Temperatures. J. Mol. Struct. 2023, 1279, 134993. [Google Scholar] [CrossRef]
- Sakata, Y.; Okada, M.; Akine, S. Guest Recognition Control Accompanied by Stepwise Gate Closing and Opening of a Macrocyclic Metallohost. Chem.-A Eur. J. 2021, 27, 2284–2288. [Google Scholar] [CrossRef]
- Yeşilel, O.Z.; Karamahmut, B.; Semerci, F.; Darcan, C.; Yılmaz, F. A Series of Silver(I) Coordination Polymers with Saccarinate and Flexible Aliphatic Diamines. J. Solid State Chem. 2017, 249, 174–188. [Google Scholar] [CrossRef]
- Long, Z.; Wei, L.; Shuang, L.; Jifei, W.; Huanlei, W.; Jiaxin, C. Fe3O4 Nanoplates/Carbon Network Synthesized by in Situ Pyrolysis of an Organic-Inorganic Layered Hybrid as a High-Performance Lithium-Ion Battery Anode. J. Mater. Chem. A 2015, 3, 14210–14216. [Google Scholar] [CrossRef]
- Pladzyk, A.; Baranowska, K. Mono- and Polynuclear Co(II) Silanethiolates with Aliphatic Diamines. J. Mol. Struct. 2014, 1058, 252–258. [Google Scholar] [CrossRef]
- Pladzyk, A.; Baranowska, K.; Dziubińska, K.; Ponikiewski, Ł. One Dimensional Coordination Polymers Generated from Cd(II) Tri-Tert-Butoxysilanethiolates and Flexible Aliphatic Diamines. Polyhedron 2013, 50, 121–130. [Google Scholar] [CrossRef]
- Harrison, W.T.A.; Currie, W.R. 1,5-Diaminopentane As A Structure-Directing Agent for Zincophosphate Networks: Zn3(PO4)2(C5H14N2)2·3H2O and C5H16N2·Zn3(PO4)2(HPO4)·H2O. Crystals 2012, 2, 974–983. [Google Scholar] [CrossRef]
- Li, J.; Bi, W.; Ki, W.; Huang, X.; Reddy, S. Nanostructured Crystals: Unique Hybrid Semiconductors Exhibiting Nearly Zero and Tunable Uniaxial Thermal Expansion Behavior. J. Am. Chem. Soc. 2007, 129, 14140–14141. [Google Scholar] [CrossRef]
- Behera, J.N.; Rao, C.N.R. Coordination Polymers with Co(II) Sulfate Layers Linked by Alkanediamines of Varying Chain Length. Can. J. Chem. 2005, 83, 668–673. [Google Scholar] [CrossRef]
- Ren, C.-X.; Zhu, H.-L.; Yang, G.; Chen, X.-M. Syntheses and Crystal Structures of Five Two-Dimensional Networks Constructed from Staircase-like Silver(I) Thiocyanate Chains and Bridging Polyamines. J. Chem. Soc. Dalt. Trans. 2001, 85–90. [Google Scholar] [CrossRef]
- Criado, J.J.; Jiménez-Sánchez, A.; Cano, F.H.; Sáez-Puche, R.; Rodríguez-Fernández, E. Preparation and Characterization of Tetrachlorocobaltates(II) of α,ω-Alkylenediammonium. Magnetic and Thermal Properties. Crystal Structure of [NH3(CH2)5NH3]CoCl4. Acta Crystallogr. Sect. B Struct. Sci. 1999, 55, 947–952. [Google Scholar] [CrossRef]
- Garland, J.K.; Emerson, K.; Pressprich, M.R. Structures of Four- and Five-Carbon Alkyldiammonium Tetrachlorocuprate(II) and Tetrabromocuprate(II) Salts. Acta Crystallogr. Sect. C 1990, 46, 1603–1609. [Google Scholar] [CrossRef]
- Bañares, M.A.; Angoso, A.; Rodriguez, E. Preparation and Characterization of Tetrachlorocobaltates of α,ω-Alkanediammonium. Polyhedron 1984, 3, 363–364. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Sampathkumaran, E.V.; Nagarajan, R.; Paul, G.; Behera, J.N.; Choudhury, A. Synthesis, Structure, and the Unusual Magnetic Properties of an Amine-Templated Iron(II) Sulfate Possessing the Kagomé Lattice. Chem. Mater. 2004, 16, 1441–1446. [Google Scholar] [CrossRef]
- Needham, G.F.; Willett, R.D.; Franzen, H.F. Phase Transitions in Crystalline Models of Bilayers. 1. Differential Scanning Calorimetric and X-ray Studies of (C12H25NH3)2MCl4 and (NH3C14H29NH3)2MCl4 Salts (M = Mn2+, Cd2+, Cu2+). J. Phys. Chem. 1984, 88, 674–680. [Google Scholar] [CrossRef]
- Curtius, T.; Curtius, T.; Clemm, H. Hydrazide Und Azide Organischer Säuren; XVII. Abhandlung. Synthese Des 1, 3-Diaminopropans Und 1, 6-Diaminohexans Aus Glutarsäure Resp. Korksäure. J. für Prakt. Chemie 1900, 62, 189–211. [Google Scholar] [CrossRef]
- Smiley, R.A. Hexamethylenediamine. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000; ISBN 9783527306732. [Google Scholar]
- Mandal, A.; Gupta, S.; Dutta, S.; Pati, S.K.; Bhattacharyya, S. Transition from Dion-Jacobson Hybrid Layered Double Perovskites to 1D Perovskites for Ultraviolet to Visible Photodetection. Chem. Sci. 2023, 14, 9770–9779. [Google Scholar] [CrossRef]
- Lee, C.F.; Leigh, D.A.; Pritchard, R.G.; Schultz, D.; Teat, S.J.; Timco, G.A.; Winpenny, R.E.P. Hybrid Organic-Inorganic Rotaxanes and Molecular Shuttles. Nature 2009, 458, 314–318. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Wei, Z.; Li, P.-F.; Tang, Y.-Y.; Liao, W.-Q.; Ye, H.-Y.; Cai, H.; Xiong, R.-G. The Narrowest Band Gap Ever Observed in Molecular Ferroelectrics: Hexane-1,6-Diammonium Pentaiodobismuth(III). Angew. Chemie Int. Ed. 2018, 57, 526–530. [Google Scholar] [CrossRef]
- Yang, L.; Xuan, W.; Webster, D.; Jagadamma, L.K.; Li, T.; Miller, D.N.; Cordes, D.B.; Slawin, A.M.Z.; Turnbull, G.A.; Samuel, I.D.W.; et al. Manipulation of the Structure and Optoelectronic Properties through Bromine Inclusion in a Layered Lead Bromide Perovskite. Chem. Mater. 2023, 35, 3801–3814. [Google Scholar] [CrossRef] [PubMed]
- Bujoli-Doeuff, M.; Dessapt, R.; Deniard, P.; Jobic, S. New Hybrid Layered Molybdates Based on 2/∞[MonO3n+1]2– Units (n = 7, 9) with Systematic Organic–Inorganic Interfaces. Inorg. Chem. 2012, 51, 142–149. [Google Scholar] [CrossRef]
- Wu, J.; Pu, Y.-Y.; Zhao, X.-W.; Qian, L.-W.; Bian, G.-Q.; Zhu, Q.-Y.; Dai, J. Photo-Electroactive Ternary Chalcogenido-Indate-Stannates with a Unique 2-D Porous Structure. Dalton Trans. 2015, 44, 4520–4525. [Google Scholar] [CrossRef]
- Lim, A.R.; Ju, H. Organic–Inorganic Hybrid [NH3(CH2)6NH3]ZnBr4 Crystal: Structural Characterization, Phase Transitions, Thermal Properties, and Structural Dynamics. RSC Adv. 2022, 12, 28720–28727. [Google Scholar] [CrossRef]
- Chen, C.-A.; Pan, R.; Li, X.-Y.; Qin, D.; Yang, G.-Y. Four Inorganic–Organic Hybrid Borates: From 2D Layers to 3D Oxoboron Cluster Organic Frameworks. Inorg. Chem. 2021, 60, 18283–18290. [Google Scholar] [CrossRef] [PubMed]
- Dreos, R.; Randaccio, L.; Siega, P.; Tavagnacco, C.; Zangrando, E. Guest Driven Self-Assembly of a Rectangular Box from Methylaquacobaloxime and 4,4′-Biphenyldiboronic Acid. Inorganica Chim. Acta 2010, 363, 2113–2124. [Google Scholar] [CrossRef]
- Yuge, H.; Nishikiori, S.-I.; Iwamoto, T. Double and Triple Interpenetrations of the Three-Dimensional Frameworks [Cd(Mea)(Daptn){Ni(CN)4}] and [Cd(Mea)(Dahxn){Ni(CN)4}].H2O (Mea = 2-Aminoethanol, Daptn = 1,5-Diaminopentane, Dahxn = 1,6-Diaminohexane). Acta Crystallogr. Sect. C 1996, 52, 575–578. [Google Scholar] [CrossRef]
- Nikolaevskii, S.A.; Petrov, P.A.; Sukhikh, T.S.; Yambulatov, D.S.; Kiskin, M.A.; Sokolov, M.N.; Eremenko, I.L. Simple Synthetic Protocol to Obtain 3d-4f-Heterometallic Carboxylate Complexes of N-Heterocyclic Carbenes. Inorganica Chim. Acta 2020, 508, 119643. [Google Scholar] [CrossRef]
- Nikolaevskii, S.A.; Yambulatov, D.S.; Voronina, J.K.; Melnikov, S.N.; Babeshkin, K.A.; Efimov, N.N.; Goloveshkin, A.S.; Kiskin, M.A.; Sidorov, A.A.; Eremenko, I.L. The First Example of 3 D-4 f-Heterometallic Carboxylate Complex Containing Phosphine Ligand. ChemistrySelect 2020, 5, 12829–12834. [Google Scholar] [CrossRef]
- Meffre, A.; Lachaize, S.; Gatel, C.; Respaud, M.; Chaudret, B. Use of Long Chain Amine as a Reducing Agent for the Synthesis of High Quality Monodisperse Iron(0) Nanoparticles. J. Mater. Chem. 2011, 21, 13464–13469. [Google Scholar] [CrossRef]
- Stewart, J.E. Vibrational Spectra of Primary and Secondary Aliphatic Amines. J. Chem. Phys. 1959, 30, 1259–1265. [Google Scholar] [CrossRef]
- Baran, E.J.; Piro, O.E.; Zinczuk, J. A New Supramolecular Assembly Obtained by Reaction Between Thiosaccharin and Hexamethylenediamine. Zeitschrift für Naturforsch. B 2007, 62, 1530–1534. [Google Scholar] [CrossRef]
- Boudalis, A.K.; Sanakis, Y.; Raptopoulou, C.P.; Psycharis, V.; Terzis, A. Further Investigations on the Fe(ClO4)3/RCO2-/Phen Reaction System: Syntheses, Structural and Physical Characterization of Complexes [Fe2O(O2CCCl3)2(Phen)2(H2O)2](ClO4)2 and [Fe2O(O2CCMe3)2(Phen)2(H2O)2](ClO4)2. Polyhedron 2006, 25, 1391–1398. [Google Scholar] [CrossRef]
- Alborés, P.; Rentschler, E. Rational Design of Covalently Bridged [FeIII2MIIO] Clusters. Dalton Trans. 2010, 39, 5005–5019. [Google Scholar] [CrossRef]
- Novitchi, G.; Helm, L.; Anson, C.; Powell, A.K.; Merbach, A.E. NMR Study of Ligand Exchange and Electron Self-Exchange between Oxo-Centered Trinuclear Clusters [Fe3(μ 3-O)(μ-O2CR)6(4-R′py)3]+/0. Inorg. Chem. 2011, 50, 10402–10416. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulou, A.N.; Sanakis, Y.; Psycharis, V.; Raptopoulou, C.P.; Boudalis, A.K. Mössbauer Spectra of Two Extended Series of Basic Iron(III) Carboxylates [Fe3O(O2CR)6(H2O)6]A (A− = ClO4−, NO3−). Hyperfine Interact. 2010, 198, 229–241. [Google Scholar] [CrossRef]
- Sato, T.; Ambe, F.; Endo, K.; Katada, M.; Maeda, H.; Nakamoto, T.; Sano, H. Mixed-Valence States of [Fe3O(CH2XCO2)6(H2O)3]·nH2O (X = H, Cl, and Br) Characterized by X-Ray Crystallography and 57Fe-Mössbauer Spectroscopy. J. Am. Chem. Soc. 1996, 118, 3450–3458. [Google Scholar] [CrossRef]
- Nakamoto, T.; Katada, M.; Sano, H. Mixed-Valence States of Iron Long-Chain Carboxylate Complexes. Inorganica Chim. Acta 1999, 291, 127–135. [Google Scholar] [CrossRef]
- Overgaard, J.; Rentschler, E.; Timco, G.A.; Gerbeleu, N.V.; Arion, V.; Bousseksou, A.; Tuchagues, J.P.; Larsen, F.K. Multi-Temperature X-ray Diffraction, Mössbauer Spectroscopy and Magnetic Susceptibility Studies of a Solvated Mixed-Valence Trinuclear Iron Formate, [Fe3O(HCO2)6(NC5H4CH3)3]·1.3(NC5H4CH3). J. Chem. Soc. Dalt. Trans. 2002, 15, 2981–2986. [Google Scholar] [CrossRef]
- Sasaki, T. Alkyl Chain Length-Dependent Dimensionality in Linking of Hydrogen-Bonding Supramolecular Columns. Cryst. Growth Des. 2022, 22, 3326–3332. [Google Scholar] [CrossRef]
- Lutsenko, I.A.; Kiskin, M.A.; Nelyubina, Y.V.; Efimov, N.N.; Maksimov, Y.V.; Imshennik, V.K.; Zueva, E.M.; Goloveshkin, A.S.; Khoroshilov, A.V.; Rentschler, E.; et al. Tri- and Tetranuclear Heteropivalate Complexes with Core {Fe2NixO} (X = 1, 2): Synthesis, Structure, Magnetic and Thermal Properties. Polyhedron 2019, 159, 426–435. [Google Scholar] [CrossRef]
- Gogoleva, N.V.; Shmelev, M.A.; Evstifeev, I.S.; Nikolaevskii, S.A.; Aleksandrov, G.G.; Kiskin, M.A.; Dobrokhotova, Z.V.; Sidorov, A.A.; Eremenko, I.L. Heterometallic Trinuclear {CdII—MII—CdII} Pivalates (M = Mg, Ca, or Sr): Ways of Assembly and Structural Features. Russ. Chem. Bull. 2016, 65, 181–190. [Google Scholar] [CrossRef]
- Adam, A.M.A.; Refat, M.S.; Saad, H.A. Spectral, Thermal, XRD and SEM Studies of Charge-Transfer Complexation of Hexamethylenediamine and Three Types of Acceptors: π-, σ- And Vacant Orbital Acceptors That Include Quinol, Picric Acid, Bromine, Iodine, SnCl4 and ZnCl2 Acceptors. J. Mol. Struct. 2013, 1051, 144–163. [Google Scholar] [CrossRef]
- Alhadhrami, A. Competition between Five Different Chelates to Capture of Uranyl Ion: Synthesis, Spectroscopic, Thermal, Surface and Biological Investigations. J. Mol. Liq. 2018, 252, 83–96. [Google Scholar] [CrossRef]
- Lutsenko, I.A.; Kiskin, M.A.; Efimov, N.N.; Ugolkova, E.A.; Maksimov, Y.V.; Imshennik, V.K.; Goloveshkin, A.S.; Khoroshilov, A.V.; Lytvynenko, A.S.; Sidorov, A.A.; et al. New Heterometallic Pivalates with FeIII and ZnII Ions: Synthesis, Structures, Magnetic, Thermal Properties. Polyhedron 2017, 137, 165–175. [Google Scholar] [CrossRef]
- Kiskin, M.A.; Fomina, I.G.; Aleksandrov, G.G.; Sidorov, A.A.; Novotortsev, V.M.; Shvedenkov, Y.G.; Eremenko, I.L.; Moiseev, I.I. First Triangular Carboxylate Cluster with the Fe(II)Fe(II)Fe(II) Metal Core. Inorg. Chem. Commun. 2004, 7, 734–736. [Google Scholar] [CrossRef]
- Randall, C.R.; Shu, L.; Chiou, Y.-M.; Hagen, K.S.; Ito, M.; Kitajima, N.; Lachicotte, R.J.; Zang, Y.; Que, L. X-Ray Absorption Pre-Edge Studies of High-Spin Iron(II) Complexes. Inorg. Chem. 1995, 34, 1036–1039. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-2018 (2018) Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 2018. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
1 | |||||
---|---|---|---|---|---|
Fe1-O1 | 2.037 (3) | Fe2-O2 | 2.059 (3) | O-Fe1-O | 59.30 (11), 88.69 (12)–99.42 (13) |
Fe1-O3 | 2.064 (3) | Fe2-O4 | 2.050 (3) | O-Fe1-N | 85.86 (11)–101.62 (13) |
Fe1-O5 | 2.100 (3) | Fe2-O7 | 2.119 (3) | N-Fe1-N | 76.26 (12) |
Fe1-O6 | 2.321 (3) | Fe2-O8 | 2.310 (3) | O-Fe2-O | 59.52 (11), 94.44 (15)–100.51 (13) |
Fe1-N1 | 2.175 (3) | Fe2-N3 | 2.179 (3) | O-Fe2-N | 87.17 (12)–102.18 (13) |
Fe1-N2 | 2.173 (3) | Fe2-N4 | 2.175 (3) | N-Fe2-N | 76.15 (12) |
2 | |||||
Fe-O(μ3-O) | 1.831 (7), 1.840 (6), 2.009 (7) | Fe-N | 2.177 (10), 2.180 (9), 2.068 (14) | O-Fe-O | 85.1 (3)–98.0 (3) |
Fe-O(O2CR) | 1.994 (8)–2.133 (8) | Fe-O(μ3-O)-Fe | 118.2 (3)–123.2 (4) | O-Fe-N | 80.8 (3)–83.1 (3) |
Interaction | Cg⋅⋅⋅Cg, Å | Cg⋅⋅⋅Perp, Å | α, deg |
---|---|---|---|
Cg1(N2C26-C30)…Cg3(N3C33-C37) | 3.673 (3) | 3.4 (2) | 3.4597 (18) |
Cg1…Cg2(N1C21–C27) [1 − x, 1/2 + y, 1 − z] | 3.655 (3) | 1.4 (2) | 3.4027 (18) |
Cg2…Cg4(N4C38–C42) [x, 1 + y, z] | 3.562 (3) | 4.2 (2) | 3.2932 (18) |
Hydrogen Bond | D–H, Å | H⋅⋅⋅A, Å | D⋅⋅⋅A, Å | D–H⋅⋅⋅A, deg |
---|---|---|---|---|
1 | ||||
C19-H19C…O7 | 0.98 | 2.46 | 2.850 (11) | 103 |
C31-H31…O6 [1 − x, 1/2 + y, 1 − z] | 0.95 | 2.34 | 3.224 (6) | 154 |
C44-H44…O8 [2 − x, −1/2 + y, 1 − z] | 0.95 | 2.40 | 3.284 (6) | 156 |
2 | ||||
N1-H1B…O7 | 0.91 | 2.41 | 2.732 (13) | 100 |
N2-H2AB…O9 [x, 1 − y, −1/2 + z] | 0.91 | 2.42 | 2.798 (13) | 103 |
C8-H8A…O4 | 0.98 | 2.59 | 2.922 (14) | 100 |
C10-H10C…O4 | 0.98 | 2.42 | 2.797 (16) | 103 |
C15-H15C…O6 | 0.98 | 2.49 | 2.870 (17) | 103 |
C28-H28A…O12 | 2.56 | 2.898 (14) | 100 | |
3 | ||||
N1-H1A…O1 [2 − x, 1 − y, 1 − z] | 0.91 | 1.90 | 2.7762 (15) | 162 |
N1-H1B…O1 | 0.91 | 1.90 | 2.7954 (14) | 170 |
N1-H1C…O2 [1 − x, 1 − y, 1 − z] | 0.91 | 1.81 | 2.7134 (14) | 172 |
C7-H7A…O2 [1 − x, 2 − y, 1 – z] | 0.99 | 2.50 | 3.4580 (17) | 163 |
Parameter | Value | ||
---|---|---|---|
1 | 2 | 3 | |
Molecular formula | C44H52Fe2N4O8 | C39H78Fe3N3O13 | C16H36N2O4 |
Mr | 876.59 | 964.59 | 320.47 |
T (K) | 150 | 100 | 150 |
λ (Å) | 0.71073 | 1.54178 | 0.71073 |
Space group | P21 | Pbcn | P–1 |
a (Å) | 13.573 (3) | 19.0022 (5) | 6.2580 (16) |
b (Å) | 10.069 (4) | 27.4782 (7) | 7.0260 (19) |
c (Å) | 15.668 (4) | 19.9912 (5) | 11.487 (2) |
α (°) | 90 | 90 | 82.544 (7) |
β (°) | 101.762 (8) | 90 | 89.035 (9) |
γ (°) | 90 | 90 | 83.774 (9) |
V (Å3) | 2096.3 (11) | 10438.3 (5) | 497.9 (2) |
Z | 2 | 8 | 1 |
ρcalc (g·cm−3) | 1.228 | 1.389 | 1.069 |
µ (mm−1) | 0.750 | 7.053 | 0.075 |
Crystal size (mm) | 0.25 × 0.25 × 0.04 | 0.12 × 0.10 × 0.08 | 0.25 × 0.20 × 0.10 |
Tmin, Tmax | 0.6355, 0.7465 | 0.4814, 0.7489 | 0.6538, 0.7460 |
θ (o) | 2.22–33.15 | 2.83–45.14 | 3.28–29.97 |
Number of reflections collected | 24,319 | 29,639 | 3576 |
Number of unique reflections | 13,961 | 4226 | 2313 |
Number of reflections with I > 2σ(I) | 12,059 | 2891 | 1907 |
Rint | 0.0298 | 0.0399 | 0.0229 |
R1/wR(F2), [I > 2σ] | 0.0602/0.1435 | 0.0715/0.1924 | 0.0430/0.1092 |
R1/wR(F2), (for all reflections) | 0.0717/0.1516 | 0.1053/0.2170 | 0.0522/0.1154 |
S | 1.095 | 1.061 | 1.026 |
Parameters | 567 | 671 | 104 |
Δρmax/Δρmin (e Å−3) | 2.858/−0.485 | 0.442/−0.309 | 0.287/−0.151 |
X-ray source | MoKα, 0.71073 Å | CuKα, 1.54178 Å | MoKα, 0.71073 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bushuev, V.A.; Gogoleva, N.V.; Nikolaevskii, S.A.; Novichihin, S.V.; Yambulatov, D.S.; Kiskin, M.A.; Eremenko, I.L. Coordination Polymer Based on a Triangular Carboxylate Core {Fe(μ3-O)(μ-O2CR)6} and an Aliphatic Diamine. Molecules 2024, 29, 2125. https://doi.org/10.3390/molecules29092125
Bushuev VA, Gogoleva NV, Nikolaevskii SA, Novichihin SV, Yambulatov DS, Kiskin MA, Eremenko IL. Coordination Polymer Based on a Triangular Carboxylate Core {Fe(μ3-O)(μ-O2CR)6} and an Aliphatic Diamine. Molecules. 2024; 29(9):2125. https://doi.org/10.3390/molecules29092125
Chicago/Turabian StyleBushuev, Vladimir A., Natalia V. Gogoleva, Stanislav A. Nikolaevskii, Sergey V. Novichihin, Dmitriy S. Yambulatov, Mikhail A. Kiskin, and Igor L. Eremenko. 2024. "Coordination Polymer Based on a Triangular Carboxylate Core {Fe(μ3-O)(μ-O2CR)6} and an Aliphatic Diamine" Molecules 29, no. 9: 2125. https://doi.org/10.3390/molecules29092125
APA StyleBushuev, V. A., Gogoleva, N. V., Nikolaevskii, S. A., Novichihin, S. V., Yambulatov, D. S., Kiskin, M. A., & Eremenko, I. L. (2024). Coordination Polymer Based on a Triangular Carboxylate Core {Fe(μ3-O)(μ-O2CR)6} and an Aliphatic Diamine. Molecules, 29(9), 2125. https://doi.org/10.3390/molecules29092125