Integrated Approach of Life Cycle Assessment and Experimental Design in the Study of a Model Organic Reaction: New Perspectives in Renewable Vanillin-Derived Chemicals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Green Chemistry Metrics
2.3. Life Cycle Assessment
2.4. Midpoint PCA Analysis
2.5. D-Optimal Design Results
3. Materials and Methods
3.1. General Synthesis of 4-Butoxy-3-methoxybenzaldehyde
3.2. Experimental Design Procedure
3.3. Life Cycle Assessment (LCA)
3.4. Life Cycle Inventory and Life Cycle Impact Assessment (LCIA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinha, A.K.; Sharma, U.K.; Sharma, N. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and other constituents. Int. J. Food Sci. Nutr. 2008, 59, 299–326. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, R.H.H.; Fraaije, M.W.; Laane, C.; van Berkel, W.J.H.; Heuvel, R.H.H.V.D.; Berkel, W.J.H.V. Enzymatic synthesis of vanillin. J. Agric. Food Chem. 2001, 49, 2954–2958. [Google Scholar] [CrossRef] [PubMed]
- Priefert, H.; Rabenhorst, J.; Steinbüchel, A. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 2001, 56, 296–314. [Google Scholar] [CrossRef] [PubMed]
- Silpa, V.; Athira, V.A.; Nandulal, A.M. Industrial crops and props. Ind. Crops Props 2023, 200 Pt B, 116839. [Google Scholar] [CrossRef]
- Holladay, J.; Bozell, J.; White, J.; Johnson, D. Top Value-Added Chemicals from Biomass. ACS Sustain. Chem. Eng. 2016, 4, 35–46. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Xiong, L.; Zhang, L.; Chen, X.; Wang, C.; Huang, C.; Chen, X. Production, separation, and characterization of high purity xylobiose from enzymatic hydrolysis of alkaline oxidation pretreated sugarcane bagasse. Bioresour. Technol. 2020, 299, 122625. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.G.; Sahagun, C.M.; Guenthner, A.J.; Groshens, T.J.; Cambrea, L.R.; Reams, J.T.; Mabry, J.M. A High-Performance Renewable Thermosetting Resin Derived from Eugenol. ChemSusChem 2014, 7, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, K.; Szlasa, W.; Saczko, J.; Kulbacka, J. Therapeutic role of vanillin receptors in cancer. Adv. Clin. Exp. Med. 2021, 30, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Naz, H.; Tarique, M.; Khan, P.; Luqman, S.; Ahamad, S.; Islam, A.; Ahmad, F.; Hassan, M.I. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol. Cell Biochem. 2018, 438, 35–45. [Google Scholar] [CrossRef]
- King, A.A.; Shaughnessy, D.T.; Mure, K.; Leszczynska, J.; Ward, W.O.; Umbach, D.M.; Xu, Z.; Ducharme, D.; Taylor, J.A.; Demarini, D.M.; et al. Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat. Res. 2007, 616, 60–69. [Google Scholar] [CrossRef]
- Salau, V.F.; Erukainure, O.L.; Olofinsan, K.O.; Msomi, N.Z.; Ijomone, O.M.; Islam, M.S. Vanillin improves glucose homeostasis and modulates metabolic activities linked to type 2 diabetes in fructose-streptozotocin induced diabetic rats. Arch. Physiol. Biochem. 2024, 130, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Karathanos, T.V.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N.K. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem. 2007, 101, 652–658. [Google Scholar] [CrossRef]
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol. 2004, 97, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Qiang, H.; Wang, J.; Liu, H.; Zhu, Y. From vanillin to biobased aromatic polymer. Polym. Chem. 2023, 14, 4255–4274. [Google Scholar] [CrossRef]
- Foyer, G.; Chanfi, B.H.; Boutevin, B.; Caillol, S.; David, G. New Method for the Synthesis of Formaldehyde-Free Phenolic Resins from Lignin-Based Aldehyde Precursors. Eur. Polym. J. 2016, 74, 296–309. [Google Scholar] [CrossRef]
- Kirchai, R.E., Jr.; Gregory, J.R.; Olivetti, E.A. Environmental life-cycle assessment. Nat. Mater. 2017, 16, 693–697. [Google Scholar] [CrossRef]
- Pini, M.; Rosa, R.; Neri, P.; Ferrari, A.M. LCA Application to Chemical Synthesis at Laboratory Scale. In Life Cycle Assessment in the Chemical Product Chain: Challenges, Methodological Approaches and Applications; Maranghi, S., Brondi, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 101–123. [Google Scholar]
- Rivera, J.L.; Sutherland, J.W. A design of experiments (DOE) approach to data uncertainty in LCA: Application to nanotechnology evaluation. Clean. Techn Environ. Policy 2015, 17, 1585–1595. [Google Scholar] [CrossRef]
- Pinto, A.H.; Cho, D.R.; Oliynyk, A.O.; Silverman, J.R. Green Chemistry Applied to Transition Metal Chalcogenides through Synthesis, Design of Experiments, Life Cycle Assessment, and Machine Learning [Internet]. In Green Chemistry—New Perspectives; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Antonacci, A.; Matheis, R.; Del Pero, F.; Thirunavukkarasu, D.; Delogu, M. Design of experiments framework for performance and environmental assessment in automotive context. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2023. [Google Scholar] [CrossRef]
- Silva, A.L.D.; Filleti, R.A.P.; Christoforo, A.L.; Silva, J.E.; Ometto, R.A. Application of Life Cycle Assessment (LCA) and Design of Experiments (DOE) to the Monitoring and Control of a Grinding Process. Procedia CIRP 2015, 29, 508–513. [Google Scholar] [CrossRef]
- Benedetti, B.; Tronconi, A.; Turrini, F. Determination of polycyclic aromatic hydrocarbons in bud-derived supplements by magnetic molecular imprinted microparticles and GC-MS: D-optimal design for a fast method optimization. Sci. Rep. 2023, 13, 17544. [Google Scholar] [CrossRef]
- Leardi, R.D. Optimal designs. Encycl. Anal. Chem. 2018, 1, 11. [Google Scholar] [CrossRef]
- Li Vigni, M.; Durante, C.; Cocchi, M. Chapter 3—Exploratory Data Analysis. In Data Handling in Science and Technology; Marini, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 55–126. [Google Scholar] [CrossRef]
- Milovanović, V.M.; Petrović, Z.D.; Novaković, S.; Bogdanović, G.A.; Petrović, V.P.; Simijonović, D. Green synthesis of benzamide-dioxoisoindoline derivatives and assessment of their radical scavenging activity—Experimental and theoretical approach. Tetrahedron 2020, 76, 131456. [Google Scholar] [CrossRef]
- McElroy, C.R.; Constantinou, A.; Jones, L.C.; Summerton, L.; Clark, J.H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 2015, 17, 3111–3121. [Google Scholar] [CrossRef]
- Constable, D.J.C.; Curzons, A.D.; Cunningham, V.L. Metrics to “green” chemistry—Which are the best? Green Chem. 2002, 4, 521–527. [Google Scholar] [CrossRef]
- Brahmachari, G.; Karmakar, I.; Nurjamal, K. Ultrasound-assisted expedient and green synthesis of a new series of diversely functionalized 7-aryl/heteroarylchromeno [4,3-d]Pyrido [1,2-a]Pyrimidin-6(7H)-Ones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustain. Chem. Eng. 2018, 6, 1101811028. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikstrom, C.; Wold, S. Design of Experiments: Principles and Applications; Third Revised and Enlarged Edition; Umetrics Academy: Umeaa, Sweden, 2008; ISBN 978-91-973730-4-3. [Google Scholar]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Taber, D.F.; Patel, S.; Hambleton, M.T.; Winkel, E.E. Vanillin Synthesis from 4-Hydroxybenzaldehyde. J. Chem. Educ. 2007, 84, 1158. [Google Scholar] [CrossRef]
- Williamson, K.L.; Minard, R.D.; Masters, K.M. Macroscale and Microscale Organic Experiments, 5th ed.; Houghton Mifflin Company: Boston, MA, USA, 2007. [Google Scholar]
- Smith, R.L.; Ruiz-Mercado, G.J.; Meyer, D.E.; Gonzalez, M.A.; Abraham, J.P.; Barrett, W.M.; Randall, P.M. Coupling computer-aided process simulation and estimations of emissions and land use for rapid life cycle inventory modeling. ACS Sustain. Chem. Eng. 2017, 5, 3786–3794. [Google Scholar] [CrossRef]
- Pr’e Sustainability. Stationsplein 121, 3818 LE Amersfoort, The Netherlands. Available online: https://simapro.com/contact/ (accessed on 11 January 2024).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Rosa, R.; Pini, M.; Cappucci, G.M.; Ferrari, A.M. Principles and indicators for assessing the environmental dimension of sustainability within green and sustainable chemistry. Curr. Opin. Green Sustain. Chem. 2022, 37, 100654. [Google Scholar] [CrossRef]
- Yoffe, D.; Frim, R.; Ukeles, S.D.; Dagani, M.J.; Barda, H.J.; Benya, T.J.; Sanders, D.C. Bromine Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; John Wiley & Sons: Weinheim, Germany, 2013; pp. 1–31. [Google Scholar] [CrossRef]
Experiment | Solvent | Time (h) | KI | K2CO3 | BrBu |
---|---|---|---|---|---|
R1 | DMF | 8 | 2 | 1 | 1 |
R2 | ACN | 24 | 2 | 1 | 2 |
R3 | Ace | 24 | 2 | 1 | 1 |
R4 * | DMF | 16 | 1 | 1.5 | 1.5 |
R5 * | DMF | 16 | 1 | 1.5 | 1.5 |
R6 | Ace | 8 | 0 | 1 | 2 |
R7 * | Ace | 16 | 1 | 1.5 | 1.5 |
R8 * | Ace | 16 | 1 | 1.5 | 1.5 |
R9 | DMF | 24 | 0 | 2 | 2 |
R10 | Ace | 8 | 0 | 2 | 1 |
R11 | ACN | 8 | 2 | 2 | 1 |
R12 | Ace | 24 | 2 | 2 | 1 |
R13 | ACN | 24 | 0 | 2 | 2 |
R14 * | ACN | 16 | 1 | 1.5 | 1.5 |
R15 | DMF | 24 | 0 | 1 | 1 |
R16 * | ACN | 16 | 1 | 1.5 | 1.5 |
R17 | Ace | 8 | 2 | 1 | 2 |
R18 | ACN | 8 | 0 | 1 | 1 |
R19 | DMF | 8 | 2 | 2 | 2 |
Experiment | Mass Intensity (MI) g/g | Atom Economy (AE) % | Atomy Efficiency (Aef) % | Carbon Efficiency (CE) % | Reaction Mass Efficiency (RME) % | EcoScale % | E-Factor (g/g) |
---|---|---|---|---|---|---|---|
R1 | 54.90 | 71.97 | 54.69 | 72.90 | 51.60 | 56.00 | 0.94 |
R2 | 76.72 | 71.97 | 56.13 | 58.31 | 37.93 | 57.00 | 1.64 |
R3 | 117.79 | 71.97 | 35.98 | 50.13 | 36.08 | 43.00 | 1.77 |
R4 | 63.24 | 71.97 | 52.53 | 58.04 | 39.49 | 54.50 | 1.53 |
R5 | 61.28 | 71.97 | 51.10 | 59.44 | 40.37 | 53.50 | 1.48 |
R6 | 284.15 | 71.97 | 14.39 | 15.16 | 9.85 | 28.00 | 9.15 |
R7 | 159.95 | 71.97 | 27.35 | 31.16 | 21.07 | 37.00 | 3.75 |
R8 | 174.93 | 71.97 | 24.47 | 28.47 | 19.30 | 35.00 | 4.18 |
R9 | 86.53 | 71.97 | 36.70 | 36.18 | 23.55 | 43.50 | 3.25 |
R10 | 2648.43 | 71.97 | 1.44 | 2.12 | 1.52 | 19.00 | 64.87 |
R11 | 123.89 | 71.97 | 35.98 | 48.37 | 34.81 | 43.00 | 1.87 |
R12 | 299.04 | 71.97 | 15.11 | 19.41 | 13.81 | 28.50 | 6.24 |
R13 | 108.03 | 71.97 | 38.86 | 39.84 | 25.98 | 45.00 | 2.85 |
R14 | 366.46 | 71.97 | 12.23 | 13.55 | 9.24 | 26.50 | 9.82 |
R15 | 86.79 | 71.97 | 35.26 | 47.60 | 34.24 | 42.50 | 1.92 |
R16 | 341.12 | 71.97 | 12.95 | 14.72 | 9.97 | 27.00 | 9.03 |
R17 | 130.50 | 71.97 | 33.10 | 33.30 | 21.60 | 41.00 | 3.63 |
R18 | 470.05 | 71.97 | 10.08 | 12.10 | 8.67 | 25.00 | 10.53 |
R19 | 70.68 | 71.97 | 43.90 | 45.49 | 29.72 | 48.50 | 2.36 |
Reaction | Yield (%) | Human Health (Pt) | Ecosystems (Pt) | Resources (Pt) |
---|---|---|---|---|
R1 | 76 | 5.99 × 10−1 | 2.11 × 10−2 | 2.01 × 10−2 |
R2 | 78 | 7.51 × 10−1 | 2.55 × 10−2 | 2.18 × 10−2 |
R3 | 50 | 1.10 × 100 | 3.69 × 10−2 | 3.24 × 10−2 |
R4 | 73 | 7.88 × 10−1 | 2.72 × 10−2 | 2.42 × 10−2 |
R5 | 71 | 7.64 × 10−1 | 2.64 × 10−2 | 2.35 × 10−2 |
R6 | 20 | 2.17 × 100 | 7.63 × 10−2 | 7.36 × 10−2 |
R7 | 38 | 1.35 × 100 | 4.62 × 10−2 | 4.24 × 10−2 |
R8 | 34 | 1.48 × 100 | 5.09 × 10−2 | 4.67 × 10−2 |
R9 | 51 | 9.46 × 10−1 | 3.33 × 10−2 | 3.16 × 10−2 |
R10 | 2 | 2.14 × 100 | 7.55 × 10−1 | 7.19 × 10−1 |
R11 | 50 | 9.38 × 10−1 | 3.30 × 10−2 | 3.16 × 10−2 |
R12 | 21 | 2.75 × 100 | 9.26 × 10−2 | 8.12 × 10−2 |
R13 | 54 | 1.09 × 100 | 3.72 × 10−2 | 3.20 × 10−2 |
R14 | 17 | 3.38 × 100 | 1.17 × 10−1 | 1.05 × 10−1 |
R15 | 49 | 1.26 × 100 | 4.30 × 10−2 | 3.63 × 10−2 |
R16 | 18 | 3.08 × 100 | 1.07 × 10−1 | 9.51 × 10−2 |
R17 | 46 | 9.80 × 10−1 | 3.44 × 10−2 | 3.33 × 10−2 |
R18 | 14 | 3.71 × 100 | 1.31 × 10−1 | 1.25 × 10−1 |
R19 | 61 | 7.58 × 10−1 | 2.67 × 10−2 | 2.54 × 10−2 |
y1: Yield (R2: 87%) | y2: Human Health (R2: 94%) | y3: Ecosystem (R2: 94%) | y4: Resources (R2: 94%) | ||
---|---|---|---|---|---|
b1 | solvent | DMF | n.s | n.s | n.s |
b2 | time | n.s. | (−) | (−) | (−) |
b3 | Br | n.s. | (−) | (−) | (−) |
b4 | KI | (+) | (−) | (−) | (−) |
b5 | K2CO3 | n.s. | (+) | (+) | (+) |
b4b5 | KI*K2CO3 | n.s. | (−) | (−) | (−) |
Reaction | Solvent | Time (h) | Br | KI | K2CO3 | Yield (%) | Human Health (Pt) | Ecosystems (Pt) | Resources (Pt) |
---|---|---|---|---|---|---|---|---|---|
Optimal Reaction | DMF | 24 | 2 | 2 | 1 | 93 | 3.84 × 10−1 | 1.38 × 10−2 | 1.48 × 10−2 |
Factors | Abbreviation | Type | Actual Value |
---|---|---|---|
Solvent (x1) | Ace | Qualitative | Acetone |
ACN | Acetonitrile | ||
DMF | N,N-dimethylformamide | ||
Reaction time (x2) | t | Quantitative | 8–16–24 h |
KI/van molar ratio (x3) | KI | Quantitative | 0–1–2 |
K2CO3/van molar ratio (x4) | K2CO3 | Quantitative | 1–1.5–2 |
BrBu/van molar ratio (x5) | BrBu | Quantitative | 1–1.5–2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruini, C.; Ferrari, E.; Durante, C.; Lanciotti, G.; Neri, P.; Ferrari, A.M.; Rosa, R. Integrated Approach of Life Cycle Assessment and Experimental Design in the Study of a Model Organic Reaction: New Perspectives in Renewable Vanillin-Derived Chemicals. Molecules 2024, 29, 2132. https://doi.org/10.3390/molecules29092132
Ruini C, Ferrari E, Durante C, Lanciotti G, Neri P, Ferrari AM, Rosa R. Integrated Approach of Life Cycle Assessment and Experimental Design in the Study of a Model Organic Reaction: New Perspectives in Renewable Vanillin-Derived Chemicals. Molecules. 2024; 29(9):2132. https://doi.org/10.3390/molecules29092132
Chicago/Turabian StyleRuini, Chiara, Erika Ferrari, Caterina Durante, Giulia Lanciotti, Paolo Neri, Anna Maria Ferrari, and Roberto Rosa. 2024. "Integrated Approach of Life Cycle Assessment and Experimental Design in the Study of a Model Organic Reaction: New Perspectives in Renewable Vanillin-Derived Chemicals" Molecules 29, no. 9: 2132. https://doi.org/10.3390/molecules29092132
APA StyleRuini, C., Ferrari, E., Durante, C., Lanciotti, G., Neri, P., Ferrari, A. M., & Rosa, R. (2024). Integrated Approach of Life Cycle Assessment and Experimental Design in the Study of a Model Organic Reaction: New Perspectives in Renewable Vanillin-Derived Chemicals. Molecules, 29(9), 2132. https://doi.org/10.3390/molecules29092132