Mercury Monohalides as Ligands in Transition Metal Complexes
Abstract
:1. Transition Metal–Mercury Derivatives: General Aspects
2. Heterometallic Transition Metal Complexes with Mercury Dihalides
3. Transition Metal–Mercury Monohalide Derivatives
4. Computational Investigations on {M-Hg-Y} Derivatives
5. Computational Methods
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, J. Metal-metal interaction in transition metal complexes. Pure Appl. Chem. 1965, 10, 11–36. [Google Scholar] [CrossRef]
- Burlitch, J.M. Compounds with Bonds between Transition Metals and either Mercury, Cadmium, Zinc or Magnesium. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F.G.A., Abel, E.W., Eds.; Pergamon Press: Oxford, UK, 1982; Volume 6, pp. 983–1041. [Google Scholar] [CrossRef]
- Dean, P.A.W. Mercury as a Ligand. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R.D., McCleverty, J.A., Eds.; Pergamon Press: Oxford, UK, 1987; Volume 2, pp. 1–6. [Google Scholar]
- Gade, L.H. Mercury, a Structural Building Block and Source of Localized Reactivity in Extended Metal-Metal Bonded Systems. Angew. Chem. Int. Ed. 1993, 32, 24–40. [Google Scholar] [CrossRef]
- Rosenberg, E.; Hardcastle, K.I. Cluster Complexes with Bonds Between Transition Elements and Zinc, Cadmium, and Mercury. In Comprehensive Organometallic Chemistry II; Abel, E.W., Gordon, F., Stone, A., Wilkinson, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 10, pp. 323–350. [Google Scholar] [CrossRef]
- Ara, I.; Forniés, J.; Gabilondo, L.; Usón, M.A. New Pt-Hg clusters with pentachlorophenyl groups. Inorg. Chim. Acta 2003, 347, 155–160. [Google Scholar] [CrossRef]
- Wright, C.A.; Brand, U.; Shapley, J.R. Synthesis and Characterization of the Dimercury(I)-Linked Compound [PPN]4[(Re7C(CO)21Hg)2]. Oxidative Cleavage of the Mercury-Mercury Bond Leading to Carbidoheptarhenate Complexes of Mercury(II), Including [PPN][Re7C(CO)21Hg(S=C(NMe2)2)]. Inorg. Chem. 2021, 40, 4091–4896. [Google Scholar] [CrossRef]
- Catalano, V.J.; Malwitz, M.A. Pd(0) and Pt(0) Metallocryptands Encapsulating a Spinning Mercurous Dimer. Inorg. Chem. 2002, 41, 6553–6559. [Google Scholar] [CrossRef]
- Tanase, T.; Goto, E.; Takenaka, H.; Horiuchi, T.; Yamamoto, Y.; Kuwabara, J.; Osakada, K. Cage-Type Hexanuclear Platinum(0) Clusters with Diphosphine and Isocyanide Ligands Encapsulating Two Mercury(0) Atoms. Organometallics 2005, 24, 234–244. [Google Scholar] [CrossRef]
- Weil, M. Single Crystal Growth and Crystal Structure of Anhydrous Mercury(I) Nitrate, Hg2(NO3)2. Z. Anorg. Allg. Chem. 2003, 629, 1547–1552. [Google Scholar] [CrossRef]
- Kreye, M.; Freytag, M.; Jones, P.G.; Williard, P.G.; Bernskoetter, W.H.; Walter, M.D. Homolytic H2 cleavage by a mercury-bridged Ni(I) pincer complex [{(PNP)Ni}2{μ-Hg}]. Chem. Commun. 2015, 51, 2946–2949. [Google Scholar] [CrossRef]
- Song, L.-C.; Yang, H.; Dong, Q.; Hu, Q.-M. Unexpected metal-metal bond formation in the M-Hg-M (M = Cr, Mo, W) structural unit. Synthesis and characterization of [η5-RC5H4(CO)3M]2Hg complexes (R = H, M = W; R= CH3CO, M = Cr, Mo, W). J. Organomet. Chem. 1991, 414, 137–143. [Google Scholar] [CrossRef]
- Johnson, B.F.G.; Kwik, W.-L.; Lewis, J.; Raithby, P.R.; Saharan, V.P. Synthesis of mercury-linked ruthenium clusters: The X-ray structure of the new cluster dianion [{Ru6C(CO)16}2Hg]2− and the cluster [{Ru5C(CO)14(µ-Cl)}2Hg2Cl2]. J. Chem. Soc. Dalton Trans. 1991, 1037–1042. [Google Scholar] [CrossRef]
- Andreu, P.L.; Cabeza, J.A.; Llamazares, A.; Riera, V.; Bois, B.; Jeannin, Y. Mercury—Ruthenium mixed-metal carbonyl clusters containing 2-amido-6-methylpyridine (ampy) as a μ3,η2-ligand. Crystal structures of [Ru6(μ4-Hg)(μ3-ampy)2(CO)18]·2C4H8O and [Ru3(μ-HgBr)(μ3-ampy)(CO)9]. J. Organomet. Chem. 1991, 420, 431–442. [Google Scholar] [CrossRef]
- Cesari, C.; Bortoluzzi, M.; Femoni, C.; Iapalucci, M.C.; Zacchini, S. Mercurophilic interactions in heterometallic Ru-Hg carbonyl clusters. Inorg. Chim. Acta 2023, 545, 121281. [Google Scholar] [CrossRef]
- Cheung, W.-M.; Chong, M.-C.; Sung, H.H.-Y.; Cheng, S.-C.; Williams, I.D.; Ko, C.-C.; Leung, W.H. Synthesis, structure and reactivity of iridium complexes containing a bis-cyclometalated tridentate C^N^C ligand. Dalton Trans. 2021, 50, 8512–8523. [Google Scholar] [CrossRef] [PubMed]
- Reina, R.; Riba, O.; Rossell, O.; Seco, M.; de Montauzon, D.; Font-Bardia, M.; Solans, X. Cobalt/Mercury Carbide Clusters Based on Trigonal-Prismatic or Octahedral Co6C Skeletons—X-ray Crystal Structure of (NEt4)2[Co6C(CO)12{HgW(CO)3Cp}2]. Eur. J. Inorg. Chem. 2001, 2001, 1243–1249. [Google Scholar] [CrossRef]
- Haupt, H.-J.; Merla, A.; Flörke, U. Heterometallische Clusterkomplexe der Typen Re2(μ-PR2)(CO)8(HgY) und ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3). Z. Anorg. Allg. Chem. 1994, 620, 999–1005. [Google Scholar] [CrossRef]
- Rupf, S.M.; Pan, S.; Moshtaha, A.L.; Frenking, G.; Malischewski, M. Structural Characterization and Bonding Analysis of [Hg{Fe(CO)5}2]2+ [SbF6]−2. J. Am. Chem. Soc. 2023, 145, 15353–15359. [Google Scholar] [CrossRef]
- Alvarez, S.; Ferrer, M.; Reina, R.; Rossell, O.; Seco, M. Anionic trimetallic compounds containing Fe-E-M skeletons (E = Zn, Cd, Hg; M = Fe, MO, W). Crystal structure of [NPPh3)2]2[(OC)4Fe-Hg-Fe(CO)4]. J. Organomet. Chem. 1989, 377, 291–303. [Google Scholar] [CrossRef]
- Sosinsky, B.A.; Shong, R.G.; Fitzgerald, B.J.; Norem, N.; O’Rourke, C. Reduction of the Group IIB tetracarbonylferrates in Lewis bases. Synthesis, characterization, and structural features of the (Na{THF}2)+2[M′(Fe(CO)4)2]2− (M′ = Zn, Cd, and Hg) series. Inorg. Chem. 1983, 22, 3124–3129. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. Mercurophilic Interactions. Organometallics 2015, 34, 2048–2066. [Google Scholar] [CrossRef]
- Echeverría, J.; Cirera, J.; Alvarez, S. Mercurophilic interactions: A theoretical study on the importance of ligands. Phys. Chem. Chem. Phys. 2017, 19, 11645–11654. [Google Scholar] [CrossRef]
- Pyykkö, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97, 597–636. [Google Scholar] [CrossRef] [PubMed]
- Vreshch, V.; Shen, W.; Nohra, B.; Yip, S.-K.; Yam, V.W.-W.; Lescop, C.; Réau, R. Aurophilicity versus Mercurophilicity: Impact of d10–d10 Metallophilic Interactions on the Structure of Metal-Rich Supramolecular Assemblies. Chem. Eur. J. 2012, 18, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Gade, L.H.; Johnson, B.F.G.; Lewis, J.; Conole, G.; McPartlin, M. Redox–chemical core manipulation of [Os18Hg3C2(CO)42]2−; synthesis and crystal structure of the cluster [Os18Hg2C2(CO)42]4−. J. Chem. Soc. Dalton Trans. 1992, 3249–3254. [Google Scholar] [CrossRef]
- Gade, L.H.; Johnson, B.F.G.; Lewis, J.; McPartlin, M.; Kotch, T.; Lees, A.J. Photochemical core manipulation in high-nuclearity osmium-mercury clusters. J. Am. Chem. Soc. 1991, 113, 8698–8704. [Google Scholar] [CrossRef]
- Chiaradonna, G.; Ingrosso, G.; Marchetti, F. [{Ir(η5-C5Me5)CO)}6Hg8][CF3CO2]6, a Mixed-Metal Cluster with an Ir6Hg6 Twelve-Membered Ring and Additional Hg Centers and Metal-Metal Bonds. Angew. Chem. Int. Ed. 2000, 39, 3872–3873. [Google Scholar] [CrossRef]
- Levason, W.; McAuliffe, C.A. The Coordination Chemistry of Mercury. In The Chemistry of Mercury. Aspects of Inorganic Chemistry; McAuliffe, C.A., Ed.; Palgrave Macmillan: London, UK, 1977; pp. 47–135. [Google Scholar]
- Ali Morsali, A.; Masoomi, M.Y. Structures and properties of mercury(II) coordination polymers. Coord. Chem. Rev. 2009, 253, 1882–1905. [Google Scholar] [CrossRef]
- Melnik, M. Isomers in the chemistry of mercury coordination compounds. Cent. Eur. J. Chem. 2010, 8, 469–485. [Google Scholar] [CrossRef]
- Samie, A.; Salimi, A.; Garrison, J.C. Coordination chemistry of mercury(II) halide complexes: A combined experimental, theoretical and (ICSD & CSD) database study on the relationship between inorganic and organic units. Dalton Trans. 2020, 49, 11859–11877. [Google Scholar] [CrossRef]
- Beletskaya, I.P. In My Element: Mercury. Chem. Eur. J. 2019, 25, 7408–7409. [Google Scholar] [CrossRef]
- Raju, S.; Singh, H.B.; Butcher, R.J. Metallophilic interactions: Observations of the shortest metallophilic interactions between closed shell (d10···d10, d10···d8, d8···d8) metal ions [M···M′ M = Hg(II) and Pd(II) and M′ = Cu(I), Ag(I), Au(I), and Pd(II)]. Dalton Trans. 2020, 49, 9099–9117. [Google Scholar] [CrossRef]
- Tagne Kuate, A.C.; Lalancette, R.A.; Bockfeld, D.; Tamm, M.; Jäkle, F. Palladium(0) complexes of diferrocenylmercury diphosphines: Synthesis, X-ray structure analyses, catalytic isomerization, and C–Cl bond activation. Dalton Trans. 2021, 50, 4512–4518. [Google Scholar] [CrossRef] [PubMed]
- Tagne Kuate, A.C.; Lalancette, R.A.; Bannenberg, T.; Tamm, M.; Jäkle, F. Diferrocenylmercury diphosphine diastereomers with unique geometries: Trans-chelation at Pd(II) with short Hg(II)···Pd(II) contacts. Dalton Trans. 2019, 48, 13430–13439. [Google Scholar] [CrossRef] [PubMed]
- Lόpez-de-Luzuriaga, J.M.; Monge, M.; Olmos, M.E.; Pascual, D. Study of the Nature of Closed-Shell HgII···MI (M = Cu, Ag, Au) Interactions. Organometallics 2015, 34, 3029–3038. [Google Scholar] [CrossRef]
- Martin, A.; Bennett, M.A.; Contel, M.; Hockless, D.C.R.; Welling, L.L.; Willis, A.C. Bis{(2-diphenylphosphino)phenyl}mercury: A P-Donor Ligand and Precursor to Mixed Metal−Mercury (d8−d10) Cyclometalated Complexes Containing 2-C6H4PPh2. Inorg. Chem. 2002, 41, 844–855. [Google Scholar] [CrossRef]
- Tagne Kuate, A.C.; Lalancette, R.A.; Bannenberg, T.; Jäkle, F. Diferrocenylmercury-Bridged Diphosphine: A Chiral, Ambiphilic, and Redox-Active Bidentate Ligand. Angew. Chem. Int. Ed. 2018, 57, 6552–6557. [Google Scholar] [CrossRef]
- López-de-Luzuriaga, J.M.; Monge, M.; Olmos, M.E.; Pascual, D. Experimental and Theoretical Comparison of the Metallophilicity between d10–d10 AuI–HgII and d8–d10 AuIII–HgII Interactions. Inorg. Chem. 2014, 53, 1275–1277. [Google Scholar] [CrossRef]
- Patel, U.; Sharma, S.; Singh, H.B.; Dey, S.; Jain, V.K.; Wolmershäuser, G.; Butcher, R.J. Intermetallic Bonds in Metallophilic Mercuraazametallamacrocycles of Synthetic Design. Organometallics 2010, 29, 4265–4275. [Google Scholar] [CrossRef]
- Patel, U.; Singh, H.B.; Wolmershäuser, G. Synthesis of a Metallophilic Metallamacrocycle: A HgII···CuI···HgII···HgII···CuI ···HgII Interaction. Angew. Chem. Int. Ed. 2005, 44, 1715–1717. [Google Scholar] [CrossRef]
- López-de-Luzuriaga, J.M.; Monge, M.; Olmos, M.E.; Pascual, D.; Lasanta, T. Amalgamating at the molecular level. A study of the strong closed-shell Au(I)···Hg(II) interaction. Chem. Commun. 2011, 47, 6795–6797. [Google Scholar] [CrossRef]
- Lasanta, T.; López-de-Luzuriaga, J.M.; Monge, M.; Olmos, M.E.; Pascual, D. Synthesis of the molecular amalgam [{AuHg2(o-C6F4)3}{Hg3(o-C6F4)3}]−: A rare example of a heterometallic homoleptic metallacycle. Dalton Trans. 2016, 45, 6334–6338. [Google Scholar] [CrossRef]
- Kim, M.; Taylor, T.J.; Gabbaï, F.P. Hg(II)···Pd(II) Metallophilic Interactions. J. Am. Chem. Soc. 2008, 130, 6332–6333. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Jönk, P.; Wühl-Couturier, G.; Halbach, S. Mercury, Mercury Alloys, and Mercury Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2012; Volume 22, pp. 578–580. [Google Scholar] [CrossRef]
- Ginzburg, A.G.; Aleksandrov, G.G.; Struchkov, Y.T.; Setkina, V.N.; Kursanov, D.N. Basicity of transiton metal carbonyl complexes: XIII. Reactions of the π-cyclopentadienyl complexes of molybdenum and tungsten with aprotic acids. J. Organomet. Chem. 1980, 199, 229–242. [Google Scholar] [CrossRef]
- Edelmann, F.; Behrens, P.; Behrens, S.; Behrens, U. Übergangsmetall-fulven-komplexe: XXVII. Basische fulven-komplexe. J. Organomet. Chem. 1986, 309, 109–116. [Google Scholar] [CrossRef]
- Pardo, M.P.; Cano, M. Reactions of tricarbonylpyridine complexes (NN)(py)M(CO)3 (M = Mo, W.; NN = 2,2′-bipyridine, 1,10-phenanthroline) with mercuric derivatives HgX2 (X = Cl, CN, SCN). J. Organomet. Chem. 1984, 270, 311–318. [Google Scholar] [CrossRef]
- Touchard, D.; Lelay, C.; Fillaut, J.-L.; Dixneuf, P.H. A Novel Roue to Thiocarbonyl-Metal Complexes via Electron Transfer to (η2-CS2R)-Metal Cations. J. Chem. Soc. Chem. Commun. 1986, 37–38. [Google Scholar] [CrossRef]
- Adams, D.M.; Cook, D.J.; Kemmitt, R.D.W. Reactions of mercuric halides with some substituted iron carbonyls; infrared spectra of the products and related adducts. J. Chem. Soc. A 1968, 1067–1072. [Google Scholar] [CrossRef]
- Cook, D.J.; Dawes, J.L.; Kemmitt, R.D.W. Some mercury halide–cobalt and –rhodium compounds. J. Chem. Soc. A 1967, 1547–1551. [Google Scholar] [CrossRef]
- Lewis, J.; Wild, S.B. Chemistry of polynuclear compounds. Part IV. Some amine-substituted mercury halide–iron carbonyl compounds. J. Chem. Soc. A 1966, 69–72. [Google Scholar] [CrossRef]
- Lobo, M.A.; Perpiñan, M.F.; Pardo, M.P.; Cano, M. Reactions of the carbonyl complexes M(CO)3(L)3 (L = py, M = Mo, W.; L = NH3, M = Mo) and M(CO)4(2-Mepy)2 (M = Mo, W) with HgX2 (X = Cl, CN, SCN). J. Organomet. Chem. 1983, 254, 325–332. [Google Scholar] [CrossRef]
- Graddon, D.P.; Gregor, I.K.; Siddiqi, I.A. Stability and bond strength in adducts of mercury(II) halides with transition metal carbonyl derivatives. J. Organomet. Chem. 1975, 102, 321–326. [Google Scholar] [CrossRef]
- Coco, S.; Espinet, P.; Mayor, F.; Solans, X. Insertion of mercury into iron–halogen bonds. X-Ray structure of [(p-MeC6H4NC)5Fe→HgI2]. J. Chem. Soc. Dalton Trans. 1991, 2503–2509. [Google Scholar] [CrossRef]
- Coco, S.; Mayor, F. Insertion of mercury into iron-iodine bonds leading to dinuclear (Fe-Hg) mixed isonitrile-phosphine complexes. J. Organomet. Chem. 1994, 464, 215–218. [Google Scholar] [CrossRef]
- Ehara, K.; Kumagaya, K.; Yamamoto, Y.; Takahashi, K.; Yamazaki, H. Unusual reductive behaviour of a trans-NiI2(RNC)2 complex at mercury and platinum electrodes. J. Organomet. Chem. 1991, 410, C49–C53. [Google Scholar] [CrossRef]
- Xu, X.; Fang, L.; Chen, Z.-X.; Yang, G.-C.; Sun, S.-L.; Su, Z.-M. Quantum chemistry studies on the Ru–M interactions and the 31P NMR in [Ru(CO)3(Ph2Ppy)2(MCl2)] (M = Zn, Cd, Hg). J. Organomet. Chem. 2006, 691, 1927–1933. [Google Scholar] [CrossRef]
- Nowell, I.N.; Russell, D.R. The crystal structure of the dicarbonylcyclopentadienylcobalt–mercuric chloride complex. Chem. Commun. 1967, 817. [Google Scholar] [CrossRef]
- Carter, S.J.; Foxman, B.M.; Stuhl, L.S. Direct synthesis of low-valent acyl isocyanide metal complexes. Preparation, structure and properties of (η5-C5H5)Co(CNCOR)2 complexes formed via reaction of (η5-C5H5)Co(CO)2 with acyl isocyanides. Organometallics 1986, 5, 1918–1920. [Google Scholar] [CrossRef]
- Le Bozec, H.; Dixneuf, P.H.; Adams, R.D. Stabilization of a metal-carbene intermediate by formation of a metal-mercury(II) bond. Synthesis and x-ray structure of [cyclic] Cl2HgFe(:C+SC(CO2Me):C(CO2Me)S)(CO)2(PMe2Ph)2. Organometallics 1984, 12, 1919–1921. [Google Scholar] [CrossRef]
- Khasnis, D.V.; Le Bozec, H.; Dixneuf, P.H.; Adams, R.D. Formation of donor-acceptor Fe(0)→Hg(II) bond for the stabilization of carbene-iron(0) complexes: Synthesis, characterization, and reactivity toward sulfur donor molecules and x-ray structure of Cl2HgFe(CO)2(PMe2Ph)2(CS2C2(CO2Me)2). Organometallics 1986, 5, 1772–1777. [Google Scholar] [CrossRef]
- Sharp, P.R. Synthesis and characterization of a platinum-mercury “A-frame” cluster. Inorg. Chem. 1986, 25, 4185–4189. [Google Scholar] [CrossRef]
- Faraone, F.; Lo Schiavo, S.; Bruno, G.; Bombieri, G. Mercury(II) chloride bridging two rhodium atoms. Preparation and X-ray crystal structure of [Rh2(η-C5H5)2(µ-CO)(µ-Ph2PCH2PPh2)(µ-HgCl2)]. J. Chem. Soc. Chem. Commun. 1984, 6–7. [Google Scholar] [CrossRef]
- Luo, G.-G.; Huang, R.-B.; Sun, D.; Lin, L.-R.; Zheng, L.-S. Synthesis, X-ray structures, and photoluminescence of heterometal trinuclear Hg(II)–Pt(I) and tetranuclear Hg(II)–Pd(I) complexes. Inorg. Chem. Commun. 2008, 11, 1337–1340. [Google Scholar] [CrossRef]
- Kuang, S.-M.; Zhang, Z.-Z.; Chinnakali, K.; Fun, H.-K.; Mak, T.C.W. Formation of donor–acceptor Fe(0)–Hg(II) bond in separation and stabilization of optically active iron(0) phosphine complexes. Absolute configuration of (+)-(R)-(CO)4Fe(μ-EtPhPpy)HgCl2. Inorg. Chim. Acta 1999, 293, 106–109. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Cheng, H.; Kuang, S.-M.; Zhou, Y.-Q.; Liu, Z.-X.; Zhang, J.-K.; Wang, H.-G. Coordination chemistry of organometallic polydentate ligands. Studies on the syntheses and properties of Fe-M binuclear complexes prepared from organometallic tridentate ligand trans-Fe(CO)3(Ph2Ppy)2 (Ph2Ppy = 2-(diphenylphosphino)pyridine). J. Organomet. Chem. 1996, 516, 1–10. [Google Scholar] [CrossRef]
- Li, S.-L.; Zhang, Z.-Z.; Mak, T.C.W. The new organometallic polydentate ligand trans-bis(2-(diphenylphosphino) pyrimidine) tricarbonyliron(0) and its mono-, di- and tridentate coordination modes towards mercury(II) halide/pseudohalide. J. Organomet. Chem. 1997, 536–537, 73–86. [Google Scholar] [CrossRef]
- Song, H.-B.; Wang, Q.-M.; Zhang, Z.-Z.; Mak, T.C.W. Synthesis and structural characterization of hetero-binuclear complexes containing a Fe0→Mn+ bond bridged by a non-rigid P,N-phosphine ligand. J. Organomet. Chem. 2000, 605, 15–21. [Google Scholar] [CrossRef]
- Song, H.-B.; Zhang, Z.-Z.; Mak, T.C.W. Hetero-binuclear complexes containing a Ru0 → Mn+ bond bridged by P,N-phosphine ligands: Convenient synthesis of tridentate organometallic trans-Ru(CO)3(L)2 (L = phosphine bearing an N-donor substituent) ligands. New. J. Chem. 2002, 26, 113–119. [Google Scholar] [CrossRef]
- Van der Ploeg, A.F.M.J.; Van Koten, G.; Vrieze, K.; Spek, A.L.; Duisenberg, A.J.M. Crystal structure and molecular geometry of a square-pyramidal platinum(II) complex [{2,6-(Me2NCH2)2C6H3}Pt(μ-{(p-tol)NC(H)N(i-Pr)})HgBrCl] containing a PtII-to-HgII donor bond. Organometallics 1982, 1, 1066–1070. [Google Scholar] [CrossRef]
- Balch, A.L.; Catalano, V.J. Reactivity of complexes with weak metal-metal bonds. Reactions of Lewis acids with AuIr(CO)Cl(μ-Ph2PCH2PPh2)2](PF6). Inorg. Chem. 1992, 31, 2730–2734. [Google Scholar] [CrossRef]
- Cabeza, J.A.; Fernández-Colinas, J.M.; García-Granda, S.; Riera, V.; Van der Maelen, J.F. Selective insertion of mercury(II) halides into the ruthenium–mercury bonds of trinuclear Ru2Hg clusters. J. Chem. Soc. Chem. Commun. 1991, 168–170. [Google Scholar] [CrossRef]
- Cabeza, J.A.; Fernandez-Colinas, J.M.; Garcia-Granda, S.; Riera, V.; Van der Maelen, J.F. Addition of mercury(II) electrophiles to [Ru2(C10H8N2)(CO)4(PiPr3)2] and selective insertion versus addition in the reactions of mercury(II) electrophiles with trinuclear diruthenium mercury clusters. X-ray structures of [Ru2Hg(O2CCF3)2(C10H8N2)(CO)4(PiPr3)2] and [Ru2Hg2Cl4(C10H8N2)(CO)4(PiPr3)2]·CH2Cl2 (C10H10N2 = 1,8-diaminonaphthalene). Inorg. Chem. 1992, 31, 1233–1238. [Google Scholar] [CrossRef]
- Falvello, L.R.; Forniés, J.; Martín, A.; Navarro, R.; Sicilia, V.; Villarroya, P. Reactivity of [M(C∧P)(S2C-R)] (M = Pd, Pt; C∧P = CH2-C6H4-P(o-tolyl)2-κC,P.; R = NMe2, OEt) toward HgX2 (X = Br, I). X-ray Crystal Structures of [Pt{CH2-C6H4P(o-tolyl)2-κC,P}(S2CNMe2)HgI(μ-I)]2 and [PdBr(S2COEt){μ-P(o-tolyl)2-C6H4-CH2-}HgBr]·0.5HgBr2·C2H4Cl2. Inorg. Chem. 1997, 36, 6166–6171. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ehara, K.; Takahashi, K.; Yamazaki, H. Four- and Five-Coordinated Nickel(II) Isocyanide Complexes and Donor–Acceptor Complexes Containing Nickel and Mercury. Bull. Chem. Soc. Jpn. 1991, 64, 3376–3383. [Google Scholar] [CrossRef]
- Alvarez, B.; Alvarez, M.A.; Amor, I.; García, M.E.; Ruiz, M.A.; Suárez, J. Gold(I) and Related Heterometallic Derivatives of Dimolybdenum Complexes with Asymmetric Phosphinidene Bridges. Inorg. Chem. 2014, 53, 10325–10339. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.-M.; Cheng, H.; Sun, L.-J.; Zhang, Z.-Z.; Zhou, Z.-Y.; Wu, B.-M.; Mak, T.C.W. Coordination chemistry of organometallic polydentate ligands. Syntheses of Fe-M complexes using Fe(CO)4(Ph2Ppy-P)[Ph2Ppy = 2-(diphenylphosphino)pyridine] and trans-Fe(PhPMepy)2(CO)3 [PhPMepy = 2-(phenylmethylphosphino)pyridine] as a neutral bi- or tridentate ligand. Polyhedron 1996, 15, 3417–3426. [Google Scholar] [CrossRef]
- Kirk, R.M.; Hill, A.F. Arsolyl-supported intermetallic dative bonding. Chem. Sci. 2022, 13, 6830–6835. [Google Scholar] [CrossRef]
- Ciplys, A.M.; Geue, R.J.; Snow, M.R. Crystal structure of the dimeric 1:2 addition complex of tricarbonylmesitylenemolybdenum with mercury(II) chloride. J. Chem. Soc. Dalton Trans. 1976, 35–37. [Google Scholar] [CrossRef]
- Ara, I.; Falvello, L.R.; Forniés, J.; Sicilia, V.; Villarroya, P. Reactivity of [M(C∧P)(acac-O,O′)] [M = Pt, Pd; C∧P = CH2-C6H4-P(o-tolyl)2-κC,P; acac = 2,4-pentanedionato] toward HgX2 (X = Br, I, CH3COO, CF3COO). New Polynuclear Complexes Containing Pt−Hg Bonds. Molecular Structures of [{Pt(C∧P)(acac-O,O′)-HgBr(μ-Br)}2(μ-HgBr2)], an Unprecedented Square-Planar Bromomercurate Complex, and [{Pt(C∧P)(μ-O2CCH3)2Hg(μ3-acac2−-κC3,O)Hg(O2CCH3-κO)}·CHCl3]2, the First Complex Containing Asymmetric Dimercurated Acetylacetone. Organometallics 2000, 19, 3091–3099. [Google Scholar] [CrossRef]
- Nowell, I.W.; Russell, D.R. Structures of mercury(II) halide adducts with transition-metal Lewis bases. Part II. Crystal structure of the 1:3 complex between dicarbonyl-π-cyclopentadienylcobalt and mercury(II) chloride. J. Chem. Soc. Dalton Trans. 1972, 2396–2399. [Google Scholar] [CrossRef]
- Einstein, F.W.B.; Yan, X.; Zhang, X.; Sutton, D. Characterization of 1:1 heterobimetallic complexes of (η5-C5Me5)Ir(CO)2 with zinc, cadmium and mercury(II) chloride and the X-ray structure determination of the 1:2 mercury complex. J. Organomet. Chem. 1992, 439, 221–230. [Google Scholar] [CrossRef]
- Mays, M.J.; Robb, J.D. Exchange reactions involving transition-metal–mercury bonds. J. Chem. Soc. A 1968, 329–332. [Google Scholar] [CrossRef]
- Van Rentergem, M.; Van der Kelen, G.P. IR spectra of organophosphine substituted derivatives of (halomercury)tetracarbonylcobalt. J. Mol. Struct. 1985, 127, 47–55. [Google Scholar] [CrossRef]
- Cano, M.; Campo, J.A. Reactivity of the Mo-Sn bond. Reactions of [MoSnPh3(CO)3(η-C5H5)] with HgX2 (X = Cl, OCOCF3). Polyhedron 1991, 10, 133–134. [Google Scholar] [CrossRef]
- Roberts, R.M.G. Reactivity of Metal-Metal Bonds: I. Cleavage of molybdenum-tin and tungsten-tin bonds and synthesis of novel organomercury derivatives. J. Organomet. Chem. 1972, 40, 359–366. [Google Scholar] [CrossRef]
- Roberts, R.M.G. Reactivity of metal-metal bonds: II. Exchange reactions of trimethyltin derivatives of manganese and iron. J. Organomet. Chem. 1973, 47, 359–366. [Google Scholar] [CrossRef]
- Chipperfield, J.R.; Hayter, A.C.; Webster, D.E. Reactivity of main-group–transition-metal bonds. Part 7. Kinetics of the reaction of mercury(II) halides with compounds containing tin–chromium, –molybdenum, –tungsten, –manganese, –rhenium, and –iron bonds. J. Chem. Soc. Dalton Trans. 1977, 485–490. [Google Scholar] [CrossRef]
- Kumar, R.; Manning, A.R.; Murray, P.T. The reactions of [Fe2(η-C5H5)2(CO)4−n(CNMe)n] (n = 0–4) complexes with halogens and mercury(II) salts. J. Organomet. Chem. 1987, 323, 53–65. [Google Scholar] [CrossRef]
- Cano, M.; Panizo, M.; Campo, J.A.; Gutiérrez-Puebla, E.; Monge, M.A.; Ruiz-Valero, C. Reactivity of carbonyl complexes containing Mo-Hg bonds; reaction of tin(II) halides with [Mo(CO)3(NN)(HgX)(X)] (NN = bpy, phen, dmp); crystal structure of [Mo(CO)3(dmp)(HgCl)(Cl)]. Polyhedron 1994, 13, 1669–1676. [Google Scholar] [CrossRef]
- Fard, M.A.; Behnia, A.; Puddephatt, R.J. Stereochemistry of oxidative addition reactions of cycloneophyl complexes of Platinum(II): A methylene insertion reaction from dichloromethane. J. Organomet. Chem. 2019, 890, 32–42. [Google Scholar] [CrossRef]
- McCready, M.S.; Puddephatt, R.J. The Platinum Center is a Stronger Nucleophile than the Free Nitrogen Donors in a Dimethylplatinum Complex with a Dipyridylpyridazine Ligand. Organometallics 2015, 34, 2261–2270. [Google Scholar] [CrossRef]
- Janzen, M.C.; Jennings, M.C.; Puddephatt, R.J. Mechanism of Oxidative Addition of Mercury(II) Compounds to Platinum(II). Inorg. Chem. 2001, 40, 1728–1729. [Google Scholar] [CrossRef]
- Janzen, M.C.; Jennings, M.C.; Puddephatt, R.J. Oxidative addition of mercury(II) halides and carboxylates to platinum(II): Formation of Pt–Hg covalent and donor–acceptor bonds. Inorg. Chim. Acta 2005, 358, 1614–1622. [Google Scholar] [CrossRef]
- Anderson, L.B.; Conder, H.L.; Kudaroski, R.A.; Kriley, C.; Holibaugh, K.J.; Winland, J. Chemistry of transition-metal phosphine and phosphite complexes. 2. Preparation and properties of XHgCo[P(OC6H5)3]3L. Inorg. Chem. 1982, 21, 2095–2097. [Google Scholar] [CrossRef]
- Albright, M.J.; Glick, M.D.; Oliver, J.P. Studies on main group metal-transition-metal bonded compounds.6. The structure of η5-C5H5(CO)3MoHgCl. J. Organomet. Chem. 1978, 161, 221–231. [Google Scholar] [CrossRef]
- Bueno, C.; Churchill, M.R. Structural Studies on Some (η5-C5H5)M(CO)3X Molecules: (η5-C5H5)W(CO)3Cl, (η5-C5H5)Mo(CO)3Cl, and (η5-C5H5)Mo(CO)3HgCl. Inorg. Chem. 1981, 20, 2197–2202. [Google Scholar] [CrossRef]
- Cano, M.; Criado, R.; Gutierrez-Puebla, E.; Monge, A.; Pardo, M.P. Synthesis of heteronuclear carbonyl complexes (η5-C5H4CH3)(CO)3MoHgX (X = Cl, Br, I, SCN). Crystal structure of (η5-C5H4CH3)(CO)3MoHgCl. J. Organomet. Chem. 1985, 292, 375–383. [Google Scholar] [CrossRef]
- Cano, M.; Campo, J.A.; Pinilla, E.; Monge, A.; Pichon, R.; Salaün, J.-Y.; L’Haridon, P.; Szymoniak, J.; Kubicki, M.M. Effects of substitutions on cyclopentadienyl rings in complexes with molybdenum-mercury bonds. 95Mo and 199Hg NMR studies. Inorg. Chim. Acta 1995, 228, 251–254. [Google Scholar] [CrossRef]
- Auvray, N.; Baul, T.S.B.; Braunstein, P.; Croizat, P.; Englert, U.; Herberich, G.E.; Welter, R. Organometallic building blocks with amino-substituted cyclopentadienyl and boratabenzene ligands for the synthesis of heterometallic complexes and clusters. Dalton Trans. 2006, 2950–2958. [Google Scholar] [CrossRef]
- Mickiewicz, M.M.; Raston, C.L.; White, A.H.; Wild, S.B. Crystal structures of Bis[tricarbonyl(η-cyclopentadienyl)molybdato(0)]mercury(II) and trans-Dicarbonyl(dimethylphenylarsine)[iodomercurio(0)](η-methylcylopentadienyl) molybdenum(II). Aust. J. Chem. 1977, 30, 1685–1691. [Google Scholar] [CrossRef]
- Mullica, D.F.; Sappenfield, E.L.; Gipson, S.L.; Booth, A.J. Synthesis and structural analysis of trans-Cp(CO)2(PPh3)WHgCl. Inorg. Chim. Acta 1994, 227, 145–148. [Google Scholar] [CrossRef]
- Brotherton, P.D.; Epstein, J.M.; White, A.H.; Wild, S.B. Crystal structure of (2,2′-Bipyridyl)tricarbonylchloro(chloromercurio)molybdenum-(II). Aust. J. Chem. 1974, 27, 2667–2670. [Google Scholar] [CrossRef]
- Kergoat, R.; Kubicki, M.M.; Guerchais, J.E.; Norman, N.C.; Orpen, A.G. Bis(cyclopentadienyls) with transition metal–mercury bonds. Part 4. Formation of niobium–mercury bonds and X-ray crystal structure of [Nb(η-C5H5)2{HgS2CN(C2H5)2}3]. J. Chem. Soc. Dalton Trans. 1982, 633–638. [Google Scholar] [CrossRef]
- Suleimanov, G.Z.; Khandozhko, V.N.; Mekhdiev, R.Y.; Petrovskii, P.V.; Yanovskaya, I.M.; Lependina, O.L.; Kolobova, N.E.; Beletskaya, I.P. Study of the reactions of halogen and mercury halogen derivatives of metal carbonyls with samarium and ytterbium. Russ. Chem. Bull. 1988, 37, 583–588. [Google Scholar] [CrossRef]
- Kunz, E.; Schubert, U. Übergangsmetall-Silyl-Komplexe, 27. Silylsubstituierte Hetero-Mehrkern-Komplexe durch Umsetzung der anionischen Silyl-Komplexe [MeCpMn(CO)2SiR3]− und [Fe(CO)3(PPh3)SiR3]− mit Zink-, Cadmium- und Quecksilber-Dihalogeniden. Chem. Ber. 1989, 122, 231–234. [Google Scholar] [CrossRef]
- Braunstein, P.; Englert, U.; Herberich, G.E.; Neuschütz, M.; Schmidt, M.U. Heterometallic complexes with borole ligands. J. Chem. Soc. Dalton Trans. 1999, 2807–2812. [Google Scholar] [CrossRef]
- Kolobova, N.E.; Valueva, Z.P.; Kazimirchuk, E.I.; Andrianov, V.G.; Struchkov, Y.T. Synthesis and some properties of tetra[η5-cyclopentadienyldi-carbonylrheniummercury]. Russ. Chem. Bull. 1984, 33, 847–850. [Google Scholar] [CrossRef]
- Burrell, A.K.; Clark, D.L.; Gordon, P.L.; Sattelberger, A.P.; Bryan, J.C. Syntheses and Molecular and Electronic Structures of Tris(arylimido)technetium(VI) and -(V) Complexes Derived from Successive One-Electron Reductions of Tris(arylimido)iodotechnetium(VII). J. Am. Chem. Soc. 1994, 116, 3813–3821. [Google Scholar] [CrossRef]
- Reinhard, G.; Hirle, B.; Schubert, U. Übergangsmetall-silyl-komplexe: XLII. Einfluβ des phosphan-liganden auf bildung, struktur und stabilität der hetero-zweikernkomplexe (CO)3(R′3P)(R3Si)Fe—MLn (M = Cu, Ag, Au, Hg). J. Organomet. Chem. 1992, 427, 173–192. [Google Scholar] [CrossRef]
- Eisenmann, J.; Fenske, D.; Hezel, F. Neue phosphido- und phosphinidenverbrückte Quecksilbercluster: Die Kristallstrukturen der Mehrkernkomplexe [Hg3{Fe(CO)4}2X2] (X = Cl, Br) (1, 2), [Hg10{Fe(CO)4}4(PtBu)4Cl4] (3), [Hg14{Fe(CO)4}5(PtBu)8Cl2] (4), [SiMe3OPiPr3][Hg12{Fe(CO)4}7(PtBu)4(PtBuSiMe3)Br2] (5), [Hg5{Fe(CO)4}3(PtBu2)2Br2] (6), [Hg8{Fe(CO)4}4(P2Ph2)2(PnPr3)Cl4] (7), [Hg8{Fe(CO)4}4(P2Ph2)2(PPh2Et)Cl4] (8) und [Hg10{Fe(CO)4}6(P2Ph2)2(PnPr3)Br4] (9). Z. Anorg. Allg. Chem. 1998, 624, 1095–1104. [Google Scholar] [CrossRef]
- Hock, H.; Stuhlmann, H. Über die Einwirkung von Quecksilbersalzen auf Eisenpentacarbonyl. Chem. Ber. 1928, 61, 2097–2101. [Google Scholar] [CrossRef]
- Baird, H.W.; Dahl, L.F. The crystal and molecular structure of (BrHg)2Fe(CO)4. J. Organomet. Chem. 1967, 7, 503–514. [Google Scholar] [CrossRef]
- Casey, M.; Manning, A.R. The preparation, reactions, and infrared spectra of some derivatives of bis(tricarbonylnitrosyliron)mercury. J. Chem. Soc. A 1970, 2258–2261. [Google Scholar] [CrossRef]
- Kumar, R.; Manning, A.R. Regiospecificity in the reaction of [Fe2(η-C5H5)2(CO)4−n(CNMe)n] (n = 0–2) with mercury(II) halides. J. Organomet. Chem. 1981, 216, C61–C63. [Google Scholar] [CrossRef]
- Granifo, J.; Vargas, M.E. The insertion of the [M(CO)3(NN)] fragments (M = Mo, W.; NN = 2,2′-bipyridine; 1,10-phenanthroline; ethylenediamine) into the Hg-X (X = Cl, Br, I, N3, SCN) bonds of the [η5-C5H5Fe(CO)2(HgX)] complexes. Heterotrimetallic compounds with Fe-Hg-M-X bondings. Polyhedron 1989, 8, 1471–1475. [Google Scholar] [CrossRef]
- Bentley, G.A.; Laing, K.R.; Roper, W.R.; Waters, J.M. Preparation and crystal structure of dichloro(chloromercury)(nitrosyl)bis(triphenylphosphine)osmium(II). J. Chem. Soc. D 1970, 998. [Google Scholar] [CrossRef]
- Goodgame, D.M.L.; Slawin, A.M.Z.; Williams, D.J. Crystal structures of [Co{P(OPh)3}4(HgX)], X = Cl, Br; Non-linearity of Co-Hg-X arising from intramolecular phosphorus-mercury interactions. Polyhedron 1987, 6, 543–547. [Google Scholar] [CrossRef]
- Bonati, F.; Cenini, S.; Ugo, R. Interaction of tin(II) halides with compounds having mercury–metal bonds. J. Chem. Soc. A 1967, 932–935. [Google Scholar] [CrossRef]
- Brotherton, P.D.; Raston, C.L.; White, A.H.; Wild, S.B. Crystal structures of mercury(II) chloride and bromide addition complexes of carbonylchlorobis(triphenylphosphine)iridium(I). J. Chem. Soc. Dalton Trans. 1976, 1799–1802. [Google Scholar] [CrossRef]
- Dewhurst, R.D.; Hill, A.F.; Willis, A.C. Iridium tricarbido complexes via transmetallation with tricarbidomercurials. Dalton Trans. 2009, 3384–3387. [Google Scholar] [CrossRef]
- Hosokawa, A.; Kure, B.; Nakajima, T.; Nakamae, K.; Tanase, T. Intramolecular Metal–Metal Bond Rearrangement in a Pt2PdHg Heterometallic Cluster Forming a HgI–PdI Covalent Bond. Organometallics 2011, 30, 6063–6066. [Google Scholar] [CrossRef]
- Schuh, W.; Kopacka, H.; Wurst, K.; Peringer, P. Chemistry at the Sterically Shielded Mercury Centre of the [(η4-pp3)PtHg] Fragment. Eur. J. Inorg. Chem. 2001, 2001, 2399–2404. [Google Scholar] [CrossRef]
- Chan, W.-H.; Zhang, Z.-Z.; Mak, T.C.W.; Che, C.-M. Co-ordination chemistry of the organometallic tridentate ligand trans-[Ru(2-Ph2PC5H4N-P)2(CO)3] and crystal structures of metal complex derivatives. J. Chem. Soc. Dalton Trans. 1998, 803–810. [Google Scholar] [CrossRef]
- Xu, F.-B.; Sun, L.-J.; Xuan, Z.-A.; Zhang, W.-D.; Cheng, H.; Zhang, Z.-Z. Coordination chemistry of organometallic polydentate ligand Reactive chemistry of the tridentate ligand trans-Fe(Ph2PQu-P)2(CO)3 [Ph2PQu=2-diphenyl-phosphino-4-methylquinoline] and molecular structure of [Fe(CO)3(μ-Ph2PQu)2HgI]+[HgI3]−. Chin. J. Chem. 2000, 18, 722–728. [Google Scholar] [CrossRef]
- Kuang, S.-M.; Xue, F.; Thomas, C.W.; Mak, T.C.W.; Zhang, Z.-Z. Reaction of M(CO)Cl(L)2 with mercury(II) chloride (M = Ir, Rh; L = Ph2Ppy, P(fur)3) (Ph2Ppy = 2-(diphenylphospino)pyridine, P(fur)3 = tri-(2-furyl)phosphine). Inorg. Chim. Acta 1999, 284, 119–123. [Google Scholar] [CrossRef]
- Franciò, G.; Scopelliti, R.; Arena, C.G.; Bruno, G.; Drommi, D.; Faraone, F. IrPd, IrHg, IrCu, and IrTl Binuclear Complexes Bridged by the Short-Bite Ligand 2-(Diphenylphosphino)pyridine. Catalytic Effect in the Hydroformylation of Styrene Due to the Monodentate P-Bonded 2-(Diphenylphosphino)pyridine Ligands of trans-[Ir(CO)(Ph2PPy)2Cl]. Organometallics 1998, 17, 338–347. [Google Scholar] [CrossRef]
- Kuang, S.-M.; Xue, F.; Zhang, Z.-Y.; Mak, T.C.W.; Zhang, Z.-Z. Metal–metal bond cleavage in the trinuclear clusters M3(CO)12−n(Ph2Ppy)n (M = Ru, n = 3; Os, n = 1; Ph2Ppy = 2-(diphenylphosphino)pyridine) by Lewis acids. J. Organomet. Chem. 1998, 559, 31–36. [Google Scholar] [CrossRef]
- Baker, R.W.; Pauling, P. The crystal structure of bis(chloropyridylmercury)tetracarbonyliron, Fe(CO)4[HgCl(C5H5N)]2. J. Chem. Soc. D. 1970, 573–574. [Google Scholar] [CrossRef]
- Van Vliet, P.I.; Kokkes, M.; Van Koten, G.; Vrieze, K. Metal-metal bonded compounds V. Compounds with Ir(Rh)-Hg bonds containing a bridging and a chelating triazenido group, which interconvert intramolecularly. J. Organomet. Chem. 1980, 187, 413–426. [Google Scholar] [CrossRef]
- Miu, C.-Y.; Chi, H.-H.; Chen, S.-W.; Cherng, J.-J.; Hsu, M.-H.; Huang, Y.-X.; Shieh, M. Reactions of the μ3-sulfido triiron cluster [SFe3(CO)9]2− with functionalized organic halides and mercury salts: Selective reactivity, electrochemistry, and theoretical calculations. New. J. Chem. 2011, 35, 2442–2455. [Google Scholar] [CrossRef]
- Shieh, M.; Tsai, Y.-C.; Cherng, J.-J.; Shieh, M.-H.; Chen, H.-S.; Ueng, C.-H.; Peng, S.-M.; Lee, G.-H. Reactivity of [SeFe3(CO)9]2− with Electrophiles: Formation of [SeFe2Ru3(CO)14]2−, [SeFe3(CO)9(μ-HgI)]−, Fe2(CO)6(μ-SeCHPhSe), and Se2Fe2(CO)6(μ-CH2)2. Organometallics 1997, 16, 456–460. [Google Scholar] [CrossRef]
- Fernández -G, J.M.; Rosales, M.J.; Toscano, R.A. The reactivity of [Os3(CO)10(C2Ph2)] towards phenyl mercury halides. Polyhedron 1988, 7, 2159–2163. [Google Scholar] [CrossRef]
- Fahmy, R.; King, K.; Rosenberg, E.; Tiripicchio, A.; Tiripicchio Camellini, M. Synthesis, structure, and reactivity of mercurial derivatives of an organoruthenium cluster. J. Am. Chem. Soc. 1980, 102, 3626–3628. [Google Scholar] [CrossRef]
- Adams, R.D.; Luo, Z.; Wong, Y.O. Bridging phenyl ligands. Unsaturated mercury-triosmium carbonyl cluster complexes containing bridging phenyl ligands. J. Organomet. Chem. 2015, 784, 46–51. [Google Scholar] [CrossRef]
- Field, J.S.; Haines, J.R.; Meintjies, E.; Sigwarth, B.; Van Rooyen, P.H. Reduction products of dinuclear [Rh2Cl2(CO)2 {μ-(PhO)2PN(Et)P(OPh)2}2]. Crystal structure of [Rh2HgCl(μ-H)(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2]. J. Organomet. Chem. 1984, 268, c43–c47. [Google Scholar] [CrossRef]
- Adams, R.D.; Wong, Y.O. New rhenium carbonyl cluster complexes containing bridging hydrocarbyl and bridging mercury groups. J. Organomet. Chem. 2015, 784, 109–113. [Google Scholar] [CrossRef]
- Tiripicchio, A.; Lahoz, F.J.; Oro, L.A.; Pinillos, M.T. Preparation and X-ray structure of a rhodium(III)–rhodium(I) pyrazolate complex with a mercury atom asymmetrically bridging the metal atoms. J. Chem. Soc. Chem. Commun. 1984, 936–937. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yoshiya, K. Coordination Isomers of Trinuclear Pt2Hg Complex That Differ in Type of Metal-Metal Bond. Inorg. Chem. 2019, 58, 9548–9552. [Google Scholar] [CrossRef]
- Della Pergola, R.; Demartin, F.; Garlaschelli, L.; Manassero, M.; Martinengo, S.; Masciocchi, N.; Sansoni, M. Chemistry of iridium carbonyl cluster complexes. Synthesis and characterization of mixed-metal carbonyl clusters via capping reactions with HgCl2 and Au(PPh3)Cl. Crystal structures of [N(PPh3)2][Ir6(μ3-CO)3(CO)12(μ3-HgCl)]·0.5C6H12 and [NMe3(CH2Ph)][Ir6(μ3-CO)3(CO)12[μ3-Au(PPh3)]·C4H8O. Organometallics 1991, 10, 2239–2247. [Google Scholar] [CrossRef]
- Ceriotti, A.; Della Pergola, R.; Garlaschelli, L.; Manassero, M.; Masciocchi, N. Au-Ir and Hg-Ir Mixed-Metal Carbonyl Clusters. Synthesis, Characterization, and Solid State Structure of [Ir6(CO)15(AuPPh3)2] and [Ir6(CO)14(HgCl)2]2−. Organometallics 1995, 14, 186–193. [Google Scholar] [CrossRef]
- Hao, L.; Manojlovic-Muir, L.; Muir, K.W.; Puddephatt, R.J.; Spivak, G.J.; Vittal, J.J.; Yufit, D. The bicluster oxidative addition as a route to bicapped hexaplatinum clusters. Inorg. Chim. Acta 1997, 265, 65–74. [Google Scholar] [CrossRef]
- Albinati, A.; Dahmen, K.H.; Demartin, F.; Forward, J.M.; Longley, C.J.; Mingos, D.M.P.; Venanzi, L.M. A new class of planar (platinum-mercury) mixed metal clusters containing a [Pt3(CO)3(PR3)3] moiety capped by two HgX units. Inorg. Chem. 1992, 31, 2223–2229. [Google Scholar] [CrossRef]
- Gade, L.H.; Johnson, B.F.G.; Lewis, J.; McPartlin, M.; Powell, H.R. Systematic build-up of high-nuclearity osmium–mercury clusters. J. Chem. Soc. Dalton Trans. 1992, 921–931. [Google Scholar] [CrossRef]
- Bashilov, V.V.; Sokolov, V.I.; Reutov, O.A. Reactions of platinum(0) and palladium(0) complexes with mercury(II) compounds: New methods for the synthesis of organic platinum and palladium derivatives. Russ. Chem. Bull. 1982, 31, 1825–1842. [Google Scholar] [CrossRef]
- Mednikov, E.G.; Bashilov, V.V.; Sokolov, V.I.; Slovokhotov, Y.L.; Struchkov, Y.T. Synthesis and structure of the new heteronuclear palladium-mercury cluster. Polyhedron 1983, 2, 141–144. [Google Scholar] [CrossRef]
- Eremenko, N.K.; Kurasov, S.S.; Virovets, A.V.; Struchkov, Y.T.; Bashilov, V.V.; Sokolov, V.I. Synthesis of platinum-mercury clusters and the molecular structure of Pt4(HgBr)2(μ-CO)4(PPh3)4. Russ. Chem. Bull. 1997, 46, 164–167. [Google Scholar] [CrossRef]
- Dahmen, K.-H.; Imhof, D.; Venanzi, L.M.; Gerfin, T.; Gramlich, V. Synthesis and X-ray crystal structure of the heterometallic platinum-mercury cluster [{Pt4(μ-CO)4(PMe2Ph)4}{μ3-HgI}2]. J. Organomet. Chem. 1995, 486, 37–43. [Google Scholar] [CrossRef]
- Adams, R.D.; Barnard, T.S.; Cortopassi, J.E.; Zhang, L. Cluster Synthesis. 46. New Mixed-Metal Complexes of the Layer-Segregated Cluster Pt3Ru6(CO)21(μ3-H)(μ-H)3. Organometallics 1996, 15, 2664–2667. [Google Scholar] [CrossRef]
- Nakajima, T.; Kurai, S.; Noda, S.; Zouda, M.; Kure, B.; Tanase, T. Cyclic Trinuclear Rh2M Complexes (M = Rh, Pt, Pd, Ni) Supported by meso-1,3-Bis[(diphenylphosphinomethyl)phenylphosphino]propane. Organometallics 2012, 31, 4283–4293. [Google Scholar] [CrossRef]
- Casas, J.M.; Falvello, L.R.; Forniés, J.; Gomez, J.; Rueda, A. Synthesis and structural characterization of the luminescent tetranuclear complex [NBu4]2[(C6F5)6(μ-OH)3Pt3HgCl] with Pt-Hg bonds unsupported by covalent bridging ligands. J. Organomet. Chem. 2000, 593–594, 421–426. [Google Scholar] [CrossRef]
- Lepetit, C.; Fau, P.; Fajerwerg, K.; Kahn, M.L.; Silvi, B. Topological analysis of the metal-metal bond: A tutorial review. Coord. Chem. Rev. 2017, 345, 150–181. [Google Scholar] [CrossRef]
- Bridgeman, A.J.; Cavigliasso, G.; Ireland, L.R.; Rothery, J. The Mayer bond order as a tool in inorganic chemistry. J. Chem. Soc. Dalton Trans. 2001, 2095–2108. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. J. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.W.; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem. Lett. 2020, 11, 8208–8215. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Kruse, H.; Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 2012, 136, 154101. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S.A. Generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyser. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Hezel, F.; Fenske, D.; Eisenmann, J.; Wetzel, T. Synthese und Kristallstructuren neuer phosphorverbrückter bimetallischer Cluster der Elemente Quecksilber und Eisen. Z. Anorg. Allg. Chem. 2000, 626, 290–301. [Google Scholar] [CrossRef]
Complex | [M(HgY)Ln]n+ → [MLn](n−1)+ + [HgY]+ | [M(HgY)Ln]n+ → [MLn](n+1)+ + [HgY]− |
---|---|---|
[Cr(HgCl)(η5-C5H5)(CO)3] | 76.8 | 52.5 |
[Cr(HgBr)(η5-C5H5)(CO)3] | 73.2 | 51.1 |
[Cr(HgI)(η5-C5H5)(CO)3] | 67.2 | 51.1 |
[Mo(HgCl)(η5-C5H5)(CO)3] | 78.6 | 53.1 |
[Mo(HgBr)(η5-C5H5)(CO)3] | 74.8 | 51.6 |
[Mo(HgI)(η5-C5H5)(CO)3] | 68.6 | 51.3 |
[W(HgCl)(η5-C5H5)(CO)3] | 80.1 | 55.4 |
[W(HgBr)(η5-C5H5)(CO)3] | 76.2 | 53.7 |
[W(HgI)(η5-C5H5)(CO)3] | 69.9 | 53.4 |
[Co(HgCl)(η5-C5H5)(CO)2]+ | 51.1 | 87.1 |
[Co(HgBr)(η5-C5H5)(CO)2]+ | 47.8 | 85.9 |
[Co(HgI)(η5-C5H5)(CO)2]+ | 42.7 | 86.7 |
[Rh(HgCl)(η5-C5H5)(CO)2]+ | 51.9 | 81.2 |
[Rh(HgBr)(η5-C5H5)(CO)2]+ | 48.5 | 80.1 |
[Rh(HgI)(η5-C5H5)(CO)2]+ | 43.3 | 80.8 |
[Ir(HgCl)(η5-C5H5)(CO)2]+ | 55.9 | 87.6 |
[Ir(HgBr)(η5-C5H5)(CO)2]+ | 52.3 | 86.2 |
[Ir(HgI)(η5-C5H5)(CO)2]+ | 46.8 | 86.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busato, M.; Castro, J.; Piccolo, D.; Bortoluzzi, M. Mercury Monohalides as Ligands in Transition Metal Complexes. Molecules 2025, 30, 145. https://doi.org/10.3390/molecules30010145
Busato M, Castro J, Piccolo D, Bortoluzzi M. Mercury Monohalides as Ligands in Transition Metal Complexes. Molecules. 2025; 30(1):145. https://doi.org/10.3390/molecules30010145
Chicago/Turabian StyleBusato, Matteo, Jesús Castro, Domenico Piccolo, and Marco Bortoluzzi. 2025. "Mercury Monohalides as Ligands in Transition Metal Complexes" Molecules 30, no. 1: 145. https://doi.org/10.3390/molecules30010145
APA StyleBusato, M., Castro, J., Piccolo, D., & Bortoluzzi, M. (2025). Mercury Monohalides as Ligands in Transition Metal Complexes. Molecules, 30(1), 145. https://doi.org/10.3390/molecules30010145