Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products
Abstract
:1. Introduction
2. Sustainable Extraction of Polyphenols
- Use of renewable and sustainable bio-resources.
- Use of green solvents or water.
- Lower energy input.
- Coproducts production from waste.
- Minimal number of operation units.
- Obtaining non-denatured and biodegradable extract.
2.1. Sustainable Extraction Techniques
2.1.1. Microwave-Assisted Extraction
2.1.2. Ultrasound-Assisted Extraction
2.1.3. Pressurized Liquid Extraction
2.1.4. Supercritical Fluid Extraction
2.1.5. High-Voltage Electrical Discharges (HVED)
2.1.6. Enzyme-Assisted Extraction (EAE)
2.1.7. Combined Novel Methods
2.1.8. Implications for the Selection of the Best Extraction Method
2.2. Green Solvents
2.2.1. Bio-Based Solvents
2.2.2. Natural Deep Eutectic Solvents (NADES)
2.2.3. Non-Ionic Surfactant Mixtures
2.2.4. Ionic Liquids
2.3. A Step Closer to Sustainability: Combination of Novel Techniques and Green Solvents
Matrix | Solvent/Enzyme | Extraction Conditions | TPC (mg GAE/g Dry Mass) | Reference |
---|---|---|---|---|
MAE-SRF | ||||
Fig (Ficus carica L.) leaves | PEG 8000 | 39.53 °C, 10.25 min, 19.95 mL/g | 39.6 | [145] |
Discarded red beetroot | PEG 4000 | 160 °C, 5.3 min, 8.4 g/L | 1789 * | [158] |
MAE-ILs | ||||
Nelumbo nucifera Gaertn. | [C4MIM][BF4] 1.5 M | 10 mL/g, 90 s | - | [159] |
[C6MIM][BF4] 1 M | 15 mL/g, 90 s | - | ||
MAE-NADES | ||||
Cherry pomace | ChCl:MalA | 180 W, 30 s | - | [151] |
Hazelnut (Corylus avellana L.) pomace Grape waste Eugenia uniflora L. | Choline chloride:1,2-propylene glycol | 4% water, 18 mL/0.1 g, 92 °C, 38 min | - | [160] |
Betaine:1,2-butanediol (1:4) | 3 min, 100 °C | 43.7 | [161] | |
ChCl:lactic acid 1:3 | 20% water, 39 °C, 5 min, 800 W | - | [162] | |
MAE-ENZ | ||||
Grape (Vitis vinifera) seed | Ethanol, ammonium sulfate, pectinase | 2.5% ethanol/20% ammonium sulfate, pectinase 540 U/g, enzymatic pH 4.5, 180 W | 125 | [163] |
Olive pomace | Water | 15 mL/g, 60 °C, 17 min, 60 °C, 5 min ramp time | 272 | [164] |
UAE-SRF | ||||
Fig (Ficus carica L.) leaves | PEG 8000 | 40 °C, 10 min, 250 W | 32.0 | [145] |
Cili leaves (Rosa roxburghii Tratt) | Tris (2-hydroxyethyl) ammonium palmitate (THAP) | 20 mg/mL, 120 min, 54 mmol/L CRS | - | [165] |
Pomegranate peel | Dimethyl sulfoxide (DMSO) | 0.6% DMSO, 50 °C, 150 rpm, 90 min | 43.6 ** | [134] |
UAE-ENZ | ||||
Dry biomass of Arthrospira platensis | Lysozyme | 0.6% enzyme, 16 h incubation | 92.7 | [166] |
Gymnema sylvestre | Enzyme cocktail | 150 min, 64.80 °C, pH 5.64, 7.49 mL enzyme | 109 | [167] |
UAE–NADES | ||||
Palm (Phoenix dactylifera L.) seeds | Choline chloride/lactic acid | 70% NADES, 0.03 g/mL, 5 min, amplitude of 90% | 146 | [168] |
Mangosteen (Garcinia mangostana L.) | Lactic acid-1,2/Propanediol | 0.15 g/mL, 30.3% water, 57.5 °C, 9.1 min | [169] | |
Lavandula angustifolia flowers | Choline chloride/glycerol | Amplitude of 60%, 60 °C, 17.5 min, 0.03 g/mL, 33.5% water | 50.5 | [170] |
Apple pomace | Choline chloride/glycerol (1:2) | 40 min, water 30%, solid/liquid ratio 1:30, 40 °C, acoustic intensity 83.2 W/cm2 and duty cycle 75% | 5.6 | [168] |
Choline chloride/lactic acid (1:3) | 5.1 | |||
Fruit of Melia azedarach | Glycerol-choline chloride | 50% NADES, 46.4 °C, ultrasound amplitude (100%, 130 W power) | 9.2 | [171] |
Inflorescences of Helichrysum arenarium L. | Choline chloride-lactic acid (1:4) | 85 min, 38% water | - | [124] |
Mango peels | Lactic acid/glucose (5:1) | 20% water, 50% duty cycle, 2 W/cm3 acoustic density, 30:1 (v/w) liquid/solid ratio, 0.3 mm particle size and 30 min | 69.9 | [172] |
Cherry pomace | ChCl:MalA | 180 W, 30 s | - | [151] |
Apple pomace | Choline chloride/glycerol (1:2) | 30% water, 40 min, 30 mL/g, 75% duty cycle, 40 °C, acoustic intensity 83.2 W/cm2 | 5.6 | [168] |
UAE-IL | ||||
Chestnut shell | 1-Butyl-3-methylimidazolium acetate [BMIM]OAc | 36.26 mL/g, 80 °C, 350 W, 50 min | 71.6 | [173] |
Guava (Psidium guajava L.) | 1-Butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] | 0.02 g/mL, 25 min, 45 °C, 2.5 mol/of [BMIM][BF4] | 1.2 | [157] |
PLE-NADES | ||||
Brazilian berry processing by-product | ChCl:Propylene Glycol (ChCl:Pro) | ChCl:Pro 1:2, 47% NADES, 3 mL/min, 90 °C, 5100 bar, 12 min | 85.7 | [174] |
SBC-IL | ||||
Brown seaweeds Saccharina japonica | 1-Butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] | 175 °C | - | [175] |
UMAE-IL | ||||
Burdock leaves | 1-butyl-3-methylimidazo-lium bromide [BMIM]Br | 30 s, 400 W microwave power, 50 W ultrasound power | - | [156] |
UMAE-NADES | ||||
Abelmoschus sagittifolius (Kurz) Merr Roots | Citric acid/glucose (1:2) | 40 mL/g L, 5 min sonication, 1 min | 27.1 | [157] |
EAE-SFE | ||||
Pomegranate peel | SC-CO2-ethanol and enzyme cocktail (cellulase, pectinase, and protease; 50:25:25) | 3.8% enzyme cocktail, 49 °C, 85 min, pH 6.7 | 301 | [93] |
HVED-NADES | ||||
Grapefruit peel | Lactic acid/glucose | 10 mL/g, 40 kV, 0.5 Hz, distance electrodes of 9 mm | - | [153] |
UAE-PLE | ||||
Aronia melanocarpa pomace | 1.5% Citric acid | 70 °C, 1.5% citric acid 180 bar, 200 W, 45 min | - | [57] |
2.4. Final Considerations on the Selection of a Sustainable Extraction Method
2.5. Scalability
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant Phenolics as Functional Food Ingredients. In Functional Food Ingredients from Plants; Ferreira, I.C.F.R., Barros, L., Eds.; Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 183–257. [Google Scholar]
- Yusoff, I.M.; Taher, Z.M.; Rahmat, Z.; Chua, L.S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef] [PubMed]
- Verma, N. Himshweta. Extraction of Phenolic Compounds by Conventional and Green Innovative Techniques. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier Inc.: Amsterdam, The Netherlands, 2023; ISBN 9780323951562. [Google Scholar]
- Jacotet-Navarro, M.; Rombaut, N.; Deslis, S.; Fabiano-Tixier, A.-S.; Pierre, F.-X.; Bily, A.; Chemat, F. Towards a “Dry” Bio-Refinery without Solvents or Added Water Using Microwaves and Ultrasound for Total Valorization of Fruit and Vegetable by-Products. Green Chem. 2016, 18, 3106–3115. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Cassol, L.; Rodrigues, E.; Zapata Noreña, C.P. Extracting Phenolic Compounds from Hibiscus sabdariffa L. Calyx Using Microwave Assisted Extraction. Ind. Crops Prod. 2019, 133, 168–177. [Google Scholar] [CrossRef]
- Alvi, T.; Asif, Z.; Iqbal Khan, M.K. Clean Label Extraction of Bioactive Compounds from Food Waste through Microwave-Assisted Extraction Technique—A Review. Food Biosci. 2022, 46, 101580. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Singh, A.; Nair, G.R.; Liplap, P.; Gariepy, Y.; Orsat, V.; Raghavan, V. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels. Antioxidants 2014, 3, 99–113. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Feumba, R.; Panyoo, E.; Rani, A.; Metsatedem, Q.; Mbofung, C.M. Effect of Microwave Blanching on Antioxidant Activity, Phenolic Compounds and Browning Behaviour of Some Fruit Peelings. Food Chem. 2020, 302, 125308. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Maximising Recovery of Phenolic Compounds and Antioxidant Properties from Banana Peel Using Microwave Assisted Extraction and Water. J. Food Sci. Technol. 2019, 56, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef] [PubMed]
- Baltacıoĝlu, H.; Baltacıoĝlu, C.; Okur, I.; Tanrıvermis, A.; Yaliç, M. Optimization of Microwave-Assisted Extraction of Phenolic Compounds from Tomato: Characterization by FTIR and HPLC and Comparison with Conventional Solvent Extraction. Vib. Spectrosc. J. 2021, 113, 103204. [Google Scholar] [CrossRef]
- Ŝeremet, D.; Jokić, S.; Aladić, K.; Vojvodić, A.; Božac, N.; Mandura, A.; Komes, D. Optimization of Heat-, Microwave-Assisted and Subcritical Water Extraction of Phenolic Compounds from Ground Ivy (Glechoma hederacea L.) Using Response Surface Methodology. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100346. [Google Scholar] [CrossRef]
- Ruth, O.; Hamid, N.; Alsaggaf, H. Microwave-Assisted Extraction of Phenolic Compounds from Carica Papaya Leaves: An Optimization Study and LC-QTOF-MS Analysis. Future Foods 2021, 3, 100035. [Google Scholar] [CrossRef]
- Akbari, S.; Hamid, N.; Mohd, R. Optimization of Saponins, Phenolics, and Antioxidants Extracted from Fenugreek Seeds Using Microwave-Assisted Extraction and Response Surface Methodology as an Optimizing Tool. Comptes Rendus Chim. 2019, 22, 714–727. [Google Scholar] [CrossRef]
- Hejazi, S.; Siahpoush, V.; Ostadrahimi, A.; Kafil Gazi Jahani, B.; Ghasempour, Z. High-Voltage Electric Discharge as Pretreatment for Efficient Extraction of Bioactive Compounds from Red Onion Peel. Innov. Food Sci. Emerg. Technol. 2022, 81, 103153. [Google Scholar] [CrossRef]
- Ayouaz, S.; Oliveira-Alves, S.C.; Lefsih, K.; Serra, A.T.; Bento Da Silva, A.; Samah, M.; Karczewski, J.; Madani, K.; Bronze, M.R. Phenolic Compounds from Nerium oleander Leaves: Microwave Assisted Extraction, Characterization, Antiproliferative and Cytotoxic Activities. Food Funct. 2020, 11, 6319–6331. [Google Scholar] [CrossRef]
- Vidana, G.C.; Choo, W.S. Hot Water Extraction, Ultrasound, Microwave and Pectinase-Assisted Extraction of Anthocyanins from Blue Pea Flower. Food Chem. Adv. 2023, 2, 100209. [Google Scholar] [CrossRef]
- Vidana Gamage, G.C.; Choo, W.S. Effect of Hot Water, Ultrasound, Microwave, and Pectinase-Assisted Extraction of Anthocyanins from Black Goji Berry for Food Application. Heliyon 2023, 9, e14426. [Google Scholar] [CrossRef]
- Cheng, M.; He, J.; Li, C.; Wu, G.; Zhu, K. Comparison of Microwave, Ultrasound and Ultrasound-Microwave Assisted Solvent Extraction Methods on Phenolic Profile and Antioxidant Activity of Extracts from Jackfruit (Artocarpus heterophyllus Lam.) Pulp. LWT 2023, 173, 114395. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Gullón, B.; Lobato-Rodríguez, Á.; Garrote, G.; del Río, P.G. Microwave-Assisted Extraction of Hemicellulosic Oligosaccharides and Phenolics from Robinia pseudoacacia Wood. Carbohydr. Polym. 2023, 301, 120364. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Bhatt, I.D.; Cravotto, G. Effect of Ultrasound on Extraction and Stability of Polyphenols from Berberis jaeschkeana C.K. Schneid Fruits: A Comparative Study. Sustain. Chem. Pharm. 2022, 27, 100649. [Google Scholar] [CrossRef]
- Kaderides, K.; Papaoikonomou, L.; Sera, M.; Goula, A.M. Microwave-Assisted Extraction of Phenolics from Pomegranate Peels: Optimization, Kinetics, and Comparison with Ultrasounds Extraction. Chem. Eng. Process. Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Alonso, E. Valorization of Sunflower By-Product Using Microwave-Assisted Extraction to Obtain a Rich Protein Flour: Recovery of Chlorogenic Acid, Phenolic Content and Antioxidant Capacity. Food Bioprod. Process. 2020, 125, 57–67. [Google Scholar] [CrossRef]
- Tomasi, I.T.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Optimization of Microwave-Assisted Extraction of Phenolic Compounds from Chestnut Processing Waste Using Response Surface Methodology. J. Clean. Prod. 2023, 395, 136452. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Extraction of Phenolic Compounds from Lime Peel Waste Using Ultrasonic-Assisted and Microwave-Assisted Extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. The Principles of Ultrasound and Its Application in Freezing Related Processes of Food Materials: A Review. Ultrason. Sonochemistry 2015, 27, 576–585. [Google Scholar] [CrossRef]
- Suslick, K.S.; Flannigan, D.J. Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation. Annu. Rev. Phys. Chem. 2008, 59, 659–683. [Google Scholar] [CrossRef]
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of Natural Products Using Supercritical Fluids and Pressurized Liquids Assisted by Ultrasound: Current Status and Trends. Ultrason. Sonochemistry 2021, 74, 105584. [Google Scholar] [CrossRef]
- Nie, J.; Chen, D.; Ye, J.; Lu, Y.; Dai, Z. Optimization and Kinetic Modeling of Ultrasonic-Assisted Extraction of Fucoxanthin from Edible Brown Algae Sargassum fusiforme Using Green Solvents. Ultrason. Sonochemistry 2021, 77, 105671. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.G.; Martins, V.G. Optimization of the Green Extraction of Polyphenols from the Edible Flower Clitoria ternatea by High-Power Ultrasound: A Comparative Study with Conventional Extraction Techniques. J. Appl. Res. Med. Aromat. Plants 2023, 34, 100458. [Google Scholar] [CrossRef]
- Dzah, C.S. Optimized Ultrasound-Assisted Recovery, HPLC/LC-MS Identification and Biological Activities of Tetrapleura tetraptera L. Dry Fruit Polyphenols. Food Chem. Adv. 2022, 1, 100093. [Google Scholar] [CrossRef]
- Weremfo, A.; Adulley, F.; Dabie, K.; Abassah-Oppong, S.; Peprah-Yamoah, E. Optimization of Ultrasound-Assisted Extraction of Phenolic Antioxidants from Turkey Berry (Solanum torvum Sw) Fruits Using Response Surface Methodology. J. Appl. Res. Med. Aromat. Plants 2022, 30, 100387. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Dang, S.; Han, S.; Yun, C.; Wang, W.; Wang, H. Optimized Ultrasound-Assisted Extraction of Total Polyphenols from Empetrum nigrum and Its Bioactivities. J. Chromatogr. B 2021, 1173, 122699. [Google Scholar] [CrossRef]
- Beaudor, M.; Vauchel, P.; Pradal, D.; Aljawish, A.; Phalip, V. Comparing the Efficiency of Extracting Antioxidant Polyphenols from Spent Coffee Grounds Using an Innovative Ultrasound-Assisted Extraction Equipment Versus Conventional Method. Chem. Eng. Process. Process Intensif. 2023, 188, 109358. [Google Scholar] [CrossRef]
- Gao, M.Z.; Cui, Q.; Wang, L.T.; Meng, Y.; Yu, L.; Li, Y.Y.; Fu, Y.J. A Green and Integrated Strategy for Enhanced Phenolic Compounds Extraction from Mulberry (Morus alba L.) Leaves by Deep Eutectic Solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Celotti, E.; Stante, S.; Ferraretto, P.; Nicolini, G.; Natolino, A. High Power Ultrasound Treatments of Red Young Wines: Effect on Anthocyanins and Phenolic Stability Indices. Foods 2020, 9, 1344. [Google Scholar] [CrossRef]
- Qiao, L.; Ye, X.; Sun, Y.; Ying, J.; Shen, Y.; Chen, J. Sonochemical Effects on Free Phenolic Acids under Ultrasound Treatment in a Model System. Ultrason. Sonochemistry 2013, 20, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, J.; Xu, D.; Wang, S.; Yuan, Y.; Cao, Y. Investigation of (+)-Catechin Stability Under Ultrasonic Treatment and Its Degradation Kinetic Modeling. J. Food Process Eng. 2018, 41, e12904. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Bourvellec, C.L.; Renard, C.M.G.C.; Chemat, F. Lab and Pilot-Scale Ultrasound-Assisted Water Extraction of Polyphenols from Apple Pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, G.; Ye, X.; Kakuda, Y.; Meng, R. Stability of All-Trans-β-Carotene Under Ultrasound Treatment in a Model System: Effects of Different Factors, Kinetics and Newly Formed Compounds. Ultrason. Sonochemistry 2010, 17, 654–661. [Google Scholar] [CrossRef]
- Gisela, L.G.; Marcela, B.M.; Linares, R.A. Kinetic Modelling of Total Phenolic Compounds from Ilex paraguariensis (St. Hil.) Leaves: Conventional and Ultrasound Assisted Extraction. Food Bioprod. Process. 2023, 139, 75–88. [Google Scholar] [CrossRef]
- Cheila, C.B.; dos Anjos, G.L.; Nóbrega, R.S.A.; da Magaton, A.S.; de Miranda, F.M.; de Dias, F.S. Greener Ultrasound-Assisted Extraction of Bioactive Phenolic Compounds in Croton heliotropiifolius Kunth Leaves. Microchem. J. 2020, 159, 105525. [Google Scholar] [CrossRef]
- Zimare, S.B.; Mankar, G.D.; Barmukh, R.B. Optimization of Ultrasound-Assisted Extraction of Total Phenolics and Flavonoids from the Leaves of Lobelia nicotianifolia and Their Radical Scavenging Potential. Curr. Res. Green Sustain. Chem. 2021, 4, 100109. [Google Scholar] [CrossRef]
- Brahmi, F.; Blando, F.; Sellami, R.; Mehdi, S.; De Bellis, L.; Negro, C.; Haddadi-Guemghar, H.; Madani, K.; Makhlouf-Boulekbache, L. Optimization of the Conditions for Ultrasound-Assisted Extraction of Phenolic Compounds from Opuntia ficus-indica [L.] Mill. Flowers and Comparison with Conventional Procedures. Ind. Crops Prod. 2022, 184, 114977. [Google Scholar] [CrossRef]
- Mahindrakar, K.V.; Rathod, V.K. Ultrasound-Assisted Intensified Aqueous Extraction of Phenolics from Waste Syzygium cumini Leaves: Kinetic Studies and Evaluation of Antioxidant, Antidiabetic and Anticancer Potential. Food Biosci. 2022, 46, 101547. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, Y.; Wang, L.; Tan, Y.; Shi, Y.; Sedjoah, R.C.A.A.; Shao, Y.; Li, L.; Wang, M.; Wan, J.; et al. Ultrasound-Assisted Extraction of Bound Phenolic Compounds from the Residue of Apocynum venetum Tea and Their Antioxidant Activities. Food Biosci. 2022, 47, 101646. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Chaves, J.O.; de Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-De-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef] [PubMed]
- Barros, F.; Dykes, L.; Awika, J.M.; Rooney, L.W. Accelerated Solvent Extraction of Phenolic Compounds from Sorghum Brans. J. Cereal Sci. 2013, 58, 305–312. [Google Scholar] [CrossRef]
- Sosa-Ferrera, Z.; Mahugo-santana, C.; Santana-rodríguez, J.J. Analytical Methodologies for the Determination of Environmental Samples. Biomed Res. Int. 2013, 2013, 674838. [Google Scholar] [CrossRef] [PubMed]
- Andrade, T.A.; Hamerski, F.; López Fetzer, D.E.; Roda-Serrat, M.C.; Corazza, M.L.; Norddahl, B.; Errico, M. Ultrasound-Assisted Pressurized Liquid Extraction of Anthocyanins from Aronia melanocarpa Pomace. Sep. Purif. Technol. 2021, 276, 119290. [Google Scholar] [CrossRef]
- Gómez-López, I.; Mendiola, J.A.; Portillo, M.P.; Cano, M.P. Pressurized Green Liquid Extraction of Betalains and Phenolic Compounds from Opuntia stricta var. Dillenii Whole Fruit: Process Optimization and Biological Activities of Green Extracts. Innov. Food Sci. Emerg. Technol. 2022, 80, 103066. [Google Scholar] [CrossRef]
- Cea, I.; Lozano-Sánchez, J.; Borrás-Linares, I.; Paz Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an Extract Rich in Phenolic Compounds. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef]
- Frohlich, P.C.; Santos, K.A.; Ascari, J.; dos Santos Refati, J.R.; Palú, F.; Cardozo-Filho, L.; da Silva, E.A. Antioxidant Compounds and Eugenol Quantification of Clove (Syzygium aromaticum) Leaves Extracts Obtained by Pressurized Liquid Extraction and Supercritical Fluid Extraction. J. Supercrit. Fluids 2023, 196, 105865. [Google Scholar] [CrossRef]
- Raspe, D.T.; da Silva, C.; da Costa, S.C. Pressurized Liquid Extraction of Compounds from Stevia Leaf: Evaluation of Process Variables and Extract Characterization. J. Supercrit. Fluids 2023, 193, 105813. [Google Scholar] [CrossRef]
- Santos, P.H.; Kammers, J.C.; Silva, A.P.; Oliveira, J.V.; Hense, H. Antioxidant and Antibacterial Compounds from Feijoa Leaf Extracts Obtained by Pressurized Liquid Extraction and Supercritical Fluid Extraction. Food Chem. 2021, 344, 128620. [Google Scholar] [CrossRef]
- De Sabino, L.B.S.; Filho, E.G.A.; Fernandes, F.A.N.; de Brito, E.S.; da Júnior, I.J.S. Optimization of Pressurized Liquid Extraction and Ultrasound Methods for Recovery of Anthocyanins Present in Jambolan Fruit (Syzygium cumini L.). Food Bioprod. Process. 2021, 127, 77–89. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Martinez, E.R.; Sekhon, J.K.; Vo, H. The Effect of Different Pressurized Fluids on the Extraction of Anthocyanins and Total Phenolics from Cranberry Pomace. J. Supercrit. Fluids 2021, 175, 105279. [Google Scholar] [CrossRef]
- Perra, M.; Leyva-Jiménez, F.J.; Manca, M.L.; Manconi, M.; Rajha, H.N.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Application of Pressurized Liquid Extraction to Grape By-Products as a Circular Economy Model to Provide Phenolic Compounds Enriched Ingredient. J. Clean. Prod. 2023, 402, 136712. [Google Scholar] [CrossRef]
- Viganó, J.; de Aguiar, A.C.; Veggi, P.C.; Sanches, V.L.; Rostagno, M.A.; Martínez, J. Techno-Economic Evaluation for Recovering Phenolic Compounds from Acai (Euterpe oleracea) By-Product by Pressurized Liquid Extraction. J. Supercrit. Fluids 2022, 179, 105413. [Google Scholar] [CrossRef]
- Claux, O.; Santerre, C.; Abert-Vian, M.; Touboul, D.; Vallet, N.; Chemat, F. Alternative and Sustainable Solvents for Green Analytical Chemistry. Curr. Opin. Green Sustain. Chem. 2021, 31, 100510. [Google Scholar] [CrossRef]
- Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef]
- Fahmy, T.M.; Johnson, D.M.; McNally, M.P.; Fahmy, T.M.; Paulaitis, M.E. Modifier Effects in the Supercritical Fluid Extraction of Solutes from Clay, Soil, and Plant Materials. Anal. Chem. 1993, 65, 1462–1469. [Google Scholar] [CrossRef]
- Marillán, C.; Uquiche, E. Extraction of Bioactive Compounds from Leptocarpha rivularis Stems by Three-Stage Sequential Supercritical Extraction in Fixed Bed Extractor Using CO2 and Ethanol-Modified CO2. J. Supercrit. Fluids 2023, 197, 105903. [Google Scholar] [CrossRef]
- Radzali, S.A.; Markom, M.; Saleh, N.M. Co-Solvent Selection for Supercritical Fluid Extraction (SFE) of Phenolic Compounds from Labisia pumila. Molecules 2020, 25, 5859. [Google Scholar] [CrossRef]
- Quispe-Fuentes, I.; Uribe, E.; López, J.; Contreras, D.; Poblete, J. A Study of Dried Mandarin (Clementina orogrande) Peel Applying Supercritical Carbon Dioxide Using Co-Solvent: Influence on Oil Extraction, Phenolic Compounds, and Antioxidant Activity. J. Food Process. Preserv. 2022, 46, e16116. [Google Scholar] [CrossRef]
- Kasapoğlu, K.N.; Kruger, J.; Barla-Demirkoz, A.; Gültekin-Özgüven, M.; Frank, J.; Özçelik, B. Optimization of Supercritical Carbon Dioxide Extraction of Polyphenols from Black Rosehip and Their Bioaccessibility Using an In Vitro Digestion/Caco-2 Cell Model. Foods 2023, 12, 781. [Google Scholar] [CrossRef]
- Kuś, P.; Jerković, I.; Jakovljević, M.; Jokić, S. Extraction of Bioactive Phenolics from Black Poplar (Populus nigra L.) Buds by Supercritical CO2 and Its Optimization by Response Surface Methodology. J. Pharm. Biomed. Anal. 2018, 152, 128–136. [Google Scholar] [CrossRef]
- Sheldon, R.A. The Greening of Solvents: Towards Sustainable Organic Synthesis. Curr. Opin. Green Sustain. Chem. 2019, 18, 13–19. [Google Scholar] [CrossRef]
- Tai, H.P.; Hong, C.T.T.; Huu, T.N.; Thi, T.N. Extraction of Custard Apple (Annona squamosal L.) Peel with Supercritical CO2 and Ethanol as Co-Solvent. J. Food Process. Preserv. 2022, 46, e17040. [Google Scholar] [CrossRef]
- Solana, M.; Boschiero, I.; Dall’Acqua, S.; Bertucco, A. A Comparison between Supercritical Fluid and Pressurized Liquid Extraction Methods for Obtaining Phenolic Compounds from Asparagus officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Supercritical CO2 Extraction of Bioactive Compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Valadez-Carmona, L.; Ortiz-Moreno, A.; Ceballos-Reyes, G.; Mendiola, J.A.; Ibáñez, E. Valorization of Cacao Pod Husk Through Supercritical Fluid Extraction of Phenolic Compounds. J. Supercrit. Fluids 2018, 131, 99–105. [Google Scholar] [CrossRef]
- Pinto, D.; De La Luz Cádiz-Gurrea, M.; Sut, S.; Ferreira, A.S.; Leyva-Jimenez, F.J.; Dall’acqua, S.; Segura-Carretero, A.; Delerue-Matos, C.; Rodrigues, F. Valorisation of Underexploited Castanea sativa Shells Bioactive Compounds Recovered by Supercritical Fluid Extraction with CO2: A Response Surface Methodology Approach. J. CO2 Util. 2020, 40, 101194. [Google Scholar] [CrossRef]
- Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martínez, J. Extraction of Phenolic Compounds from Dry and Fermented Orange Pomace Using Supercritical CO2 and Cosolvents. Food Bioprod. Process. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Xi, J.; He, L.; Yan, L.-G. Continuous Extraction of Phenolic Compounds from Pomegranate Peel Using High Voltage Electrical Discharge. Food Chem. 2017, 230, 354–361. [Google Scholar] [CrossRef]
- Abbaspour, L.; Ghareaghajlou, N.; Afshar Mogaddam, M.R.; Ghasempour, Z. An Innovative Technique for the Extraction and Stability of Polyphenols Using High Voltage Electrical Discharge: HVED-Assisted Extraction of Polyphenols. Curr. Res. Food Sci. 2024, 9, 100928. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Xi, J. Recent Advances in High Voltage Electric Discharge Extraction of Bioactive Ingredients from Plant Materials. Food Chem. 2019, 277, 246–260. [Google Scholar] [CrossRef]
- Rocha, C.M.R.; Genisheva, Z.; Ferreira-Santos, P.; Rodrigues, R.; Vicente, A.A.; Teixeira, J.A.; Pereira, R.N. Electric Field-Based Technologies for Valorization of Bioresources. Bioresour. Technol. 2018, 254, 325–339. [Google Scholar] [CrossRef]
- Brianceau, S.; Turk, M.; Vitrac, X.; Vorobiev, E. High Voltage Electric Discharges Assisted Extraction of Phenolic Compounds from Grape Stems: Effect of Processing Parameters on Flavan-3-Ols, Flavonols and Stilbenes Recovery. Innov. Food Sci. Emerg. Technol. 2016, 35, 67–74. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Nutrizio, M.; Gajdo, J.; Badanjak, M.; Dubrovi, I.; Vrsaljko, D.; Maltar-Strme, N.; Re, A. Valorization of Sage Extracts (Salvia officinalis L.) Obtained by High Voltage Electrical Discharges: Process Control and Antioxidant Properties. Innov. Food Sci. Emerg. Technol. 2020, 60, 102284. [Google Scholar] [CrossRef]
- Nutrizio, M.; Režek Jambrak, A.; Rezić, T.; Djekic, I. Extraction of Phenolic Compounds from Oregano Using High Voltage Electrical Discharges–Sustainable Perspective. Int. J. Food Sci. Technol. 2022, 57, 1104–1113. [Google Scholar] [CrossRef]
- Nutrizio, M.; Pataro, G.; Carullo, D.; Carpentieri, S.; Mazza, L.; Ferrari, G.; Chemat, F.; Banovi, M. High Voltage Electrical Discharges as an Alternative Extraction Process of Phenolic and Volatile Compounds from Wild Thyme (Thymus serpyllum L.): In Silico and Experimental Approaches for Solubility Assessment. Molecules 2020, 25, 4131. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Y.; Wang, Y.; Zhou, X.; Chen, X.; Xi, J. An Efficient Approach for the Extraction of Anthocyanins from Lycium ruthenicum Using Semi-Continuous Liquid Phase Pulsed Electrical Discharge System. Innov. Food Sci. Emerg. Technol. 2022, 80, 103099. [Google Scholar] [CrossRef]
- Boussetta, N.; Vorobiev, E.; Deloison, V.; Pochez, F.; Falcimaigne-Cordin, A.; Lanoisellé, J.-L. Valorisation of Grape Pomace by the Extraction of Phenolic Antioxidants: Application of High Voltage Electrical Discharges. Food Chem. 2011, 128, 364–370. [Google Scholar] [CrossRef]
- Mushtaq, M.; Sultana, B.; Anwar, F.; Adnan, A.; Rizvi, S.S.H. Enzyme-Assisted Supercritical Fluid Extraction of Phenolic Antioxidants from Pomegranate Peel. J. Supercrit. Fluids 2015, 104, 122–131. [Google Scholar] [CrossRef]
- Žuntar, I.; Putnik, P.; Bursać Kovačević, D.; Nutrizio, M.; Šupljika, F.; Poljanec, A.; Dubrović, I.; Barba, F.J.; Jambrak, A.R. Phenolic and Antioxidant Analysis of Olive Leaves Extracts (Olea europaea L.) Obtained by High Voltage Electrical Discharges (HVED). Foods 2019, 8, 248. [Google Scholar] [CrossRef]
- Shahram, H.; Taghian Dinani, S. Influences of Electrohydrodynamic Time and Voltage on Extraction of Phenolic Compounds from Orange Pomace. LWT 2019, 111, 23–30. [Google Scholar] [CrossRef]
- Rodríguez, S.L.; Ramírez-Garza, R.-E.; Serna, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Amulya, P.R.; Islam, R. Optimization of Enzyme-Assisted Extraction of Anthocyanins from Eggplant (Solanum melongena L.) Peel. Food Chem. X 2023, 18, 100643. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Luisa, M.; Plaza, M. Enzyme-Assisted Extraction of Bioactive Non-Extractable Polyphenols from Sweet Cherry (Prunus avium L.) Pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef]
- Carolina, A.; Heemann, W.; Heemann, R.; Kalegari, P.; Spier, M.R.; Santin, E. Enzyme-Assisted Extraction of Polyphenols from Green Yerba Mate. Braz. J. Food Technol. 2019, 22, e2017222. [Google Scholar] [CrossRef]
- Aliaño, M.J.; Carrera, C.; Barbero, G.F.; Palma, M. Comparison Study between Ultrasound—Assisted and Enzyme—Assisted Extraction of Anthocyanins from Blackcurrant (Ribes nigrum L.). Food Chem. X 2022, 13, 100192. [Google Scholar] [CrossRef]
- Islam, R.; Kamal, M.; Kabir, R.; Hasan, M. Phenolic Compounds and Antioxidants Activity of Banana Peel Extracts: Testing and Optimization of Enzyme-Assisted Conditions. Meas. Food 2023, 10, 100085. [Google Scholar] [CrossRef]
- Li, B.B.; Smith, B.; Hossain, M. Extraction of Phenolics from Citrus Peels II. Enzyme-Assisted Extraction Method. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar] [CrossRef]
- Costa, A.; Camargo, D.; Aparecida, M.; Arce, B.R.; Camarão, A.; Biasoto, T.; Shahidi, F. Enzyme-Assisted Extraction of Phenolics from Winemaking By-Products: Antioxidant Potential and Inhibition of Alpha-Glucosidase and Lipase Activities. Food Chem. 2016, 212, 395–402. [Google Scholar] [CrossRef]
- Pereira, G.S.L.; da Magalhães, R.S.; Fraga, S.; de Souza, P.T.; de Lima, J.P.; de Meirelles, A.J.A.; Sampaio, K.A. Extraction of Bioactive Compounds from Butia capitata Fruits Using Supercritical Carbon Dioxide and Pressurized Fluids. J. Supercrit. Fluids 2023, 199, 105959. [Google Scholar] [CrossRef]
- Vitor, D.T.; Barrales, F.; Pereira, E.; Viganó, J.; Iglesias, A.H.; Reyes Reyes, F.G.; Martínez, J. Phenolic Compounds from Passion Fruit Rinds Using Ultrasound-Assisted Pressurized Liquid Extraction and Nanofiltration. J. Food Eng. 2022, 325, 110977. [Google Scholar] [CrossRef]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Gligor, O.; Mocan, A.; Moldovan, C.; Locatelli, M.; Crișan, G.; Ferreira, I.C.F.R. Enzyme-Assisted Extractions of Polyphenols—A Comprehensive Review. Trends Food Sci. Technol. 2019, 88, 302–315. [Google Scholar] [CrossRef]
- de Jesus, R.A.; da Silva, W.R.; Wisniewski, A.; de Andrade Nascimento, L.F.; Blank, A.F.; de Souza, D.A.; de Wartha, E.R.S.A.; de Nogueira, P.C.L.; de Moraes, V.R.S. Microwave and Ultrasound Extraction of Antioxidant Phenolic Compounds from Lantana camara Linn. Leaves: Optimization, Comparative Study, and FT-Orbitrap MS Analysis. Phytochem. Anal. 2024, 35, 889–902. [Google Scholar] [CrossRef]
- Irakli, M.; Bouloumpasi, E.; Christaki, S.; Skendi, A.; Chatzopoulou, P. Modeling and Optimization of Phenolic Compounds from Sage (Salvia fruticosa L.) Post-Distillation Residues: Ultrasound- versus Microwave-Assisted Extraction. Antioxidants 2023, 12, 549. [Google Scholar] [CrossRef]
- Pereira, A.G.; Cruz, L.; Cassani, L.; Chamorro, F.; Lourenço-Lopes, C.; Freitas, V.; Otero, P.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J.; et al. Comparative Study of Microwave-Assisted Extraction and Ultrasound-Assisted Extraction Techniques (MAE vs. UAE) for the Optimized Production of Enriched Extracts in Phenolic Compounds of Camellia japonica Var Eugenia de Montijo. Eng. Proc. 2023, 37, 124. [Google Scholar] [CrossRef]
- Gasparini, A.; Ferrentino, G.; Angeli, L.; Morozova, K.; Zatelli, D.; Scampicchio, M. Ultrasound Assisted Extraction of Oils from Apple Seeds: A Comparative Study with Supercritical Fluid and Conventional Solvent Extraction. Innov. Food Sci. Emerg. Technol. 2023, 86, 103370. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, L.; Liang, Z.; Chen, J.; Zhao, M.; Tang, Q. Comparative Analysis of Flavonoids Extracted from Dendrobium chrysotoxum Flowers by Supercritical Fluid Extraction and Ultrasonic Cold Extraction. Sustain. Chem. Pharm. 2023, 36, 101267. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Evaluation of Bio-Based Solvents for Phenolic Acids Extraction from Aqueous Matrices. J. Mol. Liq. 2021, 338, 116930. [Google Scholar] [CrossRef]
- Vieira, V.; Calhelha, R.C.; Barros, L.; Coutinho, A.P.; Ferreira, I.C.F.R.; Ferreira, O. Alkanediols and Glycerol: Using Juglans regia L. Leaves as a Source of Bioactive Compounds. Molecules 2020, 25, 2497. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Winterburn, J.; Gonzalez-Miquel, M. Orange Peel Waste Valorisation through Limonene Extraction Using Bio-Based Solvents. Biochem. Eng. J. 2019, 151, 107298. [Google Scholar] [CrossRef]
- Cravotto, C.; Fabiano-Tixier, A.S.; Claux, O.; Rapinel, V.; Tomao, V.; Stathopoulos, P.; Skaltsounis, A.L.; Tabasso, S.; Jacques, L.; Chemat, F. Higher Yield and Polyphenol Content in Olive Pomace Extracts Using 2-Methyloxolane as Bio-Based Solvent. Foods 2022, 11, 1357. [Google Scholar] [CrossRef]
- Radošević, K.; Ćurko, N.; Gaurina Srček, V.; Cvjetko Bubalo, M.; Tomašević, M.; Kovačević Ganić, K.; Radojčić Redovniković, I. Natural Deep Eutectic Solvents as Beneficial Extractants for Enhancement of Plant Extracts Bioactivity. LWT 2016, 73, 45–51. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; Gutiérrez Fernández, M.Y.; Escuadra Burrieza, J.; Pérez-Iglesias, J.L.; González-Paramás, A.M. Obtaining Green Extracts Rich in Phenolic Compounds from Underexploited Food By-Products Using Natural Deep Eutectic Solvents. Opportunities and Challenges. Sustain. Chem. Pharm. 2022, 29, 100773. [Google Scholar] [CrossRef]
- Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of Deep Eutectic Solvents in Biotechnology and Bioengineering—Promises and Challenges. Biotechnol. Adv. 2017, 35, 105–134. [Google Scholar] [CrossRef]
- Bi, Y.; Chi, X.; Zhang, R.; Lu, Y.; Wang, Z.; Dong, Q.; Ding, C.; Yang, R.; Jiang, L. Highly Efficient Extraction of Mulberry Anthocyanins in Deep Eutectic Solvents: Insights of Degradation Kinetics and Stability Evaluation. Innov. Food Sci. Emerg. Technol. 2020, 66, 102512. [Google Scholar] [CrossRef]
- Ivanović, M.; Albreht, A.; Krajnc, P.; Vovk, I.; Razboršek, M.I. Sustainable Ultrasound-Assisted Extraction of Valuable Phenolics from Inflorescences of Helichrysum arenarium L. Using Natural Deep Eutectic Solvents. Ind. Crops Prod. 2021, 160, 113102. [Google Scholar] [CrossRef]
- Aktaş, H.; Kurek, M.A. Deep Eutectic Solvents for the Extraction of Polyphenols from Food Plants. Food Chem. 2024, 444, 138629. [Google Scholar] [CrossRef]
- Santos-Martín, M.; Cubero-Cardoso, J.; González-Domínguez, R.; Cortés-Triviño, E.; Sayago, A.; Urbano, J.; Fernández-Recamales, Á. Ultrasound-Assisted Extraction of Phenolic Compounds from Blueberry Leaves Using Natural Deep Eutectic Solvents (NADES) for the Valorization of Agrifood Wastes. Biomass Bioenergy 2023, 175, 106882. [Google Scholar] [CrossRef]
- de Lima, N.D.; da Silva Monteiro Wanderley, B.R.; Andrade Ferreira, A.L.; Pereira-Coelho, M.; da Silva Haas, I.C.; Vitali, L.; dos Santos Madureira, L.A.; Müller, J.M.; Fritzen-Freire, C.B.; de Mello Castanho Amboni, R.D. Green Extraction of Phenolic Compounds from the By-Product of Purple Araçá (Psidium myrtoides) with Natural Deep Eutectic Solvents Assisted by Ultrasound: Optimization, Comparison, and Bioactivity. Food Res. Int. 2024, 191, 114731. [Google Scholar] [CrossRef]
- Koraqi, H.; Aydar, A.Y.; Khalid, W.; Ercisli, S.; Rustagi, S.; Ramniwas, S.; Pandiselvam, R. Ultrasound-Assisted Extraction with Natural Deep Eutectic Solvent for Phenolic Compounds Recovery from Rosa damascene Mill.: Experimental Design Optimization Using Central Composite Design. Microchem. J. 2024, 196, 109585. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata subsp. Lusitanica (Chaytor) Franco. Antioxidants 2021, 10, 582. [Google Scholar] [CrossRef]
- Zengin, G.; de Cádiz-Gurrea, M.l.L.; Fernández-Ochoa, Á.; Leyva-Jiménez, F.J.; Carretero, A.S.; Momotko, M.; Yildiztugay, E.; Karatas, R.; Jugreet, S.; Mahomoodally, M.F.; et al. Selectivity Tuning by Natural Deep Eutectic Solvents (NADESs) for Extraction of Bioactive Compounds from Cytinus Hypocistis—Studies of Antioxidative, Enzyme-Inhibitive Properties and LC-MS Profiles. Molecules 2022, 27, 5788. [Google Scholar] [CrossRef]
- Jurić, T.; Mićić, N.; Potkonjak, A.; Milanov, D.; Dodić, J.; Trivunović, Z.; Popović, B.M. The Evaluation of Phenolic Content, In Vitro Antioxidant and Antibacterial Activity of Mentha piperita Extracts Obtained by Natural Deep Eutectic Solvents. Food Chem. 2021, 362, 130226. [Google Scholar] [CrossRef]
- Gómez-Urios, C.; Viñas-Ospino, A.; Puchades-Colera, P.; Blesa, J.; López-Malo, D.; Frígola, A.; Esteve, M.J. Choline Chloride-Based Natural Deep Eutectic Solvents for the Extraction and Stability of Phenolic Compounds, Ascorbic Acid, and Antioxidant Capacity from Citrus sinensis Peel. LWT 2023, 177, 114595. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Rutkowska, M.; Owczarek, K.; Tobiszewski, M.; Namieśnik, J. Extraction with Environmentally Friendly Solvents. TrAC Trends Anal. Chem. 2017, 91, 12–25. [Google Scholar] [CrossRef]
- Selvakumar, P.; Karthik, V.; Kumar, P.S.; Asaithambi, P.; Kavitha, S.; Sivashanmugam, P. Enhancement of Ultrasound Assisted Aqueous Extraction of Polyphenols from Waste Fruit Peel Using Dimethyl Sulfoxide as Surfactant: Assessment of Kinetic Models. Chemosphere 2021, 263, 128071. [Google Scholar] [CrossRef]
- Śliwa, P.; Śliwa, K.; Sikora, E.; Ogonowski, J.; Oszmiański, J.; Nowicka, P. Incorporation of Bioflavonoids from Bidens tripartite into Micelles of Non-Ionic Surfactants—Experimental and Theoretical Studies. Colloids Surf. B Biointerfaces 2019, 184, 110553. [Google Scholar] [CrossRef]
- Sazdanić, D.; Krstonošić, M.A.; Ćirin, D.; Cvejić, J.; Alamri, A.; Galanakis, C.; Krstonošić, V. Non-Ionic Surfactants-Mediated Green Extraction of Polyphenols from Red Grape Pomace. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100439. [Google Scholar] [CrossRef]
- Skrypnik, L.; Novikova, A. Response Surface Modeling and Optimization of Polyphenols Extraction from Apple Pomace Based on Nonionic Emulsifiers. Agronomy 2020, 10, 92. [Google Scholar] [CrossRef]
- Ghanbarzadeh, S.; Khorrami, A.; Arami, S. Nonionic Surfactant-Based Vesicular System for Transdermal Drug Delivery. Drug Deliv. 2015, 22, 1071–1077. [Google Scholar] [CrossRef]
- Krstonošić, M.A.; Sazdanić, D.; Ćirin, D.; Maravić, N.; Mikulić, M.; Cvejić, J.; Krstonošić, V. Aqueous Solutions of Non-Ionic Surfactant Mixtures as Mediums for Green Extraction of Polyphenols from Red Grape Pomace. Sustain. Chem. Pharm. 2023, 33, 101069. [Google Scholar] [CrossRef]
- Hosseinzadeh, R.; Khorsandi, K.; Hemmaty, S. Study of the Effect of Surfactants on Extraction and Determination of Polyphenolic Compounds and Antioxidant Capacity of Fruits Extracts. PLoS ONE 2013, 8, e57353. [Google Scholar] [CrossRef]
- Li, F.; Raza, A.; Wang, Y.-W.; Xu, X.-Q.; Chen, G.-H. Optimization of Surfactant-Mediated, Ultrasonic-Assisted Extraction of Antioxidant Polyphenols from Rattan Tea (Ampelopsis grossedentata) Using Response Surface Methodology. Pharmacogn. Mag. 2017, 13, 446–453. [Google Scholar] [CrossRef]
- Sharma, S.; Kori, S.; Parmar, A. Surfactant Mediated Extraction of Total Phenolic Contents (TPC) and Antioxidants from Fruits Juices. Food Chem. 2015, 185, 284–288. [Google Scholar] [CrossRef]
- Mukhtar, B.; Mushtaq, M.; Akram, S.; Adnan, A. Maceration Mediated Liquid–Liquid Extraction of Conjugated Phenolics from Spent Black Tea Leaves Extraction of Non-Extractable Phenolics. Anal. Methods 2018, 10, 4310–4319. [Google Scholar] [CrossRef]
- MohdMaidin, N.; Oruna-Concha, M.J.; Jauregi, P. Surfactant TWEEN20 Provides Stabilisation Effect on Anthocyanins Extracted from Red Grape Pomace. Food Chem. 2019, 271, 224–231. [Google Scholar] [CrossRef]
- Yu, L.; Meng, Y.; Wang, Z.L.; Cao, L.; Liu, C.; Gao, M.Z.; Zhao, C.J.; Fu, Y.J. Sustainable and Efficient Surfactant-Based Microwave-Assisted Extraction of Target Polyphenols and Furanocoumarins from Fig (Ficus carica L.) Leaves. J. Mol. Liq. 2020, 318, 114196. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef]
- Mketo, N.; Nomngongo, P.N. Application of Ionic Liquids for Extraction of Phenolic Compounds and Dyes: A Critical Review. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 395–408. [Google Scholar] [CrossRef]
- Han, D.; Row, K.H. Recent Applications of Ionic Liquids in Separation Technology. Molecules 2010, 15, 2405–2426. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Which Is the Best Food Emerging Solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. [Google Scholar] [CrossRef]
- Osamede, J.; Mostafa, H.; Riaz, A.; Maqsood, S. Utilization of Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction as Green Extraction Technique for the Recovery of Bioactive Compounds from Date Palm (Phoenix dactylifera L.) Seeds: An Investigation into Optimization of Process Parameters. Ultrason. Sonochemistry 2022, 91, 106233. [Google Scholar] [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel Extraction of Polyphenols from Sour Cherry Pomace Using Natural Deep Eutectic Solvents—Ultrafast Microwave-Assisted NADES Preparation and Extraction. Food Chem. 2022, 366, 130562. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Jaboticaba (Myrtaceae cauliflora) Fruit and Its By-Products: Alternative Sources for New Foods and Functional Components. Trends Food Sci. Technol. 2021, 112, 118–136. [Google Scholar] [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem. 2019, 295, 165–171. [Google Scholar] [CrossRef]
- Silva, S.S.; Justi, M.; Chagnoleau, J.B.; Papaiconomou, N.; Fernandez, X.; Santos, S.A.O.; Passos, H.; Ferreira, A.M.; Coutinho, J.A.P. Using Biobased Solvents for the Extraction of Phenolic Compounds from Kiwifruit Industry Waste. Sep. Purif. Technol. 2023, 304, 122344. [Google Scholar] [CrossRef]
- Ferreira, B.L.; Junior, T.K.; Block, J.M.; Granato, D.; Nunes, I.L. Innovative Approach for Obtaining Phenolic Compounds from Guava (Psidium guajava L.) Coproduct Using Ionic Liquid Ultrasound-Assisted Extraction (IL-UAE). Biocatal. Agric. Biotechnol. 2021, 38, 102196. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Chen, S.; Zhang, M.; Wang, Z. Ionic Liquids Based Simultaneous Ultrasonic and Microwave Assisted Extraction of Phenolic Compounds from Burdock Leaves. Anal. Chim. Acta 2012, 716, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.P.; Pham, T.V.; Tran, T.N.H.; Vo, L.T.V.; Vu, T.T.; Pham, N.D.; Nguyen, D.Q. Ultrasonic-Assisted and Microwave-Assisted Extraction of Phenolics and Terpenoids from Abelmoschus sagittifolius (Kurz) Merr Roots Using Natural Deep Eutectic Solvents. ACS Omega 2023, 8, 29704–29716. [Google Scholar] [CrossRef] [PubMed]
- del Amo-Mateos, E.; Fernández-Delgado, M.; Lucas, S.; López-Linares, J.C.; García-Cubero, M.T.; Coca, M. Valorization of Discarded Red Beetroot Through the Recovery of Bioactive Compounds and the Production of Pectin by Surfactant-Assisted Microwave Extraction. J. Clean. Prod. 2023, 389, 135995. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, W.; Hu, R.; Dai, X.; Pan, Y. Ionic Liquid-Based Microwave-Assisted Extraction of Phenolic Alkaloids from the Medicinal Plant Nelumbo nucifera Gaertn. J. Chromatogr. A 2008, 1208, 42–46. [Google Scholar] [CrossRef]
- Bener, M.; Şen, F.B.; Önem, A.N.; Bekdeşer, B.; Çelik, S.E.; Lalikoglu, M.; Aşçı, Y.S.; Capanoglu, E.; Apak, R. Microwave-Assisted Extraction of Antioxidant Compounds from by-Products of Turkish Hazelnut (Corylus avellana L.) Using Natural Deep Eutectic Solvents: Modeling, Optimization and Phenolic Characterization. Food Chem. 2022, 385, 132633. [Google Scholar] [CrossRef]
- Cañadas, R.; de Miera, B.; Méndez, P.; González, E.J.; González-Miquel, M. Enhanced Recovery of Natural Antioxidants from Grape Waste Using Natural Eutectic Solvents-Based Microwave-Assisted Extraction. Molecules 2023, 28, 1153. [Google Scholar] [CrossRef]
- Aguiar, O.; da Silva, V.G.; de Melo, L.; Soleo, C.; Lajarim, R.; da Silva, V. Combining Natural Deep Eutectic Solvent and Microwave Irradiation Towards the Eco-Friendly and Optimized Extraction of Bioactive Phenolics from Eugenia uniflora L. Sustain. Chem. Pharm. 2022, 26, 100618. [Google Scholar] [CrossRef]
- Jia, M.; Fu, X.; Deng, L.; Li, Z.; Dang, Y. Phenolic Extraction from Grape (Vitis vinifera) Seed via Enzyme and Microwave Co-Assisted Salting-out Extraction. Food Biosci. 2021, 40, 100919. [Google Scholar] [CrossRef]
- Macedo, G.A.; Santana, L.; Crawford, L.M.; Wang, S.C.; Dias, F.F.G.; Moura, J.M.L.N. De Integrated Microwave- and Enzyme-Assisted Extraction of Phenolic Compounds from Olive Pomace. LWT 2021, 138, 110621. [Google Scholar] [CrossRef]
- Pan, H.; Nie, S.; Wang, Z.; Yu, L.; Liu, Z.; Xu, J.; Fu, Y. Ultrasound-Assisted Extraction of Phytochemicals from Cili Leaves with a Novel CO2-Responsive Surfactant-Aqueous and Extraction Mechanism. Ind. Crops Prod. 2022, 175, 114241. [Google Scholar] [CrossRef]
- Tavanandi, H.A.; Raghavarao, K.S.M.S. Ultrasound-Assisted Enzymatic Extraction of Natural Food Colorant C-Phycocyanin from Dry Biomass of Arthrospira platensis. LWT 2020, 118, 108802. [Google Scholar] [CrossRef]
- Saeed, R.; Ahmed, D.; Mushtaq, M. Ultrasound-Aided Enzyme-Assisted Efficient Extraction of Bioactive Compounds from Gymnema sylvestre and Optimization as per Response Surface Methodology. Sustain. Chem. Pharm. 2022, 29, 100818. [Google Scholar] [CrossRef]
- Rashid, R.; Mohd Wani, S.; Manzoor, S.; Masoodi, F.A.; Masarat Dar, M. Green Extraction of Bioactive Compounds from Apple Pomace by Ultrasound Assisted Natural Deep Eutectic Solvent Extraction: Optimisation, Comparison and Bioactivity. Food Chem. 2022, 398, 133871. [Google Scholar] [CrossRef]
- Plaza, M.; Domínguez-Rodríguez, G.; Sahelices, C.; Marina, M.L. A Sustainable Approach for Extracting Non-Extractable Phenolic Compounds from Mangosteen Peel Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Appl. Sci. 2021, 11, 5625. [Google Scholar] [CrossRef]
- Alasalvar, H.; Yildirim, Z. Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds from Lavandula angustifolia Flowers Using Natural Deep Eutectic Solvents: An Experimental Design Approach. Sustain. Chem. Pharm. 2021, 22, 100492. [Google Scholar] [CrossRef]
- Jamshaid, S.; Ahmed, D. Optimization of Ultrasound-Assisted Extraction of Valuable Compounds from Fruit of Melia azedarach with Glycerol-Choline Chloride Deep Eutectic Solvent. Sustain. Chem. Pharm. 2022, 29, 100827. [Google Scholar] [CrossRef]
- Lanjekar, K.J.; Gokhale, S.; Rathod, V.K. Utilization of Waste Mango Peels for Extraction of Polyphenolic Antioxidants by Ultrasound-Assisted Natural Deep Eutectic Solvent. Bioresour. Technol. Rep. 2022, 18, 101074. [Google Scholar] [CrossRef]
- Zhu, T.; Shen, Q.; Xu, Y.; Li, C. Ionic Liquid and Ultrasound-Assisted Extraction of Chestnut Shell Pigment with Good Hair Dyeing Capability. J. Clean. Prod. 2022, 335, 130195. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Pressurized Aqueous Solutions of Deep Eutectic Solvent (DES): A Green Emergent Extraction of Anthocyanins from a Brazilian Berry Processing by-Product. Food Chem. X 2022, 13, 100236. [Google Scholar] [CrossRef] [PubMed]
- Vo Dinh, T.; Saravana, P.S.; Woo, H.C.; Chun, B.S. Ionic Liquid-Assisted Subcritical Water Enhances the Extraction of Phenolics from Brown Seaweed and Its Antioxidant Activity. Sep. Purif. Technol. 2018, 196, 287–299. [Google Scholar] [CrossRef]
- Abdelrahman, R.; Hamdi, M.; Baba, W.N.; Hassan, H.M.; Maqsood, S. Synergistic Combination of Natural Deep Eutectic Solvents and Green Extraction Techniques for the Valorization of Date Palm Leaves: Optimization of the Solvent-Biomass Interaction. Microchem. J. 2023, 195, 109503. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, C.; Li, J.; Zhang, L.; Yang, L.; Zhou, Z.; Zhu, Y.; Zhao, D. Ionic Liquid-Based Microwave-Assisted Extraction of Verbascoside from Rehmannia Root. Ind. Crops Prod. 2018, 124, 59–65. [Google Scholar] [CrossRef]
- Grisales-Mejía, J.F.; Cedeño-Fierro, V.; Ortega, J.P.; Torres-Castañeda, H.G.; Andrade-Mahecha, M.M.; Martínez-Correa, H.A.; Álvarez-Rivera, G.; Mendiola, J.A.; Cifuentes, A.; Ibañez, E. Advanced NADES-Based Extraction Processes for the Recovery of Phenolic Compounds from Hass Avocado Residues: A Sustainable Valorization Strategy. Sep. Purif. Technol. 2024, 351, 128104. [Google Scholar] [CrossRef]
- Vo, T.P.; Tran, T.Q.D.; Phan, T.H.; Huynh, H.D.; Vo, T.T.Y.; Vo, N.M.K.; Ha, M.P.; Le, T.N.; Nguyen, D.Q. Ultrasonic-Assisted and Enzymatic-Assisted Extraction to Recover Tannins, Flavonoids, and Terpenoids from Used Tea Leaves Using Natural Deep Eutectic Solvents. Int. J. Food Sci. Technol. 2023, 58, 5855–5864. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Cui, Q.; Liu, J.Z.; Wang, L.T.; Kang, Y.F.; Meng, Y.; Jiao, J.; Fu, Y.J. Sustainable Deep Eutectic Solvents Preparation and Their Efficiency in Extraction and Enrichment of Main Bioactive Flavonoids from Sea Buckthorn Leaves. J. Clean. Prod. 2018, 184, 826–835. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Granados, M.; Sentellas, S.; Saurina, J. Microwave-Assisted Extraction with Natural Deep Eutectic Solvents for Polyphenol Recovery from Agrifood Waste: Mature for Scaling-Up? Sci. Total Environ. 2024, 912, 168716. [Google Scholar] [CrossRef]
- Viganó, J.; Zabot, G.L.; Martínez, J. Supercritical Fluid and Pressurized Liquid Extractions of Phytonutrients from Passion Fruit By-Products: Economic Evaluation of Sequential Multi-Stage and Single-Stage Processes. J. Supercrit. Fluids 2017, 122, 88–98. [Google Scholar] [CrossRef]
Matrix | Solvent | Extraction Conditions | TPC (mg GAE/g Dry Mass) | Reference |
---|---|---|---|---|
Plants | ||||
Blue pea flower Clitoria ternatea cv. | Water | 15 mL/g, 50 °C, 30 min, 400 W | 110.4 | [21] |
Ground ivy (Glechoma hederacea L.) | Water | 100 mL/g, 90 °C, 4.93 min | 48.6 | [16] |
Nerium oleander leaves | Ethanol (75%) | 20 mL/g, 500 W, 1 min | 25.8 | [20] |
Carica papaya leaves | Ethanol | 12 mL/g, 50 °C, 3 min, 420 W | 102.6 | [17] |
Fenugreek seeds | Ethanol (≈64%) | 0.09 g/mL, 2.84 min, 572.50 W | 81.9 | [18] |
Food | ||||
Black goji berry (Lycium ruthenicum) | Hot water | 15 mL/g, 50 °C, 30 min | 69.7 | [22] |
Jackfruit (Artocarpus heterophyllus Lam.) pulp | Ethanol (60%) | 0.03 g/mL, 165 s, 550 W | 2.4 | [23] |
Robinia pseudoacacia wood | Water | 230 °C, 0.25 min | 80.3 | [24] |
Tomato | Methanol (80%) HCl (1%) | 90 s, 900 W | 436 * | [15] |
Red onion | Ethanol (70%) | 25 mL/g, 700 W, 65 s | 10.9 | [19] |
Fruits of Berberis jaeschkeana | Methanol (80%) HCl 0.1 N | 40 mL/g, 670 W, 5 min | 108.9 | [25] |
Food Waste | ||||
Pomegranate peel | Ethanol (50%) | 60 mL/g, 600 W | - | [26] |
Sunflower by-product | Ethanol (70%) | 10 mL/g, 30 s, 100 W | 12.9 | [27] |
Banana peel | Water | 50 mL/g, pH of 1, 6 min, 960 W | 50.6 | [13] |
Chestnut waste | Water | 50 mL/g, 107 °C, 5 min | 344 | [28] |
Lime peel waste | Ethanol (55%) | 45 s, 140 W, 8 repeats | 59.3 | [29] |
Matrix | Solvent | Extraction Conditions | TPC (mg GAE/g Dry Mass) | Reference |
---|---|---|---|---|
Plants | ||||
Ilex paraguariensis (St. Hil.) leaves | Ethanol (50%) | 10 mL/g | 0.15 | [47] |
Croton heliotropiifolius Kunth leaves | Ethanol (≈38%) | 11.4 mL/g, 54.8 °C, 39.5 min | - | [48] |
Leaves of Lobelia nicotianifolia | Methanol (≈75%) | 62.72 °C, 9.44 min | 23.8 | [49] |
Clitoria ternatea | Ethanol (60%) | 45 °C, 30 min, 350 W | 27.4 | [34] |
Food | ||||
Jackfruit (Artocarpus heterophyllus Lam.) pulp | Water | 30 mL/g, 250 W | 1.64 | [23] |
Ethanol (60%) | 1.57 | |||
Turkey berry (Solanum torvum Sw) | Ethanol (≈57%) | 80 °C, 49.7 mL/g, 17.3 min | 192 | [36] |
Opuntia ficus-indica [L.] Mill. flowers | Ethanol (36%) | 53 °C, 60 min | 24.4 | [50] |
Empetrum nigrum aerial parts | Ethanol (62%) | 53.3 mL/g, 42 °C, 21 min | 32.2 | [37] |
Tetrapleura tetraptera fruit | Ethanol (60%) | 26 mL/g, 20 min, 20 kHz, 150 W | 7.05 | [35] |
Berberis jaeschkeana fruits | Methanol (80%) HCl 0.2 N | 70 °C, 70 mL/g, 15 min, 50 kHz | 77.5 | [25] |
Food Waste | ||||
Spent coffee grounds | Ethanol (50%) | 40 mL/g, 400 W | 12.0 | [41] |
Waste Syzygium cumini leaves | Water | 25 mL/g, 35 °C, 134 W, 50% duty cycle (1 min ON/1 min OFF), 9 min | 78.4 | [51] |
Solid residue of Apocynum venetum tea | Methanol–Acetone | NaOH 4.29 mol/L, 15 mL/g, 60 °C, 63 min | 0.3 | [52] |
Matrix | Solvent | Extraction Conditions | TPC (mg GAE/g Dry Mass) | Reference |
---|---|---|---|---|
Plants | ||||
Clove (Syzygium aromaticum) leaves | Ethanol | 60 °C, 60 bar | 20.3 | [60] |
Stevia leaf | Ethanol (70%) | 15 mL/g, 125 °C, 30 min | 310 | [61] |
Feijoa leaf | Ethanol (15%) | 55 °C, 300 bar, 210 min | 132 | [62] |
Food | ||||
Opuntia stricta var. Dillenii wild prickly pears | Ethanol (50%) | 25 °C | - | [58] |
Jambolan fruit (Syzygium cumini L.) | Acidified ethanol (≈80%) | 5000 W/L, 7.5 min | 60.5 | [63] |
Food Waste | ||||
Cranberry pomace | Ethanol (30%) | 140 °C, 50 bar | 85.9 | [64] |
Wine-making grape pomace | Ethanol (55%) | 130 °C, 22 min | 2.8 | [65] |
Açai (Euterpe oleracea) by-product | Ethanol (75%) | 115 °C | 12.0 | [66] |
Olive pomace | Ethanol (52%) | 136.5 °C, 103 bar, 20 min | 1.7 | [59] |
Natural Resource | Solvent | Extraction Conditions | TPC (mg GAE/g Dry Mass) | Reference |
---|---|---|---|---|
Plants | ||||
Leptocarpha rivularis stems | CO2-ethanol (5%) | 60 °C, 500 bar | 6.3 | [70] |
Asparagus officinalis L. | CO2-water ethanol (1:1) | 65 °C, 150 bar | 3.42 | [77] |
Hibiscus sabdariffa | CO2-ethanol (≈17%) | 250 bar, 50 °C | 113 | [78] |
Black Rosehip | CO2-ethanol (25%) | 280 bar, 60 °C | 76.6 | [73] |
Black poplar (Populus nigra L.) buds | CO2 | 60 °C, 300 bar | 31.1 | [74] |
Rice husk | CO2-25% ethanol–water (50% v/v) | 1.3 | [75] | |
Food Waste | ||||
Leaves of Labisia pumila | CO2-ethanol (50%) | 60 °C, 20 MPa | - | [71] |
Mandarin (Clementina orogrande) peel | CO2-ethanol (5–10%) | 40–50 °C | 19.5 | [72] |
Custard apple (Annona squamosal L.) peel | CO2-ethanol (12%) | 52 °C, 261 bar, 54 min | 109.4 | [76] |
Cacao pod husk | CO2-ethanol (≈14%) | 60 °C, 299 bar | 12.9 | [79] |
Castanea sativa shells | CO2-ethanol (15%) | 60 °C, 350 bar | - | [80] |
Orange pomace | CO2-ethanol (6%) | 40 °C, 350 bar | 21.8 | [81] |
Matrix | Solvent | Extraction Conditions | TPC (mg GAE/g Dry Mass) | Reference |
---|---|---|---|---|
Plants | ||||
Sage extracts (Salvia officinalis L.) | Ethanol (50%) | 3.9 min, voltage for argon (15, 20 kV) and nitrogen (20, 25 kV) | 57.21 | [88] |
Oregano (Origanum vulgare L.) | Ethanol | 50% ethanol, 50 mL/g, 100 Hz, pulse duration of 400 ns, 30 mA, electrode distance 15 mm, 15 and 20 kV for argon and 20 and 25 kV for nitrogen (3 and 9 min, respectively) | 191.3 | [89] |
Plants | ||||
Wild thyme (Thymus serpyllum L.) | Ethanol (50%) | 50 mL/g, 20 kV, 0.75 L min−1 of argon and nitrogen, 9 min | 42.9 | [90] |
Lycium ruthenicum | Ethanol (20%) | pH 7, 8 min, 27 mL/min, 8 kV | - | [91] |
Food | ||||
Opuntia stricta var. Dillenii wild prickly pears | Ethanol (65%) | 40 mL/g, 49.37 J/mL | 669 * | [58] |
Jambolan fruit (Syzygium cumini L.) | Ethanol | 35 mL/g, 12 mL/min, electrode gap distance 3.1 mm, 29 kV/cm | 197 | [63] |
Food Waste | ||||
Grape pomace | Ethanol (30%) | 5 mL/g, 60 °C, 30 min, 80 kJ/kg, electrodes distance of 5 mm | 28 | [92] |
Pomegranate peels | Hot water | 40 kV, distance of electrodes 40 mm, 7 min | 46.0 | [93] |
Olive leaves | Ethanol (50%) | Argon, 9 min, 20 kV | - | [94] |
Orange pomace | Water | 10 min, 18 kV. | 618 * | [95] |
Matrix | Enzyme | Extraction Conditions | TPC (mg GAE/g Dry Mass) | Reference | |
---|---|---|---|---|---|
Plants | |||||
Yerba mate (Ilex paraguariensis A. St.-Hil) | Carbohydrases | 50 °C, enzyme concentration of 168 FGB/100 g, pH of 4.5, 120 min | 3.4 * | [101] | |
Food | |||||
Black goji berry (Lycium ruthenicum) | Pectinase | 1.5% (w/v) pectinase, 15 mL/g, 50 °C, 30 min | - | [91] | |
Waste | |||||
Eggplant peels | Cellulase | 5% cellulase, 32 °C, 60 min | 2040 ** | [98] | |
Sweet cherry (Prunus avium L.) pomace | Depol (36 U/mL from Humicola sp.) | 70 °C, pH 10.0, 40 min, 90 µL of pectinase/g of sample | 1.1 | [99] | |
Promod (220 U/mL from Bacillus licheniformis) | 70 °C, pH 10.0, 40 min, 90 µL of pectinase/g of sample | 2.8 | |||
Pectinase (1060 U/mL from Aspergillus sp.) | 70 °C, pH 10.0, 40 min, 90 µL of pectinase/g of sample | 1.1 | |||
Blackcurrant (Ribes nigrum L.) press cake | Cellulase | 4 h | 13.5 | [102] | |
Banana peel | Viscozyme® (cellulolytic enzyme mixture; Merck KGaA, Darmstadt, Germany) | 1.0% enzyme, 9 h, 55 °C, solute/liquid ratio 1:25. | 25.4 | [103] | |
Citrus peel | Celluzyme MX (cellulase) | 50 °C, enzyme 1.5% (w/w), 10 min | 1.6 | [104] | |
Winemaking by-products | Pronase (Protease from Streptomyces griseus) | 70% (v/v) acetone (2.5%, w/v), gyratory water bath shaker at 30 °C for 20 min | 13.9 | [105] | |
Viscozyme® (cellulolytic enzyme mixture) | 24.7 |
Extraction Technique | General Principle | Advantages | Disadvantages | Efficiency Maximization Recommendations | References |
---|---|---|---|---|---|
MAE | Application of electromagnetic radiation at wavelengths in the microwave range | Extraction time reduction. Efficiency. Compatibility with natural solvents. Lower energy consumption. Scalability (safety, cost, energy control and automation). | Incompatible with non-polar solvents | Reduce pH. High temperatures (80–90 °C). Moderate power (500 W). Short extraction times (less than 3 min). | [7,10,11,12,14,108] |
UAE | Application of sound waves with a frequency above the range audible to humans | Improvement on the polyphenol’s stability at optimized conditions. Cost. Efficiency. | Degradation of compounds | Moderate power Moderate temperatures (40–45 °C). Short extraction times (less than 30 min). Moderate power (less than 500 W). | [2,25,30,38,40,41] |
PLE | Combining high pressures with moderate-high temperatures above the normal boiling point of solvents | Extraction time reduction. No alteration of the composition of the extracts. Easy automation and good reproducibility. Solvent amount reduction. | High cost. Coextraction of interfering substances. | High temperatures. High pressure. | [53,55,56,58,59,109] |
SFE | Application of pulsed fast discharge voltages across an electrode gap below the surface of suspensions | Versatility. Extraction time reduction. Eliminating or reducing organic solvents. | Use of organic solvents as co-solvents. | Moderate temperatures (40–45 °C). Pressures of around 250 bar. Organic co-solvent content of less than 20%. | [67,71,72,73,74,75,76] |
HVED | Application of pulsed fast discharge voltages across an electrode gap below the surface of suspensions | Extraction time reduction. Lower energy consumption. Fewer impurities in the extract. | Free radical production. Less selective. | Voltages of 20–25 Kv. Short extraction times (less than 10 min). | [19,82,86,87] |
EAE | Treatment with an enzyme or different combinations of polysaccharide-degrading enzymes | Reducing solvent needs. Improved quality of extracted compounds. Gentler conditions. Less waste. | Alterations on the phenolic profile. Negative interference of improper enzyme activities from the plant matrix. | Enzyme loading. Longer extraction time (hours). Moderate temperatures. Select enzymes with complementary activities. Low pH. | [85,96,98,99] |
Natural Resource | Technique | Solvent | Extraction Time (min) | Temperature (°C) | Liquid-to-Solid Ratio (mL/g) | Other Parameters | Recovery Yield (%) | Reference |
---|---|---|---|---|---|---|---|---|
Camellia japonica var Eugenia | MAE | 5 | 180 °C | 80 | [112] | |||
UAE | 39% acidified ethanol | 8 | - | - | 2% amplitude | 56 | ||
Sage (Salvia fruticosa L.) post-distillation residues | MAE | 72% ethanol | 15 | 40 | 30 | - | 24.5 | [111] |
UAE | 68% | 10 | 47 | 10 | 20 kHz | 23.7 | ||
Lantana camara Linn. leaves | MAE | 53% ethanol | 15 | 80 | 50 | 300 W | 38.6 | [110] |
UAE | 35% ethanol | 25 | 30 | 60 | 37 kHz 150 W | 32.5 | ||
Blue pea flower | MAE | Water | 30 | 50 | 15 | 800 W | 37.2 | [21] |
UAE | 60 Hz 230 W | 40.3 | ||||||
EAE | 3% (w/v) Pectinase | 27.8 | ||||||
Black goji berry | MAE | Water | 60 | 50 | 15 | 800 W | 62.1 | [22] |
UAE | 30 | 60 Hz 230 W | 45.3 | |||||
EAE | 3% (w/v) pectinase | 73.6 | ||||||
Clove (Syzygium aromaticum) leaves | PLE | Ethanol | 20 | 60 | - | - | 6.6 | [60] |
SFE | CO2 | 30 | - | 300 bar | 1.9 | |||
Feijoa leaf | PLE | Ethanol | 50 | 80 | - | 35.1 | [62] | |
SFE | CO2-15% ethanol | 210 | 55 | 30 MPa | 32.9 | |||
Apple seeds | UAE | Hexane | 30 | 30 | - | 56 W 64% amplitude | 17.2 | [113] |
SFE | CO2 | 140 | 40 | - | 26 MPa | 19.3 | ||
Dendrobium chrysotoxum flowers | UAE | 30 | 40 | 40 | 400 W | 0.6 | [114] | |
SFE | 90 | 50 | 20 MPa | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2025, 30, 55. https://doi.org/10.3390/molecules30010055
Palos-Hernández A, González-Paramás AM, Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules. 2025; 30(1):55. https://doi.org/10.3390/molecules30010055
Chicago/Turabian StylePalos-Hernández, Andrea, Ana M. González-Paramás, and Celestino Santos-Buelga. 2025. "Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products" Molecules 30, no. 1: 55. https://doi.org/10.3390/molecules30010055
APA StylePalos-Hernández, A., González-Paramás, A. M., & Santos-Buelga, C. (2025). Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules, 30(1), 55. https://doi.org/10.3390/molecules30010055