Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Adsorption Experiments
2.3. Adsorption Isotherms
2.4. Kinetic Modeling
2.5. Adsorption Thermodynamic Results
2.6. Literature Review
Activated Carbon Source | Activation Process | Surface Area of Adsorbent (m2/g) | Maximum Adsorption Capacity (mg·g−1) | Equilibrium Time | Reference |
---|---|---|---|---|---|
Cupuaçu (Theobroma grandiflorum) bark | H3PO4 | 1335.66 | 6.02 | 266.4 min | [48] |
Kiwi peels | - | 0.5 | 40.0 | 60 min | [49] |
Jerivá (Syagrus romanzoffiana) | ZnCl2 | 1435 | 335.8 | 360 min | [46] |
Albizia lebbeck seed pods | Microwave-assisted KOH activation | 1824.88 | 131.14 | 90 min | [47] |
Bamboo | Na2SiO3 | 312.7 | 17.12 | 60 min | [50] |
Bamboo | H3PO4 and K2CO3 | 2237 | 613 | 5 day | [45] |
Rice husks | KOH | 1539.7 | 398.4 | 15 min | This work |
3. Materials and Methods
3.1. Materials
3.2. Activated Carbon Production from Rice Husks
3.3. Adsorbent Characterization
3.4. Adsorption/Desorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erol, K.; Yıldız, E.; Alacabey, İ.; Karabörk, M.; Uzun, L. Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions. Environ. Sci. Pollut. Res. 2019, 26, 33631–33641. [Google Scholar] [CrossRef] [PubMed]
- Alacabey, İ. Endosulfan elimination using amine-modified magnetic diatomite as an adsorbent. Front. Chem. 2022, 10, 907302. [Google Scholar] [CrossRef] [PubMed]
- Teğin, İ.; Akdeniz, S.; Alacabey, İ.; Erol, K.; Acar, O. Preconcentration and determination of Cu (II) and Cd (II) ions from wastewaters by using hazelnut shell biosorbent immobilized on Amberlite XAD-4 resin. MANAS J. Eng. 2023, 11, 177–189. [Google Scholar] [CrossRef]
- Kızıl, Y.; Benek, V.; Teğin, İ.; Önal, Y.; Erol, K.; Alacabey, İ. Reactive Blue 19 adsorption on activated carbon from pumpkin (Cucurbita pepo) seed waste: Kinetic, isotherm and thermodynamic studies. Environ. Res. Eng. Manag. 2024, 80, 7–20. [Google Scholar] [CrossRef]
- Kireç, O.; Alacabey, İ.; Erol, K.; Alkan, H. Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. J. Polym. Eng. 2021, 41, 226–234. [Google Scholar] [CrossRef]
- Teğin, İ.; Demirel, M.F.; Alacabey, İ.; Yabalak, E. Investigation of the effectiveness of waste nut shell–based hydrochars in water treatment: A model study for the adsorption of methylene blue. Biomass Convers. Biorefinery 2024, 14, 10399–10412. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, Z.; Lu, B.; Zhao, Y.; Zhang, H. Effects of mixed LED light wavelengths and strigolactone analog concentrations on integral biogas upgrading and antibiotic removal from piggery wastewater by different microalgae-bacteria-fungi consortia. Algal Res. 2024, 82, 103622. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, H.; Wang, L.; Yang, Z.; Li, Z.; Wu, D.; Chen, F.; Zhu, Z.; Song, L. Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. Environ. Res. 2024, 261, 119689. [Google Scholar] [CrossRef]
- Alacabey, İ. Antibiotic removal from the aquatic environment with activated carbon produced from pumpkin seeds. Molecules 2022, 27, 1380. [Google Scholar] [CrossRef]
- Wang, K.; Tong, L.; Yu, J.; Zhou, Z.; Sheng, J.; Ji, H.; Wang, Z.; Wang, H. Supplementation of diethyl aminoethyl hexanoate for enhancing antibiotics removal by different microalgae-based system. Bioresour. Technol. 2024, 408, 131231. [Google Scholar] [CrossRef]
- Feitosa, M.H.; Santos, A.M.; Wong, A.; Moraes, C.A.; Grosseli, G.M.; Nascimento, O.R.; Fadini, P.S.; Moraes, F.C. Photoelectrocatalytic removal of antibiotic ciprofloxacin using a photoanode based on Z-scheme heterojunction. Chem. Eng. J. 2024, 493, 152291. [Google Scholar] [CrossRef]
- Zhang, C.-M.; Yan, Y.-H.; Li, L.; Liang, J. Effects of gradual increase of ciprofloxacin and cefotaxime on nitrogen and phosphorus removal and microbial community in moving bed biofilm reactor. J. Water Process Eng. 2024, 66, 106032. [Google Scholar] [CrossRef]
- Duong, H.A.; Pham, N.H.; Nguyen, H.T.; Hoang, T.T.; Pham, H.V.; Pham, V.C.; Berg, M.; Giger, W.; Alder, A.C. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere 2008, 72, 968–973. [Google Scholar] [CrossRef]
- Ripanda, A.; Rwiza, M.J.; Nyanza, E.C.; Bih, L.N.; Hossein, M.; Bakari, R.; Sigh, S.K.; Reddy, G.; Ravikumar, C.; Murthy, H.A. Optimizing ciprofloxacin removal from water using jamun seed (Syzygium cumini) biochar: A sustainable approach for ecological protection. HydroResearch 2024, 7, 164–180. [Google Scholar] [CrossRef]
- Çok, S.S.; Koç, F.; Len, A.; Almásy, L.; Dudás, Z. Silica aerogels modified with vinyl, epoxide, methacrylate moieties for the removal of ciprofloxacin by adsorption from water. Sep. Purif. Technol. 2025, 354, 129112. [Google Scholar]
- Yang, M.; He, J.; He, J.; Cao, J. Removal of tetracycline and ciprofloxacin from aqueous solutions using magnetic copper ferrite nanoparticles. J. Sci. Adv. Mater. Devices 2024, 9, 100717. [Google Scholar] [CrossRef]
- Wolska, J.; Frankowski, M.; Jenczyk, J.; Wolski, L. Highly sulfonated hyper-cross-linked polymers as promising adsorbents for efficient and selective removal of ciprofloxacin from water. Sep. Purif. Technol. 2024, 343, 127147. [Google Scholar] [CrossRef]
- Mollaei, M.; Karbasi, F.; Haddad, A.S.; Baniasadi, H. Fabrication of biocomposite materials with polycaprolactone and activated carbon extracted from agricultural waste. Colloids Surf. A Physicochem. Eng. Asp. 2024, 702, 135175. [Google Scholar] [CrossRef]
- Tang, X.; Yao, M.; Li, J. Boric acid-modified activated carbon for glycerol removal from high-salt wastewater. Appl. Surf. Sci. 2024, 670, 160660. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, T.S.; Hu, J.Y. Antibiotics removal and antimicrobial resistance control by ozone/peroxymonosulfate-biological activated carbon: A novel treatment process. Water Res. 2024, 261, 122069. [Google Scholar] [CrossRef]
- Sousa, É.M.; Otero, M.; Gil, M.V.; Ferreira, P.; Esteves, V.I.; Calisto, V. Evaluation of different functionalization methodologies for improving the removal of three target antibiotics from wastewater by a brewery waste activated carbon. Sci. Total Environ. 2024, 912, 169437. [Google Scholar] [CrossRef]
- Özsin, G.; Kılıç, M.; Apaydın-Varol, E.; Pütün, A.E. Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: Equilibrium, kinetic, and thermodynamic studies. Appl. Water Sci. 2019, 9, 56. [Google Scholar] [CrossRef]
- Meseguer, V.F.; Ortuño, J.F.; Aguilar, M.I.; Lloréns, M.; Pérez-Marín, A.B.; Fuentes, E. Ciprofloxacin uptake from an aqueous solution via adsorption with K2CO3-activated biochar derived from brewing industry bagasse. Processes 2024, 12, 199. [Google Scholar] [CrossRef]
- Dhaneswara, D.; Fatriansyah, J.F.; Situmorang, F.W.; Haqoh, A.N. Synthesis of amorphous silica from rice husk ash: Comparing HCl and CH3COOH acidification methods and various alkaline concentrations. Int. J. Technol. 2020, 11, 200–208. [Google Scholar] [CrossRef]
- Kowalczuk, D. FTIR characterization of the development of antimicrobial catheter coatings loaded with fluoroquinolones. Coatings 2020, 10, 818. [Google Scholar] [CrossRef]
- Ma, S.; Si, Y.; Wang, F.; Su, L.; Xia, C.; Yao, J.; Chen, H.; Liu, X. Interaction processes of ciprofloxacin with graphene oxide and reduced graphene oxide in the presence of montmorillonite in simulated gastrointestinal fluids. Sci. Rep. 2017, 7, 2588. [Google Scholar] [CrossRef]
- Selmi, T.; Gentil, S.; Fierro, V.; Celzard, A. Key factors in the selection, functionalization and regeneration of activated carbon for the removal of the most common micropollutants in drinking water. J. Environ. Chem. Eng. 2024, 12, 113105. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Pakade, V.E. Trends in removal of pharmaceuticals in contaminated water using waste coffee and tea-based materials with their derivatives. Water Environ. Res. 2023, 95, e10857. [Google Scholar] [CrossRef]
- Mopoung, S.; Dejang, N. Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Sci. Rep. 2021, 11, 13948. [Google Scholar] [CrossRef]
- Zhang, B.; Han, X.; Gu, P.; Fang, S.; Bai, J. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 2017, 238, 316–325. [Google Scholar] [CrossRef]
- Yasmin, S.; Azam, M.G.; Hossain, M.S.; Akhtar, U.S.; Kabir, M.H. Efficient removal of ciprofloxacin from aqueous solution using Zn–C battery derived graphene oxide enhanced by hydrogen bonding, electrostatic and π–π interaction. Heliyon 2024, 10, e33317. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Wang, S.; Bai, L.; Deng, Y.; Tao, J. Effect of pore size distribution and amination on adsorption capacities of polymeric adsorbents. Molecules 2021, 26, 5267. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Nguyen, H. Activated carbon based rice husk for highly efficient adsorption of methylene blue: Kinetic and isotherm. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 12078. [Google Scholar] [CrossRef]
- El-Bahy, Z.M.; Ismail, A.A.; Mohamed, R.M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J. Hazard. Mater. 2009, 166, 138–143. [Google Scholar] [CrossRef]
- Garba, Z.N.; Tanimu, A.; Zango, Z.U. Borassus aethiopum shell-based activated carbon as efficient adsorbent for carbofuran. Bull. Chem. Soc. Ethiop. 2019, 33, 425–436. [Google Scholar] [CrossRef]
- Tran, Q.T.; Do, T.H.; Ha, X.L.; Nguyen, H.P.; Nguyen, A.T.; Ngo, T.C.Q.; Chau, H.D. Study of the ciprofloxacin adsorption of activated carbon prepared from mangosteen peel. Appl. Sci. 2022, 12, 8770. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Huang, L.; Xue, J.; Liu, Q.; Bao, N.; Huang, J. Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate. Ecotoxicol. Environ. Saf. 2017, 139, 36–42. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Thavorn-Amornsri, T.; Pereira, M.F.R.; Figueiredo, J.L. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 2011, 45, 4583–4591. [Google Scholar] [CrossRef]
- Liu, T.; Liu, W.; Li, X.; Zhang, Y.; Zhao, J.; Chen, M. Effect of environmental factors on adsorption of ciprofloxacin from wastewater by microwave alkali modified fly ash. Sci. Rep. 2024, 14, 19831. [Google Scholar] [CrossRef]
- Alacabey, İ.; Acet, Ö.; Önal, B.; Dikici, E.; Karakoç, V.; Gürbüz, F.; Alkan, H.; Odabaşı, M. Pumice particle interface: A case study for immunoglobulin G purification. Polym. Bull. 2021, 78, 5593–5607. [Google Scholar] [CrossRef]
- Acet, Ö.; Baran, T.; Erdönmez, D.; Aksoy, N.H.; Alacabey, İ.; Menteş, A.; Odabaşi, M. O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme. J. Chromatogr. A 2018, 1550, 21–27. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimo, J.J.; Maina, E.N. Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Ullah, R.; Ahmad, W.; Ahmad, I.; Khan, M.; Iqbal Khattak, M.; Hussain, F. Adsorption and recovery of hexavalent chromium from tannery wastewater over magnetic max phase composite. Sep. Sci. Technol. 2021, 56, 439–452. [Google Scholar] [CrossRef]
- do Nascimento, R.A.; de Oliveira Novaes, N.R.; Morilla, D.P.; da Luz, P.T.S.; Costa, C.M.L.; de Faria, L.J.G. Removal of ciprofloxacin and norfloxacin from aqueous solution with activated carbon from cupuaçu (Theobroma grandiflorum) bark. Molecules 2024, 29, 5853. [Google Scholar] [CrossRef] [PubMed]
- Gubitosa, J.; Rizzi, V.; Cignolo, D.; Fini, P.; Fanelli, F.; Cosma, P. From agricultural wastes to a resource: Kiwi peels, as long-lasting, recyclable adsorbent, to remove emerging pollutants from water. The case of ciprofloxacin removal. Sustain. Chem. Pharm. 2022, 29, 100749. [Google Scholar] [CrossRef]
- de Oliveira Carvalho, C.; Costa Rodrigues, D.L.; Lima, É.C.; Santanna Umpierres, C.; Caicedo Chaguezac, D.F.; Machado Machado, F. Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). Environ. Sci. Pollut. Res. 2019, 26, 4690–4702. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. J. Taiwan Inst. Chem. Eng. 2014, 45, 219–226. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q. Exploring the adsorption potential of Na2SiO3-activated porous carbon materials from waste bamboo biomass for ciprofloxacin rapid removal in wastewater. Environ. Technol. Innov. 2023, 32, 103318. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ngo, H.H.; Guo, W.S. Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Sci. Total Environ. 2015, 533, 32–39. [Google Scholar] [CrossRef]
- Yılmaz, N.; Alagöz, O. Nar kabuklarından kimyasal aktivasyon ile hazırlanan aktif karbon üzerinde metilen mavisinin adsorpsiyonu. El-Cezerî J. Sci. Eng. 2019, 6, 817–829. [Google Scholar] [CrossRef]
- Shin, H.S.; Kim, J.H. Isotherm, Kinetic and Thermodynamic Characteristics of Adsorption of Paclitaxel onto Diaion HP-20. Process Biochem. 2016, 51, 917–924. [Google Scholar] [CrossRef]
- Caliskan, N.; Kul, A.R.; Alkan, S.; Gokirmak Sogut, E.; Alacabey, I. Adsorption of Zinc(II) on Diatomite and Manganese-Oxide-Modified Diatomite: A Kinetic and Equilibrium Study. J. Hazard. Mater. 2011, 193, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Alacabey, I.; Kul, A.; Ece, M.; Alkan, H. Chrome(III) Adsorption on Van Lake Natural Sediment and Modified Sediment (Isotherm and Thermodynamic Analysis Study). DÜMF Eng. J. 2020, 11, 1225–1232. [Google Scholar]
- Lee, J.J. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon. Korean Chem. Eng. Res. 2015, 53, 64–70. [Google Scholar] [CrossRef]
- Alacabey, I. Adsorptive Removal of Cationic Dye from Aqueous Solutions Using Bardakçı Clay. Int. J. Agric. Environ. Food Sci. 2022, 6, 80–90. [Google Scholar] [CrossRef]
Isotherm | Parameters | Temperature (K) | ||
---|---|---|---|---|
298 | 303 | 318 | ||
Langmuir | qm (mg g−1) | 2272.28 | 2329.55 | 2345.43 |
KL (L mg−1) | 0.1060 | 0.1195 | 0.1371 | |
R2 | 0.9631 | 0.9737 | 0.9833 | |
Freundlich | KF [(mg g−1)(L mg−1)]1/n | 436.43 | 459.84 | 474.33 |
1/n | 0.3856 | 0.3909 | 0.3856 | |
n | 2.59 | 2.55 | 2.50 | |
R2 | 0.9933 | 0.9970 | 0.9966 | |
Temkin | B (J mol−1) | 6.18 | 6.19 | 6.24 |
KT (L mg−1) | 1.9996 | 2.1779 | 2.2162 | |
R2 | 0.9339 | 0.9463 | 0.9663 | |
Dubinin–Radushkevich | qm (mg g−1) | 243.57 | 234.17 | 219.39 |
E (kJ mol−1) | 1.02 | 1.14 | 1.22 | |
R2 | 0.8248 | 0.8295 | 0.8395 |
Model | qexp (mg·g−1) | qe (mg·g−1) | k | R2 |
Pseudo first order | 95.1 | 45.56 | 0.1174 | 0.8862 |
Pseudo second order | 100.15 | 0.0051 | 0.9981 |
T (K) | ΔG° (kJ·mol−1) | ΔH° (kJ·mol−1) | ΔS° (J·mol−1·K−1) |
---|---|---|---|
298 | −9.1295 | 6.6114 | 52.9223 |
303 | −9.7529 | ||
318 | −10.1838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirdağ, E.; Demirel, M.F.; Benek, V.; Doğru, E.; Önal, Y.; Alkan, M.H.; Erol, K.; Alacabey, İ. Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation. Molecules 2025, 30, 2501. https://doi.org/10.3390/molecules30122501
Demirdağ E, Demirel MF, Benek V, Doğru E, Önal Y, Alkan MH, Erol K, Alacabey İ. Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation. Molecules. 2025; 30(12):2501. https://doi.org/10.3390/molecules30122501
Chicago/Turabian StyleDemirdağ, Esra, Mehmet Ferit Demirel, Veysel Benek, Elif Doğru, Yunus Önal, Mehmet Hüseyin Alkan, Kadir Erol, and İhsan Alacabey. 2025. "Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation" Molecules 30, no. 12: 2501. https://doi.org/10.3390/molecules30122501
APA StyleDemirdağ, E., Demirel, M. F., Benek, V., Doğru, E., Önal, Y., Alkan, M. H., Erol, K., & Alacabey, İ. (2025). Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation. Molecules, 30(12), 2501. https://doi.org/10.3390/molecules30122501