Exploring Single-Molecular Magnets for Quantum Technologies
Abstract
:1. Introduction
2. The Experimental Developments of SMMs
2.1. Chemical Synthesis and Molecular Ligand Engineering
2.2. Experimental Characterizations
3. The Theoretical Developments of SMMs
4. Quantum Science and Technologies Based on SMMs
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
1,3,5,7-cyclooctatetraene | |
penta-iso-propylcyclopentadienyl | |
tetramethylcyclopentadienyl | |
Bu3-1,2,4 | |
pentamethylcyclopentadienyl | |
Dmp | 2,6-dimesitylphenyl |
mnt | maleonitriledithiolate |
Bu | tert-butoxide |
Pc | phthalocyanine |
Piv | 2,2-dimethylpropanoate |
Py | pyridine |
2,,-(((nitrilotris(ethane-2,1 -diyl))tris(azanediyl))tris(methylene))tris-(4-bromophenol) |
References
- Sessoli, R.; Tsai, H.L.; Schake, A.R.; Wang, S.; Vincent, J.B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D.N. High-spin molecules: [Mn12O12 (O2CR)16 (H2O)4]. J. Am. Chem. Soc. 1993, 115, 1804–1816. [Google Scholar] [CrossRef]
- Aubin, S.M.J.; Wemple, M.W.; Adams, D.M.; Tsai, H.L.; Christou, G.; Hendrickson, D.N. Distorted MnIVMnIII3 Cubane Complexes as Single-Molecule Magnets. J. Am. Chem. Soc. 1996, 118, 7746–7754. [Google Scholar] [CrossRef]
- Blagg, R.J.; Ungur, L.; Tuna, F.; Speak, J.; Comar, P.; Collison, D.; Wernsdorfer, W.; McInnes, E.J.; Chibotaru, L.F.; Winpenny, R.E. Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat. Chem. 2013, 5, 673–678. [Google Scholar] [CrossRef]
- Liu, J.L.; Wu, J.Y.; Huang, G.Z.; Chen, Y.C.; Jia, J.H.; Ungur, L.; Chibotaru, L.F.; Chen, X.M.; Tong, M.L. Desolvation-driven 100-fold slow-down of tunneling relaxation rate in Co (II)-Dy (III) single-molecule magnets through a single-crystal-to-single-crystal Process. Sci. Rep. 2015, 5, 16621. [Google Scholar] [CrossRef]
- Guo, F.S.; Day, B.M.; Chen, Y.C.; Tong, M.L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef]
- Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Affronte, M. Molecular Nanomagnets and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ungur, L.; Chibotaru, L.F. Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg. Chem. 2016, 55, 10043–10056. [Google Scholar] [CrossRef]
- Shao, D.; Wang, X.Y. Development of Single-Molecule Magnets. Chin. J. Chem. 2020, 38, 1005–1018. [Google Scholar] [CrossRef]
- Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–104. [Google Scholar] [CrossRef]
- Spree, L.; Popov, A.A. Recent advances in single molecule magnetism of dysprosium-metallofullerenes. Dalton Trans. 2019, 48, 2861–2871. [Google Scholar] [CrossRef]
- Moreno-Pineda, E.; Wernsdorfer, W. Measuring molecular magnets for quantum technologies. Nat. Rev. Phys. 2021, 3, 645–659. [Google Scholar] [CrossRef]
- Wang, J.H.; Li, Z.Y.; Yamashita, M.; Bu, X.H. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coord. Chem. Rev. 2021, 428, 213617. [Google Scholar] [CrossRef]
- Martynov, A.G.; Horii, Y.; Katoh, K.; Bian, Y.; Jiang, J.; Yamashita, M.; Gorbunova, Y.G. Rare-earth based tetrapyrrolic sandwiches: Chemistry, materials and applications. Chem. Soc. Rev. 2022, 51, 9262–9339. [Google Scholar] [CrossRef]
- Ungur, L.; Lin, S.Y.; Tang, J.; Chibotaru, L.F. Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem. Soc. Rev. 2014, 43, 6894–6905. [Google Scholar] [CrossRef]
- Zabala-Lekuona, A.; Seco, J.M.; Colacio, E. Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev. 2021, 441, 213984. [Google Scholar] [CrossRef]
- Yamashita, M. Next generation multifunctional nano-science of advanced metal complexes with quantum effect and nonlinearity. Bull. Chem. Soc. Jpn. 2021, 94, 209–264. [Google Scholar] [CrossRef]
- Shahed, S.M.F.; Ara, F.; Hossain, M.I.; Katoh, K.; Yamashita, M.; Komeda, T. Observation of Yu–Shiba–Rusinov states and inelastic tunneling spectroscopy for intramolecule magnetic exchange interaction energy of terbium phthalocyanine (TbPc) species adsorbed on superconductor NbSe2. Acs Nano 2022, 16, 7651–7661. [Google Scholar] [CrossRef]
- Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular spins for quantum computation. Nat. Chem. 2019, 11, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T. Rational design of single-molecule magnets: A supramolecular approach. Chem. Commun. 2011, 47, 116–130. [Google Scholar] [CrossRef]
- Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord. Chem. Rev. 2015, 289-290, 74–122. [Google Scholar] [CrossRef]
- Maniaki, D.; Pilichos, E.; Perlepes, S.P. Coordination Clusters of 3d-Metals That Behave as Single-Molecule Magnets (SMMs): Synthetic Routes and Strategies. Front. Chem. 2018, 6, 461. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: New York, NY, USA, 2006; Volume 5. [Google Scholar]
- Friedman, J.R.; Sarachik, M.; Tejada, J.; Ziolo, R. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 1996, 76, 3830. [Google Scholar] [CrossRef] [PubMed]
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi, D.; Sessoli, R.; Barbara, B. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 1996, 383, 145–147. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.F.; Yin, B. The coexistence of long τ QTM and high Ueff as a concise criterion for a good single-molecule magnet: A theoretical case study of square antiprism dysprosium single-ion magnets. Phys. Chem. Chem. Phys. 2022, 24, 11729–11742. [Google Scholar] [CrossRef]
- Yin, B.; Li, C.C. A method to predict both the relaxation time of quantum tunneling of magnetization and the effective barrier of magnetic reversal for a Kramers single-ion magnet. Phys. Chem. Chem. Phys. 2020, 22, 9923–9933. [Google Scholar] [CrossRef]
- Yin, B.; Luo, L. The anisotropy of the internal magnetic field on the central ion is capable of imposing great impact on the quantum tunneling of magnetization of Kramers single-ion magnets. Phys. Chem. Chem. Phys. 2021, 23, 3093–3105. [Google Scholar] [CrossRef]
- Tasiopoulos, A.J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Giant single-molecule magnets: A Mn84 torus and its supramolecular nanotubes. Angew. Chem. 2004, 116, 2169–2173. [Google Scholar] [CrossRef]
- Sangregorio, C.; Ohm, T.; Paulsen, C.; Sessoli, R.; Gatteschi, D. Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 1997, 78, 4645. [Google Scholar] [CrossRef]
- Milios, C.J.; Vinslava, A.; Wernsdorfer, W.; Moggach, S.; Parsons, S.; Perlepes, S.P.; Christou, G.; Brechin, E.K. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 2007, 129, 2754–2755. [Google Scholar] [CrossRef]
- Sokol, J.J.; Hee, A.G.; Long, J.R. A cyano-bridged single-molecule magnet: Slow magnetic relaxation in a trigonal prismatic MnMo6(CN)18 cluster. J. Am. Chem. Soc. 2002, 124, 7656–7657. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Huang, X.C.; Zhou, C.; You, X.Z.; Wang, X.Y.; Dunbar, K.R. A single-molecule magnet based on heptacyanomolybdate with the highest energy barrier for a cyanide compound. J. Am. Chem. Soc. 2013, 135, 13302–13305. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.y.; Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef] [PubMed]
- Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. A tetranuclear 3d–4f single molecule magnet: [CuIILTbIII (hfac) 2]2. J. Am. Chem. Soc. 2004, 126, 420–421. [Google Scholar] [CrossRef]
- Langley, S.K.; Chilton, N.F.; Ungur, L.; Moubaraki, B.; Chibotaru, L.F.; Murray, K.S. Heterometallic tetranuclear [LnIII2CoIII2] complexes including suppression of quantum tunneling of magnetization in the [DyIII2CoIII2] single molecule magnet. Inorg. Chem. 2012, 51, 11873–11881. [Google Scholar] [CrossRef]
- Huang, X.C.; Zhou, C.; Wei, H.Y.; Wang, X.Y. End-on azido-bridged 3d–4f complexes showing single-molecule-magnet property. Inorg. Chem. 2013, 52, 7314–7316. [Google Scholar] [CrossRef]
- Tang, J.; Hewitt, I.; Madhu, N.; Chastanet, G.; Wernsdorfer, W.; Anson, C.E.; Benelli, C.; Sessoli, R.; Powell, A.K. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew. Chem. 2006, 118, 1761–1765. [Google Scholar] [CrossRef]
- Rinehart, J.D.; Fang, M.; Evans, W.J.; Long, J.R. Strong exchange and magnetic blocking in N23–radical-bridged lanthanide complexes. Nat. Chem. 2011, 3, 538–542. [Google Scholar] [CrossRef]
- Mills, D.P.; Moro, F.; McMaster, J.; Van Slageren, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. A delocalized arene-bridged diuranium single-molecule magnet. Nat. Chem. 2011, 3, 454–460. [Google Scholar] [CrossRef]
- Mougel, V.; Chatelain, L.; Pécaut, J.; Caciuffo, R.; Colineau, E.; Griveau, J.C.; Mazzanti, M. Uranium and manganese assembled in a wheel-shaped nanoscale single-molecule magnet with high spin-reversal barrier. Nat. Chem. 2012, 4, 1011–1017. [Google Scholar] [CrossRef]
- Aromí, G.; Brechin, E.K. Synthesis of 3D Metallic Single-Molecule Magnets. In Single-Molecule Magnets and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–67. [Google Scholar]
- Zadrozny, J.M.; Xiao, D.J.; Atanasov, M.; Long, G.J.; Grandjean, F.; Neese, F.; Long, J.R. Magnetic blocking in a linear iron (I) complex. Nat. Chem. 2013, 5, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Bunting, P.C.; Atanasov, M.; Damgaard-Møller, E.; Perfetti, M.; Crassee, I.; Orlita, M.; Overgaard, J.; van Slageren, J.; Neese, F.; Long, J.R. A linear cobalt (II) complex with maximal orbital angular momentum from a non-Aufbau ground state. Science 2018, 362, eaat7319. [Google Scholar] [CrossRef]
- Jiang, S.D.; Wang, B.W.; Su, G.; Wang, Z.M.; Gao, S. A Mononuclear Dysprosium Complex Featuring Single-Molecule-Magnet Behavior. Angew. Chem. 2010, 122, 7610–7613. [Google Scholar] [CrossRef]
- Goodwin, C.A.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef]
- Meihaus, K.R.; Long, J.R. Magnetic blocking at 10 K and a dipolar-mediated avalanche in salts of the bis (η8-cyclooctatetraenide) complex [Er (COT)2]−. J. Am. Chem. Soc. 2013, 135, 17952–17957. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Singleton, J.; Chen, W.P.; Nojiri, H.; Engelhardt, L.; Winpenny, R.E.; Zheng, Y.Z. Quantum Monte Carlo Simulations and High-Field Magnetization Studies of Antiferromagnetic Interactions in a Giant Hetero-Spin Ring. Angew. Chem. Int. Ed. 2017, 56, 16571–16574. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Liu, J.L.; Ungur, L.; Liu, J.; Li, Q.W.; Wang, L.F.; Ni, Z.P.; Chibotaru, L.F.; Chen, X.M.; Tong, M.L. Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy (III) single-ion magnets. J. Am. Chem. Soc. 2016, 138, 2829–2837. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.C.; Liu, J.L.; Vieru, V.; Ungur, L.; Jia, J.H.; Chibotaru, L.F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; et al. A stable pentagonal bipyramidal Dy (III) single-ion magnet with a record magnetization reversal barrier over 1000 K. J. Am. Chem. Soc. 2016, 138, 5441–5450. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R. An air-stable Dy (III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 2016, 7, 5181–5191. [Google Scholar] [CrossRef]
- Ding, Y.S.; Chilton, N.F.; Winpenny, R.E.; Zheng, Y.Z. On approaching the limit of molecular magnetic anisotropy: A near-perfect pentagonal bipyramidal dysprosium (III) single-molecule magnet. Angew. Chem. Int. Ed. 2016, 55, 16071–16074. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhai, Y.Q.; Chen, W.P.; Ding, Y.S.; Zheng, Y.Z. Air-Stable Hexagonal Bipyramidal Dysprosium (III) Single-Ion Magnets with Nearly Perfect D6h Local Symmetry. Chem. Eur. J. 2019, 25, 16219–16224. [Google Scholar] [CrossRef] [PubMed]
- Gould, C.A.; McClain, K.R.; Reta, D.; Kragskow, J.G.; Marchiori, D.A.; Lachman, E.; Choi, E.S.; Analytis, J.G.; Britt, R.D.; Chilton, N.F.; et al. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Mavragani, N.; Errulat, D.; Gálico, D.A.; Kitos, A.A.; Mansikkamäki, A.; Murugesu, M. Radical-Bridged Ln4 Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew. Chem. 2021, 133, 24408–24415. [Google Scholar] [CrossRef]
- Jin, P.B.; Zhai, Y.Q.; Yu, K.X.; Winpenny, R.E.; Zheng, Y.Z. Dysprosiacarboranes as Organometallic Single-Molecule Magnets. Angew. Chem. Int. Ed. 2020, 59, 9350–9354. [Google Scholar] [CrossRef]
- Aulakh, D.; Pyser, J.B.; Zhang, X.; Yakovenko, A.A.; Dunbar, K.R.; Wriedt, M. Metal–organic frameworks as platforms for the controlled nanostructuring of single-molecule magnets. J. Am. Chem. Soc. 2015, 137, 9254–9257. [Google Scholar] [CrossRef]
- Paschke, F.; Birk, T.; Enenkel, V.; Liu, F.; Romankov, V.; Dreiser, J.; Popov, A.A.; Fonin, M. Exceptionally High Blocking Temperature of 17 K in a Surface-Supported Molecular Magnet. Adv. Mater. 2021, 33, 2102844. [Google Scholar] [CrossRef] [PubMed]
- Spree, L.; Liu, F.; Neu, V.; Rosenkranz, M.; Velkos, G.; Wang, Y.; Schiemenz, S.; Dreiser, J.; Gargiani, P.; Valvidares, M.; et al. Robust single molecule magnet monolayers on graphene and graphite with magnetic hysteresis up to 28 K. Adv. Funct. Mater. 2021, 31, 2105516. [Google Scholar] [CrossRef]
- Boothroyd, A.T. Principles of Neutron Scattering from Condensed Matter; Oxford University Press: New York, NY, USA, 2020. [Google Scholar]
- Dunstan, M.A.; Mole, R.A.; Boskovic, C. Inelastic Neutron Scattering of Lanthanoid Complexes and Single-Molecule Magnets. Eur. J. Inorg. Chem. 2019, 2019, 1090–1105. [Google Scholar] [CrossRef]
- Weil, J.A.J.A. Electron Paramagnetic Resonance Elementary Theory and Practical Applications, 2nd ed.; Weil, J.A., Bolton, J.R., Eds.; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Atzori, M.; Tesi, L.; Morra, E.; Chiesa, M.; Sorace, L.; Sessoli, R. Room-temperature quantum coherence and rabi oscillations in vanadyl phthalocyanine: Toward multifunctional molecular spin qubits. J. Am. Chem. Soc. 2016, 138, 2154–2157. [Google Scholar] [CrossRef]
- Nolden, O.; Fleck, N.; Lorenzo, E.R.; Wasielewski, M.R.; Schiemann, O.; Gilch, P.; Richert, S. Excitation energy transfer and exchange-mediated quartet state formation in porphyrin-trityl systems. Chem.-Eur. J. 2021, 27, 2683–2691. [Google Scholar] [CrossRef]
- Bayliss, S.; Laorenza, D.; Mintun, P.; Kovos, B.; Freedman, D.; Awschalom, D. Optically addressable molecular spins for quantum information processing. Science 2020, 370, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Cornia, A.; Mannini, M.; Sainctavit, P.; Sessoli, R. Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem. Soc. Rev. 2011, 40, 3076–3091. [Google Scholar] [CrossRef] [PubMed]
- Mannini, M.; Pineider, F.; Sainctavit, P.; Joly, L.; Fraile-Rodríguez, A.; Arrio, M.A.; Cartier dit Moulin, C.; Wernsdorfer, W.; Cornia, A.; Gatteschi, D.; et al. X-ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv. Mater. 2009, 21, 167–171. [Google Scholar] [CrossRef]
- Liu, C.M.; Sun, R.; Wang, B.W.; Wu, F.; Hao, X.; Shen, Z. Homochiral ferromagnetic coupling Dy2 single-molecule magnets with strong magneto-optical faraday effects at room temperature. Inorg. Chem. 2021, 60, 12039–12048. [Google Scholar] [CrossRef]
- Greber, T.; Seitsonen, A.P.; Hemmi, A.; Dreiser, J.; Stania, R.; Matsui, F.; Muntwiler, M.; Popov, A.; Westerström, R. Circular dichroism and angular deviation in x-ray absorption spectra of Dy2ScN@C80 single-molecule magnets on h-BN/Rh (111). Phys. Rev. Mater. 2019, 3, 014409. [Google Scholar] [CrossRef]
- Kfir, O.; Zayko, S.; Nolte, C.; Sivis, M.; Möller, M.; Hebler, B.; Arekapudi, S.S.P.K.; Steil, D.; Schäfer, S.; Albrecht, M.; et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 2017, 3, eaao4641. [Google Scholar] [CrossRef]
- Rogez, G.; Donnio, B.; Terazzi, E.; Gallani, J.L.; Kappler, J.P.; Bucher, J.P.; Drillon, M. The quest for nanoscale magnets: The example of [Mn12] single molecule magnets. Adv. Mater. 2009, 21, 4323–4333. [Google Scholar] [CrossRef]
- Frauhammer, T.; Chen, H.; Balashov, T.; Derenbach, G.; Klyatskaya, S.; Moreno-Pineda, E.; Ruben, M.; Wulfhekel, W. Indirect spin-readout of rare-earth-based single-molecule magnet with scanning tunneling microscopy. Phys. Rev. Lett. 2021, 127, 123201. [Google Scholar] [CrossRef]
- Novikov, V.V.; Nelyubina, Y.V. Modern physical methods for the molecular design of single-molecule magnets. Russ. Chem. Rev. 2021, 90, 1330. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, C.; Feng, T.; Liu, X.; Ying, X.; Li, X.L.; Zhang, Y.Q.; Tang, J. Air-stable chiral single-molecule magnets with record anisotropy barrier exceeding 1800 K. J. Am. Chem. Soc. 2021, 143, 10077–10082. [Google Scholar] [CrossRef]
- Rubín, J.; Arauzo, A.; Bartolomé, E.; Sedona, F.; Rancan, M.; Armelao, L.; Luzón, J.; Guidi, T.; Garlatti, E.; Wilhelm, F.; et al. Origin of the Unusual Ground-State Spin S=9 in a Cr10 Single-Molecule Magnet. J. Am. Chem. Soc. 2022, 144, 12520–12535. [Google Scholar] [CrossRef] [PubMed]
- Mossin, S.; Tran, B.L.; Adhikari, D.; Pink, M.; Heinemann, F.W.; Sutter, J.; Szilagyi, R.K.; Meyer, K.; Mindiola, D.J. A mononuclear Fe (III) single molecule magnet with a 3/2 ↔ 5/2 spin crossover. J. Am. Chem. Soc. 2012, 134, 13651–13661. [Google Scholar] [CrossRef] [PubMed]
- Marin, R.; Brunet, G.; Murugesu, M. Shining new light on multifunctional lanthanide single-molecule magnets. Angew. Chem. Int. Ed. 2021, 60, 1728–1746. [Google Scholar] [CrossRef]
- Evans, D. 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. (Resumed) 1959, 2003–2005. [Google Scholar] [CrossRef]
- Carretta, P.; Lascialfari, A. NMR-MRI, μSR and Mössbauer Spectroscopies in Molecular Magnets; Springer Science & Business Media: Milan, Italy, 2007. [Google Scholar]
- Foguet-Albiol, D.; O’Brien, T.A.; Wernsdorfer, W.; Moulton, B.; Zaworotko, M.J.; Abboud, K.A.; Christou, G. DFT Computational Rationalization of an Unusual Spin Ground State in an Mn12 Single-Molecule Magnet with a Low-Symmetry Loop Structure. Angew. Chem. Int. Ed. 2005, 44, 897–901. [Google Scholar] [CrossRef]
- Ge, N.; Zhai, Y.Q.; Deng, Y.F.; Ding, Y.S.; Wu, T.; Wang, Z.X.; Ouyang, Z.; Nojiri, H.; Zheng, Y.Z. Rationalization of single-molecule magnet behavior in a three-coordinate Fe (III) complex with a high-spin state (S=5/2). Inorg. Chem. Front. 2018, 5, 2486–2492. [Google Scholar] [CrossRef]
- Chilton, N.F. Molecular Magnetism. Annu. Rev. Mater. Res. 2022, 52, 79–101. [Google Scholar] [CrossRef]
- Atanasov, M.; Ganyushin, D.; Sivalingam, K.; Neese, F. A modern first-principles view on ligand field theory through the eyes of correlated multireference wavefunctions. In Molecular Electronic Structures of Transition Metal Complexes II; Springer: Berlin/Heidelberg, Germany, 2012; pp. 149–220. [Google Scholar]
- Atanasov, M.; Aravena, D.; Suturina, E.; Bill, E.; Maganas, D.; Neese, F. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 2015, 289, 177–214. [Google Scholar] [CrossRef]
- Gu, L.; Wu, R. Origins of slow magnetic relaxation in single-molecule magnets. Phys. Rev. Lett. 2020, 125, 117203. [Google Scholar] [CrossRef]
- Ruiz, E.; Cirera, J.; Cano, J.; Alvarez, S.; Loose, C.; Kortus, J. Can large magnetic anisotropy and high spin really coexist? Chem. Commun. 2008, 1, 52–54. [Google Scholar] [CrossRef]
- Amsterdam Modeling Suite, SCM. Available online: http://www.scm.com (accessed on 4 June 2025).
- Rajaraman, G.; Ruiz, E.; Cano, J.; Alvarez, S. Theoretical determination of the exchange coupling constants of a single-molecule magnet Fe10 complex. Chem. Phys. Lett. 2005, 415, 6–9. [Google Scholar] [CrossRef]
- Cauchy, T.; Ruiz, E.; Alvarez, S. Exchange interactions in a Fe5 complex: A theoretical study using density functional theory. Inorganica Chim. Acta 2008, 361, 3832–3835. [Google Scholar] [CrossRef]
- Cauchy, T.; Ruiz, E.; Alvarez, S. Exchange coupling interactions in a Fe6 complex: A theoretical study using density functional theory. Phys. Condens. Matter 2006, 384, 116–119. [Google Scholar] [CrossRef]
- Ruiz, E.; Cano, J.; Alvarez, S.; Gouzerh, P.; Verdaguer, M. Theoretical study of the exchange coupling interactions in a polyoxometalate Fe9W12 complex. Polyhedron 2007, 26, 2161–2164. [Google Scholar] [CrossRef]
- Vignesh, K.R.; Martin, R.B.; Miller, G.; Rajaraman, G.; Murray, K.S.; Langley, S.K. {MnIII2LnIII2}(Ln= Gd, La or Y) butterfly complexes: Ferromagnetic exchange observed between bis-μ-alkoxo bridged manganese (III) ions. Polyhedron 2019, 170, 508–514. [Google Scholar] [CrossRef]
- Bellini, V.; Olivieri, A.; Manghi, F. Density-functional study of the Cr 8 antiferromagnetic ring. Phys. Rev. 2006, 73, 184431. [Google Scholar] [CrossRef]
- Vignesh, K.R.; Langley, S.K.; Murray, K.S.; Rajaraman, G. Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear {TMIII4DyIII4}(TM=Co and Cr) Single-Molecule Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling. Chem.-Eur. J. 2017, 23, 1654–1666. [Google Scholar] [CrossRef]
- Singh, S.K.; Beg, M.F.; Rajaraman, G. Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d–4f} Single-Molecule Magnets: A Theoretical Perspective. Chem. Eur. J. 2016, 22, 672–680. [Google Scholar] [CrossRef]
- Cano, J.; Costa, R.; Alvarez, S.; Ruiz, E. Theoretical study of the magnetic properties of an Mn12 single-molecule magnet with a loop structure: The role of the next-nearest neighbor interactions. J. Chem. Theory Comput. 2007, 3, 782–788. [Google Scholar] [CrossRef]
- Gomez-Coca, S.; Ruiz, E.; Kortus, J. Single-molecule magnet Fe 9 supramolecular dimers: A theoretical approach to intramolecular and intermolecular exchange interactions. Chem. Commun. 2009, 29, 4363–4365. [Google Scholar] [CrossRef]
- Moseley, D.H.; Stavretis, S.E.; Thirunavukkuarasu, K.; Ozerov, M.; Cheng, Y.; Daemen, L.L.; Ludwig, J.; Lu, Z.; Smirnov, D.; Brown, C.M.; et al. Spin–phonon couplings in transition metal complexes with slow magnetic relaxation. Nat. Commun. 2018, 9, 2572. [Google Scholar] [CrossRef] [PubMed]
- Srnec, M.; Chalupský, J.; Fojta, M.; Zendlová, L.; Havran, L.; Hocek, M.; Kyvala, M.; Rulíšek, L. Effect of Spin-Orbit Coupling on Reduction Potentials of Octahedral Ruthenium (II/III) and Osmium (II/III) Complexes. J. Am. Chem. Soc. 2008, 130, 10947–10954. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, M.; Neese, F. Computational studies on vibronic coupling in single molecule magnets: Impact on the mechanism of magnetic relaxation. Proc. J. Physics. Conf. Ser. 2018, 1148, 012006. [Google Scholar] [CrossRef]
- Gómez-Coca, S.; Urtizberea, A.; Cremades, E.; Alonso, P.J.; Camón, A.; Ruiz, E.; Luis, F. Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy. Nat. Commun. 2014, 5, 4300. [Google Scholar] [CrossRef]
- Castro-Alvarez, A.; Gil, Y.; Llanos, L.; Aravena, D. High performance single-molecule magnets, Orbach or Raman relaxation suppression? Inorg. Chem. Front. 2020, 7, 2478–2486. [Google Scholar] [CrossRef]
- Briganti, M.; Santanni, F.; Tesi, L.; Totti, F.; Sessoli, R.; Lunghi, A. A complete ab initio view of Orbach and Raman spin–lattice relaxation in a dysprosium coordination compound. J. Am. Chem. Soc. 2021, 143, 13633–13645. [Google Scholar] [CrossRef]
- Reta, D.; Kragskow, J.G.; Chilton, N.F. Ab initio prediction of high-temperature magnetic relaxation rates in single-molecule magnets. J. Am. Chem. Soc. 2021, 143, 5943–5950. [Google Scholar] [CrossRef]
- Lunghi, A.; Totti, F.; Sessoli, R.; Sanvito, S. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nat. Commun. 2017, 8, 14620. [Google Scholar] [CrossRef]
- Barone, V.; Alessandrini, S.; Biczysko, M.; Cheeseman, J.R.; Clary, D.C.; McCoy, A.B.; DiRisio, R.J.; Neese, F.; Melosso, M.; Puzzarini, C. Computational molecular spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 38. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules (International Series of Monographs on Chemistry); Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Szabo, A.; Ostlund, N.S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1st ed.; Dover Publications, Inc.: Mineola, NY, USA, 1996. [Google Scholar]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Challenges for density functional theory. Chem. Rev. 2012, 112, 289–320. [Google Scholar] [CrossRef]
- Verma, P.; Truhlar, D.G. Status and challenges of density functional theory. Trends Chem. 2020, 2, 302–318. [Google Scholar] [CrossRef]
- Himmetoglu, B.; Floris, A.; De Gironcoli, S.; Cococcioni, M. Hubbard-corrected DFT energy functionals: The LDA+ U description of correlated systems. Int. J. Quantum Chem. 2014, 114, 14–49. [Google Scholar] [CrossRef]
- Janesko, B.G. Replacing hybrid density functional theory: Motivation and recent advances. Chem. Soc. Rev. 2021, 50, 8470–8495. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J. The CASSCF method: A perspective and commentary. Int. J. Quantum Chem. 2011, 111, 3267–3272. [Google Scholar] [CrossRef]
- García, V.; Castell, O.; Caballol, R.; Malrieu, J. An iterative difference-dedicated configuration interaction. Proposal and test studies. Chem. Phys. Lett. 1995, 238, 222–229. [Google Scholar] [CrossRef]
- David, G.; Ferré, N.; Le Guennic, B. Consistent Evaluation of Magnetic Exchange Couplings in Multicenter Compounds in KS-DFT: The Recomposition Method. J. Chem. Theory Comput. 2022, 19, 157–173. [Google Scholar] [CrossRef]
- Gupta, T.; Rajaraman, G. Modelling spin Hamiltonian parameters of molecular nanomagnets. Chem. Commun. 2016, 52, 8972–9008. [Google Scholar] [CrossRef]
- Swain, A.; Sarkar, A.; Rajaraman, G. Role of Ab Initio Calculations in the Design and Development of Organometallic Lanthanide-Based Single-Molecule Magnets. Chem.-Asian J. 2019, 14, 4056–4073. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.F.; Yin, B. The interpretation and prediction of lanthanide single-ion magnets from ab initio electronic structure calculation: The capability and limit. Dalton Trans. 2022, 51, 14793–14816. [Google Scholar] [CrossRef]
- Cornia, A.; Mannini, M. Single-molecule magnets on surfaces. In Molecular Nanomagnets and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2015; pp. 293–330. [Google Scholar]
- Liu, J.; Li, J.; Xu, Z.; Zhou, X.; Xue, Q.; Wu, T.; Zhong, M.; Li, R.; Sun, R.; Shen, Z.; et al. On-surface preparation of coordinated lanthanide-transition-metal clusters. Nat. Commun. 2021, 12, 1619. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Frisch, M. gaussian09. 2009. Available online: http://www.gaussian.com (accessed on 4 June 2025).
- Artacho, E.; Anglada, E.; Diéguez, O.; Gale, J.D.; García, A.; Junquera, J.; Martin, R.M.; Ordejón, P.; Pruneda, J.M.; Sánchez-Portal, D.; et al. The SIESTA method; developments and applicability. J. Phys. Condens. Matter 2008, 20, 064208. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Aquilante, F.; De Vico, L.; Ferré, N.; Ghigo, G.; Malmqvist, P.å.; Neogrády, P.; Pedersen, T.B.; Pitoňák, M.; Reiher, M.; Roos, B.O.; et al. MOLCAS 7: The next generation. J. Comput. Chem. 2010, 31, 224–247. [Google Scholar] [CrossRef]
- Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. cp2k: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 15–25. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D.; Luitz, J.; Laskowski, R.; Tran, F.; Marks, L.D. WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Vienna, Austria, 2018. [Google Scholar]
- Balasubramani, S.G.; Chen, G.P.; Coriani, S.; Diedenhofen, M.; Frank, M.S.; Franzke, Y.J.; Furche, F.; Grotjahn, R.; Harding, M.E.; Hättig, C.; et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152, 184107. [Google Scholar] [CrossRef] [PubMed]
- Troiani, F.; Ghirri, A.; Paris, M.; Bonizzoni, C.; Affronte, M. Towards quantum sensing with molecular spins. J. Magn. Magn. Mater. 2019, 491, 165534. [Google Scholar] [CrossRef]
- Laorenza, D.W.; Freedman, D.E. Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces? J. Am. Chem. Soc. 2022, 144, 21810–21825. [Google Scholar] [CrossRef]
- Lunghi, A.; Sanvito, S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat. Rev. Chem. 2022, 6, 761–781. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Huang, T.; Zhu, J.; Zou, T.; Wang, H. Exploring Single-Molecular Magnets for Quantum Technologies. Molecules 2025, 30, 2522. https://doi.org/10.3390/molecules30122522
Wu W, Huang T, Zhu J, Zou T, Wang H. Exploring Single-Molecular Magnets for Quantum Technologies. Molecules. 2025; 30(12):2522. https://doi.org/10.3390/molecules30122522
Chicago/Turabian StyleWu, Wei, Tianhong Huang, Jianhua Zhu, Taoyu Zou, and Hai Wang. 2025. "Exploring Single-Molecular Magnets for Quantum Technologies" Molecules 30, no. 12: 2522. https://doi.org/10.3390/molecules30122522
APA StyleWu, W., Huang, T., Zhu, J., Zou, T., & Wang, H. (2025). Exploring Single-Molecular Magnets for Quantum Technologies. Molecules, 30(12), 2522. https://doi.org/10.3390/molecules30122522