Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate
Abstract
1. Introduction
2. Results and Discussion
2.1. Identification of the Best Strains
2.2. Substrate Conversion Analysis
2.3. Effect of Medium Type on the Catalytic Activity of CGMCC NO:28566 Strain
2.4. Effect of NADESs and the Method of Addition of NADES on the Reduction Activity of CGMCC NO:28566
2.5. Effect of ChCl:U (1:2) Content on the Reduction Reaction
2.6. Comparison of Optimization of Key Reaction Conditions Before and After Co-Culture Treatment
2.6.1. Effect of Temperature on Reduction Reaction Before and After Co-Culture Treatment
2.6.2. Effect of Reaction Time on Reduction Reaction Before and After Co-Culture Treatment
2.6.3. Effect of pH on Reduction Reaction Before and After Co-Culture Treatment
2.7. Effect of ChCl:U (1:2) and Its Individual Components on the Reduction Reaction
2.8. Effect of ChCl:U (1:2) and Its Single Component on Cell Membrane Permeability
2.9. FTIR Analysis of ChCl:U (1:2) and Its Single Components
2.10. FCM Analysis Under Different Treatment Conditions of ChCl:U (1:2)
2.11. SEM Analysis of CGMCC NO:28566 Strain Cells Under Different Treatment Conditions of ChCl:U (1:2)
3. Materials and Methods
3.1. Materials and Reagents
3.2. Screening, Identification, and Culture of Microorganisms
3.3. Asymmetric Bioreduction Process
3.4. Analytical Methods
3.5. Selection of the Most Suitable Culture Medium
3.6. Effect of Different NADESs on Biotransformation of COBE
3.7. Effect of Secondary Addition of NADESs on the Biotransformation of COBE
3.8. Optimization of Biotransformation Conditions
3.9. Comparison of Assisted Catalysis of Related Components in Preferred NADES by Two Addition Methods
3.10. Characterization of Cell Permeability Under Different Addition Conditions of NADES
3.11. FTIR Characterization of ChCl:U (1:2) and Its Single Components
3.12. FCM Characterization of Cells Obtained by Different Treatment Conditions
3.13. SEM Observation of Cells Obtained Under Different Treatment Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, S.H.; Mu, T.C.; Wu, W.Z. Advances in Deep Eutectic Solvents: New Green Solvents. Processes 2023, 11, 1920. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; Guardia, M.D.L.; Andruch, V.; Vilková, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Svigelj, R.; Zanette, F.; Toniolo, R. Electrochemical Evaluation of Tyrosinase Enzymatic Activity in Deep Eutectic Solvent and Aqueous Deep Eutectic Solvent. Sensors 2023, 23, 3915. [Google Scholar] [CrossRef]
- Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chim. 2018, 21, 628–638. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; Mcalpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ren, H.W.; Maarof, H.; Udin, S.M.; Liu, Y.Z.; Li, M.Y.; Alias, H.; Duan, E. The effect of water content on lignin solubilization in deep eutectic solvents. J. Mol. Liq. 2023, 374, 121271. [Google Scholar] [CrossRef]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 2016, 18, 2. [Google Scholar] [CrossRef]
- Yu, T.; Manman, Z.; Hu, T.T.; Liu, C.G. Natural deep eutectic solvent—A novel green solvent for protein stabilization. Int. J. Biol. Macromol. 2023, 247, 125477. [Google Scholar] [CrossRef]
- Qian, F.; Liu, H.Y.; Yu, S.R.; Zhang, Y.; Wang, P. New Strategy for Effective Biosynthesis of Chiral Aryl Alcohols: Co-Cultivation Microbe with Natural Deep-Eutectic Solvent. ACS Sustain. Chem. Eng. 2023, 11, 4441–4449. [Google Scholar] [CrossRef]
- Długosz, O. Natural Deep Eutectic Solvents in the Synthesis of Inorganic Nanoparticles. Materials 2023, 16, 627. [Google Scholar] [CrossRef]
- Ye, M.Q.; Ye, Y.Q.; Du, Z.J.; Chen, G.J. Cell-surface engineering of yeasts for whole-cell biocatalysts. Bioprocess Biosyst. Eng. 2021, 44, 1003–1019. [Google Scholar] [CrossRef] [PubMed]
- Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D. Whole Cells as Biocatalysts in Organic Transformations. Molecules 2018, 23, 1265. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.G.; Chen, M.Q.; Zeng, X.; Li, W.J.; Liang, S.L.; Lin, Y. Improving the catalytic performance of Pichia pastoris whole-cell biocatalysts by fermentation process. RSC Adv. 2023, 11, 36329–36339. [Google Scholar] [CrossRef]
- Sadiq, I.Z.; Muhammad, A.; Mada, S.B.; Ibrahim, B.; Umar, U.A. Biotherapeutic effect of cell-penetrating peptides against microbial agents: A review. Tissue Barriers 2022, 10, 1995285. [Google Scholar] [CrossRef]
- Yang, T.X.; Zhao, L.Q.; Wang, J.; Song, G.L.; Liu, H.M.; Cheng, H.; Yang, Z. Improving Whole-Cell Biocatalysis by Addition of Deep Eutectic Solvents and Natural Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 5713–5722. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Liu, C.Y.; Cai, S.; Guo, L.B.; Kim, I.W.; Kalia, V.C.; Lee, J.K.; Zhang, Y.W. Cloning, expression and characterization of a highly active alcohol dehydrogenase for production of ethyl (S)-4-chloro-3-hydroxybutyrate. Indian J. Microbiol. 2019, 59, 225–233. [Google Scholar] [CrossRef]
- Zhu, J.F.; Bai, Y.J.; Fan, T.P.; Zheng, X.H.; Cai, Y.J. Characterization of acid-resistant aldo–keto reductases capable of asymmetric synthesis of (R)-CHBE from Lactobacillus plantarum DSM20174. Syst. Microbiol. Biomanufacturing 2023, 3, 634–646. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.Q.; Lin, C.P.; Zheng, Y.G. Efficient biosynthesis of ethyl (R)-4-chloro-3-hydroxybutyrate using a stereoselective carbonyl reductase from Burkholderia gladioli. BMC Biotechnol. 2016, 16, 70. [Google Scholar] [CrossRef]
- Marcus, Y. Unconventional deep eutectic solvents: Aqueous salt hydrates. ACS Sustain. Chem. Eng. 2017, 5, 11780–11787. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, J.X.; Tang, Y.L.; Wang, J.; Yang, Z. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 2015, 132, 63–69. [Google Scholar] [CrossRef]
- Monhemi, H.; Housaindokht, M.R.; Moosavi-Movahedi, A.A.; Bozorgmehr, M.R. How a protein can remain stable in a solvent with high content of urea: Insights from molecular dynamics simulation of Candida antarctica lipase B in urea: Choline chloride deep eutectic solvent. Phys. Chem. Chem. Phys. 2014, 16, 14882–14893. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Jung, J.B.; Kang, S.; Li, K.; Hwang, I.; Jeong, J.H.; Kim, H.S.; Lee, J. Toxico-metabolomics study of a deep eutectic solvent comprising choline chloride and urea suggests in vivo toxicity involving oxidative stress and ammonia stress. Green Chem. 2021, 23, 1300–1311. [Google Scholar] [CrossRef]
- Gao, X.; Liu, J.; Li, B.; Xie, J. Antibacterial Activity and Antibacterial Mechanism of Lemon Verbena Essential Oil. Molecules 2023, 28, 3102. [Google Scholar] [CrossRef]
- Ashworth, C.R.; Matthews, R.P.; Welton, T.; Hunt, P.A. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Phys. Chem. Chem. Phys. 2016, 18, 18145–18160. [Google Scholar] [CrossRef]
- Rosenberg, M.; Azevedo, N.F.; Ivask, A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 2019, 9, 6483. [Google Scholar] [CrossRef]
- Sharma, T.; Kavita Mishra, B.B.; Variyar, P.S. Detection of Gamma Radiation Processed Onion During Storage Using Propidium Iodide Based Fluorescence Microscopy. Food Chem. 2022, 398, 133928. [Google Scholar] [CrossRef]
- Zhang, N.; Fan, Y.; Li, C.; Wang, Q.M.; Leksawasdi, N.; Li, F.L.; Wang, S.A. Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts. Appl. Microbiol. Biotechnol. 2018, 10, 4183–4191. [Google Scholar] [CrossRef] [PubMed]
- Soares, G.A.; Alnoch, R.C.; Santos, L.A.D.; Mafra, M.R.; Mitchell, D.A.; Krieger, N. High hydrolytic activity of the metagenomic lipase LipC12 in deep eutectic solvents. J. Mol. Liq. 2023, 391, 123383. [Google Scholar] [CrossRef]
- Ghazali, Z.; Yarmo, M.A.; Hassan, N.H.; Teh, L.P.; Othaman, R. New Green Adsorbent for Capturing Carbon Dioxide by Choline Chloride: Urea-Confined Nanoporous Silica. Arab. J. Sci. Eng. 2020, 45, 4621–4634. [Google Scholar] [CrossRef]
- Stefanovic, R.; Ludwig, M.; Webber, G.B.; Atkin, R.; Page, A.J. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys. Chem. Chem. Phys. 2017, 19, 3297. [Google Scholar] [CrossRef]
Component Ⅰ | Component Ⅱ | Proportion (mol) |
---|---|---|
betaine | glycerol | 1:2 |
betaine | xylitol | 1:2 |
betaine | urea | 1:2 |
choline chloride | urea | 1:2 |
choline chloride | xylitol | 1:2 |
choline chloride | glucose | 3:2 |
choline chloride | glycerol | 1:2 |
choline chloride | lysine | 1:2 |
choline chloride | glutathione | 1:1 |
proline | urea | 1:2 |
Groups | Net OD260 nm | Net OD280 nm |
---|---|---|
Control | 0.122 ± 0.015 | 0.158 ± 0.010 |
Urea * 24 h | 0.135 ± 0.002 | 0.166 ± 0.012 |
Choline chloride * 24 h | 0.145 ± 0.019 | 0.171 ± 0.011 |
Urea + Choline chloride *24 h | 0.173 ± 0.023 | 0.191 ± 0.009 |
ChCl:U (1:2) * 24 h | 0.351 ± 0.022 | 0.385 ± 0.024 |
Urea # 24 h | 0.175 ± 0.016 | 0.193 ± 0.007 |
Choline chloride # 24 h | 0.183 ± 0.013 | 0.199 ± 0.020 |
Urea + Choline chloride # 24 h | 0.211 ± 0.021 | 0.341 ± 0.005 |
ChCl:U (1:2) # 24 h | 0.583 ± 0.007 | 0.671 ± 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, B.; Dai, Y.; Tao, Z.; Tang, L.; Ou, Z. Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate. Molecules 2025, 30, 2869. https://doi.org/10.3390/molecules30132869
Wang Y, Liu B, Dai Y, Tao Z, Tang L, Ou Z. Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate. Molecules. 2025; 30(13):2869. https://doi.org/10.3390/molecules30132869
Chicago/Turabian StyleWang, Yanni, Bo Liu, Yanmei Dai, Zijuan Tao, Lan Tang, and Zhimin Ou. 2025. "Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate" Molecules 30, no. 13: 2869. https://doi.org/10.3390/molecules30132869
APA StyleWang, Y., Liu, B., Dai, Y., Tao, Z., Tang, L., & Ou, Z. (2025). Natural Low-Eutectic Solvent Co-Culture-Assisted Whole-Cell Catalyzed Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutyrate. Molecules, 30(13), 2869. https://doi.org/10.3390/molecules30132869