Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO
Abstract
1. Introduction
2. Results and Discussions
3. Theoretical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drewniak, S.; Drewniak, L.; Pustelny, T. Mechanisms of NO2 Detection in Hybrid Structures Containing Reduced Graphene Oxide: A Review. Sensors 2022, 22, 5316. [Google Scholar] [CrossRef]
- Lee, H.Y.; Heish, Y.C.; Lee, C.T. High Sensitivity Detection of Nitrogen Oxide gas at Room Temperature using Zinc Oxide-Reduced Graphene Oxide Sensing Membrane. J. Alloy Compd. 2019, 773, 950–954. [Google Scholar] [CrossRef]
- Li, J.; Yang, M.; Cheng, X.; Zhang, X.; Guo, C.; Xu, Y.; Gao, S.; Major, Z.; Zhao, H.; Huo, L. Fast Detection of NO2 by Porous SnO2 Nanotoast Sensor at Low Temperature. J. Hazard. Mater. 2021, 419, 126414. [Google Scholar] [CrossRef] [PubMed]
- Wojcika, B.U.; Vincenta, T.A.; Chowdhuryb, M.F.; Gardner, J.W. Ultrasensitive WO3 Gas Sensors for NO2 Detection in Air and Low Oxygen Environment. Sens. Actuator B Chem. 2017, 239, 1051–1059. [Google Scholar] [CrossRef]
- Yong, Y.; Su, X.; Cui, H.; Zhou, Q.; Kuang, Y.; Li, X. Two-Dimensional Tetragonal GaN as Potential Molecule Sensors for NO and NO2 Detection: A First-Principle Study. ACS Omega 2017, 2, 8888–8895. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.J.; Black, N.C.G.; Castanon, E.G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of Graphene and 2D Material-based Gas Sensors for Environmental Monitoring. 2D Mater. 2020, 7, 032002. [Google Scholar] [CrossRef]
- Chen, T.; Cheng, Z.; Tian, Q.; Wang, J.; Yu, X.; Ho, D. Nitrogen Dioxide Gas Sensor Based on Liquid-Phase-Exfoliated Black Phosphorus Nanosheets. ACS Appl. Nano Mater. 2020, 3, 6440–6447. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P.; Tripathi, N.; Sharma, P.; Calle, F. A Review on 2D Transition Metal Di-chalcogenides and Metal Oxide Nanostructures based NO2 Gas Sensors. Mater. Sci. Semicond. Process. 2020, 107, 104865. [Google Scholar] [CrossRef]
- Louis, H.; Egemonye, T.C.; Unimuke, T.O.; Inah, B.E.; Edet, H.O.; Eno, E.A.; Adalikwu, S.A.; Adeyinka, A.S. Detection of Carbon, Sulfur, and Nitrogen Dioxide Pollutants with a 2D Ca12O12 Nanostructured Material. ACS Omega 2022, 7, 34929–34943. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, W.; Liu, X.; Zhang, L.; Zheng, L.; Yang, C.; Pinna, N.; Zhang, J. Platinum Single Atoms on Tin Oxide Ultrathin Films for Extremely Sensitive Gas Detection. Mater. Horizons 2020, 7, 1519–1527. [Google Scholar] [CrossRef]
- Sun, X.; Lan, Q.; Geng, J.; Yu, M.; Li, Y.; Li, X.; Chen, L. Polyoxometalate as Electron Acceptor in Dye/TiO2 Films to Accelerate Room-temperature NO2 Gas Sensing. Sens. Actuator B Chem. 2023, 374, 132795. [Google Scholar] [CrossRef]
- Aghaei, S.M.; Monshi, M.M.; Torres, I.; Zeidi, S.M.J.; Calizo, I. DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: A search for highly sensitive molecular sensor. Appl. Surf. Sci. 2018, 427, 326–333. [Google Scholar] [CrossRef]
- Gusmao, R.; Sofer, Z.; Pumera, M. Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angew. Chem. Int. Edit. 2017, 56, 8052–8072. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Kong, X.; Qiao, J.; Ji, W. Strain- and Twist-engineered Optical Absorption of Few-layer Black Phosphorus. Sci. China Phys. Mech. Astron. 2016, 59, 696811. [Google Scholar] [CrossRef]
- Kou, L.; Chen, C.; Smith, S.C. Phosphorene: Fabrication, Properties, and Applications. J. Phys. Chem. Lett. 2015, 6, 2794–2805. [Google Scholar] [CrossRef]
- Lei, S.; Wang, H.; Huang, L.; Sun, Y.Y.; Zhang, S. Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus. Nano Lett. 2016, 16, 1317–1322. [Google Scholar] [CrossRef]
- Lee, G.; Kim, S.; Jung, S.; Jang, S.; Kim, J. Suspended Black Phosphorus Nanosheet Gas Sensors. Sens. Actuator B Chem. 2017, 250, 569–573. [Google Scholar] [CrossRef]
- Cho, S.Y.; Lee, Y.; Koh, H.J.; Jung, H.; Kim, J.S.; Yoo, H.W.; Kim, J.; Jung, H.T. Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene. Adv. Mater. 2016, 28, 7020–7028. [Google Scholar] [CrossRef]
- Cui, S.; Pu, H.; Wells, S.A.; Wen, Z.; Mao, S.; Chang, J.; Hersam, M.C.; Chen, J. Ultrahigh Sensitivity and Layer-Dependent Sensing Performance of Phosphorene-based Gas Sensors. Nat. Commun. 2015, 6, 8632. [Google Scholar] [CrossRef]
- Zhang, H.P.; Kou, L.; Jiao, Y.; Du, A.; Tang, Y.; Ni, Y. Strain Engineering of Selective Chemical Adsorption on Monolayer Black Phosphorous. Appl. Surf. Sci. 2020, 503, 144033. [Google Scholar] [CrossRef]
- Kumawat, R.L.; Pathak, B. Prospects of Black Phosphorus Nanoribbon for Explosive Sensing: A Computational Approach. Appl. Surf. Sci. 2020, 529, 147094. [Google Scholar] [CrossRef]
- Ghashghaee, M.; Ghambarian, M. Defect Engineering and Zinc Oxide Doping of Black Phosphorene for Nitrogen Dioxide Capture and Detection: Quantum-chemical Calculations. Appl. Surf. Sci. 2020, 523, 146527. [Google Scholar] [CrossRef]
- Kaewmaraya, T.; Ngamwongwan, L.; Moontragoon, P.; Karton, A.; Hussain, T. Drastic Improvement in Gas-Sensing Characteristics of Phosphorene Nanosheets under Vacancy Defects and Elemental Functionalization. J. Phys. Chem. C 2018, 122, 20186–20193. [Google Scholar] [CrossRef]
- Meshginqalam, B.; Barvestani, J. Vacancy Defected Blue and Black Phosphorene Nanoribbons as Gas Sensor of NOx and SOx Molecules. Appl. Surf. Sci. 2020, 526, 146692. [Google Scholar] [CrossRef]
- Moghaddaszadeh, Z.; Toosi, M.R.; Zardoost, M.R.; Arabieh, M. First-principle Study of the Adsorption of Volatile Sulfur Compounds on Black Phosphorene Nanosheets Doped with Some Transition Metals. Mon. Chem. 2020, 151, 1501–1510. [Google Scholar] [CrossRef]
- Ou, P.; Song, P.; Liu, X.; Song, J. Superior Sensing Properties of Black Phosphorus as Gas Sensors: A Case Study on the Volatile Organic Compounds. Adv. Theory Simul. 2019, 2, 1800103. [Google Scholar] [CrossRef]
- Valt, M.; Caporali, M.; Fabbri, B.; Gaiardo, A.; Krik, S.; Iacob, E.; Vanzetti, L.; Malagu, C.; Banchelli, M.; D’Andrea, C.; et al. Air Stable Nickel-Decorated Black Phosphorus and Its Room-Temperature Chemiresistive Gas Sensor Capabilities. ACS Appl. Mater. Interfaces 2021, 13, 44711–44722. [Google Scholar] [CrossRef]
- Yang, D.; Han, N.; Gao, R.; Cheng, Y. Metal doped Black Phosphorene for Gas Sensing and Catalysis: A First-principles Perspective. Appl. Surf. Sci. 2022, 586, 152743. [Google Scholar] [CrossRef]
- Ghadiri, M.; Ghashghaee, M.; Ghambarian, M. Influence of NiO Decoration on Adsorption Capabilities of Black Phosphorus Monolayer toward Nitrogen Dioxide: Periodic DFT Calculations. Mol. Simul. 2020, 46, 1062–1072. [Google Scholar] [CrossRef]
- Liang, T.; Dai, Z.; Liu, Y.; Zhang, X.; Zeng, H. Suppression of Sn2+ and Lewis acidity in SnS2/black phosphorus heterostructure for ppb-level room temperature NO2 gas sensor. Sci. Bull. 2021, 66, 2471–2478. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, C.; Wang, Y.; Chen, X.; Jing, R.; Song, T.; Zhang, Z.; Wang, H.; Fu, C.; Wang, J. Black Phosphorus Nanodot Incorporated Tin Oxide Hollow-spherical Heterojunction for Enhanced Properties of Room-Temperature Gas Sensors. Ceram. Int. 2023, 49, 8248–8258. [Google Scholar] [CrossRef]
- Lei, S.Y.; Shen, H.Y.; Sun, Y.Y.; Wan, N.; Yu, H.; Zhang, S. Enhancing the ambient stability of few-layer black phosphorus by surface modification. RSC Adv. 2018, 8, 14676–14683. [Google Scholar] [CrossRef]
- Lei, S.Y.; Sun, X.L.; Shen, H.Y. The Effect of Adatom Concentration on the Oxidation Reaction of Phosphorene. Mater. Res. Express 2019, 6, 025905. [Google Scholar] [CrossRef]
- Lei, S.Y.; Guo, S.J.; Sun, X.L.; Yu, H.; Xu, F.; Wan, N.; Wang, Z.A. Capture and dissociation of dichloromethane on Fe, Ni, Pd and Pt decorated phosphorene. Appl. Surf. Sci. 2019, 495, 143533. [Google Scholar] [CrossRef]
- Lei, S.Y.; Yu, Z.Y.; Shen, H.Y.; Sun, X.L.; Wan, N.; Yu, H. CO Adsorption on Metal-Decorated Phosphorene. Acs Omega 2018, 3, 3957–3965. [Google Scholar] [CrossRef]
- Wang, M.Y.; Jiang, Y.C.; Zhang, Q.; Tao, J.N.; Hussain, S.; Liu, G.W.; Wan, N.; Lei, S.Y. Study on the Properties of the Ferroelectric Photocatalytic Hydrogen Evolution Reaction for Chemically Functionalized Phosphorene Nanosheets. ACS Appl. Energ. Mater. 2023, 6, 7985–7995. [Google Scholar] [CrossRef]
- Wang, M.Y.; Shi, H.; Tian, M.; Chen, R.W.; Shu, J.P.; Zhang, Q.; Wang, Y.H.; Li, C.Y.; Wan, N.; Lei, S.Y. Single Nickel Atom-Modified Phosphorene Nanosheets for Electrocatalytic CO2 Reduction. ACS Appl. Nano Mater. 2021, 4, 11017–11030. [Google Scholar] [CrossRef]
- Wang, Y.H.; Lei, S.Y.; Gao, R.; Sun, X.L.; Chen, J. Effect of metal decoration on sulfur-based gas molecules adsorption on phosphorene. Sci Rep. 2021, 11, 18179. [Google Scholar] [CrossRef]
- Lei, S.Y.; Gao, R.; Sun, X.L.; Guo, S.J.; Yu, H.; Wan, N.; Xu, F.; Chen, J. Nitrogen-based Gas Molecule Adsorption of Monolayer Phosphorene under Metal Functionalization. Sci Rep. 2019, 9, 12498. [Google Scholar] [CrossRef]
- Wang, M.Y.; Li, L.H.; Zhao, G.H.; Xu, Z.W.; Hussain, S.; Wang, M.S.; Qiao, G.J.; Liu, G.W. Influence of the Surface Decoration of Phosphorene with Ag Nanoclusters on Gas Sensing Properties. Appl. Surf. Sci. 2020, 504, 144374. [Google Scholar] [CrossRef]
- Hu, J.X.; Zhao, L.; Du, J.G.; Jiang, G. Adsorption of rare gases on pristine and doped phosphorene. Appl. Surf. Sci. 2020, 504, 144326. [Google Scholar] [CrossRef]
- Ghadiri, M.; Ghashghaee, M.; Ghambarian, M. Mn-Doped Black Phosphorene for Ultrasensitive Hydrogen Sulfide Detection: Periodic DFT Calculations. Phys. Chem. Chem. Phys. 2020, 22, 15549–15558. [Google Scholar] [CrossRef] [PubMed]
- Ghambarian, M.; Azizi, Z.; Ghashghaee, M. Hydrogen Detection on Black Phosphorene doped with Ni, Pd, and Pt: Periodic Density Functional Calculations. Int. J. Hydrog. Energy 2020, 45, 16298–16309. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Li, J.; Zhang, R.; Zhao, H.; Wang, Y. Ag Decoration-enabled Sensitization Enhancement of Black Phosphorus Nanosheets for Trace NO2 Detection at Room Temperature. J. Hazard. Mater. 2022, 435, 129086. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Koh, H.J.; Yoo, H.W.; Jung, H.T. Tunable Chemical Sensing Performance of Black Phosphorus by Controlled Functionalization with Noble Metals. Chem. Mat. 2017, 29, 7197–7205. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Q.; Pan, Y.; Huang, F.; Tang, L.; Liu, C.; Cheng, Z.; Wang, P.; Ma, J.; Ding, M. Single-Atom Tailoring of Two-Dimensional Atomic Crystals Enables Highly Efficient Detection and Pattern Recognition of Chemical Vapors. ACS Sensors 2022, 7, 1533–1543. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, M.; Zhang, X.; Li, Z.; Du, K.; Yang, J.; Lei, S.-Y.; Qiao, G.; Ou, J.Z.; Liu, G. A 2D-0D-2D Sandwich Heterostructure toward High-performance Room-temperature Gas Sensing. ACS Nano 2024, 18, 3669–3680. [Google Scholar] [CrossRef]
- Xue, Z.; Yan, M.; Yu, X.; Tong, Y.; Zhou, H.; Zhao, Y.; Wang, Z.; Zhang, Y.; Xiong, C.; Yang, J. One-dimensional Segregated Single Au Sites on Step-rich ZnO Ladder for Ultrasensitive NO2 sensors. Chem 2020, 6, 3364–3373. [Google Scholar] [CrossRef]
- Kulish, V.V.; Malyi, O.I.; Persson, C.; Wu, P. Adsorption of Metal Adatoms on Single-layer Phosphorene. Phys. Chem. Chem. Phys. 2015, 17, 992–1000. [Google Scholar] [CrossRef]
- Moschetto, S.; Ienco, A.; Manca, G.; Serrano-Ruiz, M.; Peruzzini, M.; Mezzi, A.; Brucale, M.; Bolognesi, M.; Toffanin, S. Easy and Fast In Situ Functionalization of Exfoliated 2D Black Phosphorus with Gold Nanoparticles. Dalton Trans. 2021, 50, 11610–11618. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.K.; Wu, Y.; Zhang, X.; Chambaud, G.; Han, Y.; Meng, C.G. Pd Speciation on Black Phosphorene in a CO and C2H4 Atmosphere: A First-principles Investigation. Phys. Chem. Chem. Phys. 2022, 24, 14284–14293. [Google Scholar] [CrossRef]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.B.; Neto, A.H.C. Phosphorene: From Theory to Applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Benini, F.; Bassoli, N.; Restuccia, P.; Ferrario, M.; Righi, M.C. Interaction of Water and Oxygen Molecules with Phosphorene: An Ab Initio Study. Molecules 2023, 28, 3570. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiao, J.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X.; Luo, D.; Meng, F.; Su, D.; Decker, J.; et al. Interaction of Black Phosphorus with Oxygen and Water. Chem. Mat. 2016, 28, 8330–8339. [Google Scholar] [CrossRef]
- Luo, L.H.; Luo, J.; Li, H.L.; Ren, F.N.; Zhang, Y.F.; Liu, A.D.; Li, W.X.; Zeng, J. Water Enables Mild Oxidation of Methane to Methanol on Gold Single-atom Catalysts. Nat. Commun. 2021, 12, 1218. [Google Scholar] [CrossRef]
- Zhang, T.M.; Wan, Y.Y.; Xie, H.Y.; Mu, Y.; Du, P.W.; Wang, D.; Wu, X.J.; Ji, H.X.; Wan, L.J. Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. J. Am. Chem. Soc. 2018, 140, 7561–7567. [Google Scholar] [CrossRef]
- Zanolli, Z.; Leghrib, R.; Felten, A.; Pireaux, J.J.; Llobet, E.; Charlier, J.C. Gas Sensing with Au-Decorated Carbon Nanotubes. ACS Nano 2011, 5, 4592–4599. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Ke, Q.Q.; Zhang, G.; Zhang, Y.W. Energetics, Charge Transfer, and Magnetism of Small Molecules Physisorbed on Phosphorene. J. Phys. Chem. C 2015, 119, 3102–3110. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wu, H.; Wu, Q.Y.; Zhao, Y.M.; Shen, L. Magnetic e-Phosphorene for Sensing Greenhouse Gas Molecules. Molecules 2023, 28, 5402. [Google Scholar] [CrossRef]
- Abbas, A.N.; Liu, B.L.; Chen, L.; Ma, Y.Q.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C.W. Black Phosphorus Gas Sensors. ACS Nano 2015, 9, 5618–5624. [Google Scholar] [CrossRef]
- He, Q.Y.; Zeng, Z.Y.; Yin, Z.Y.; Li, H.; Wu, S.X.; Huang, X.; Zhang, H. Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications. Small 2012, 8, 2994–2999. [Google Scholar] [CrossRef]
- Delley, B. From Molecules to Solids with the DMol3 Approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Delley, B. Hardness Conserving Semilocal Pseudopotentials. Phys. Rev. B 2002, 66, 155125. [Google Scholar] [CrossRef]
- Becke, A.D. A Multicenter Numerical-integration Scheme for Polyatomic-molecules. J. Chem. Phys. 1988, 88, 2547–2553. [Google Scholar] [CrossRef]
- Inada, Y.; Orita, H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 2008, 29, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-zone Integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Ienco, A.; Manca, G.; Peruzzini, M.; Mealli, C. Modelling strategies for the covalent functionalization of 2D phosphorene. Dalton Trans. 2018, 47, 17243–17256. [Google Scholar] [CrossRef]
Sensor | Analyte | ΔEg (eV) | Sensitivity (%) | Detection Limit | Response Time (s) | Reference |
---|---|---|---|---|---|---|
Pene-Au1-OH | NO | 0.81 | 99.9 | This work | ||
Pene | NO | 0.23 | 26.7 | [59] | ||
Pene | NO2 | 0.54 | 62.8 | [59] | ||
V-ε-Pene | NO | 0.50 | 75 | [60] | ||
V-ε-Pene | NO2 | 0.30 | 42.5 | [60] | ||
Au doped Pene | NO | 0.78 | [29] | |||
Ag doped Pene | NO | 0.80 | [29] | |||
B3C | NO | 0.73 | 99.6 | [13] | ||
B3C | NO2 | 0.04 | 5.5 | [13] | ||
Pene FET | NO2 | 67 | 100 ppb | 75 | [19] | |
MoS2 | NO2 | 93 | ~220 | [19] | ||
Graphene | NO2 | 13 | ~240 | [19] | ||
Pene | NO2 | >95 | ~300 | [46] | ||
Pene/AuNPs | NO2 | 1 | [46] | |||
Pene/PtNPs | NO2 | >90 | [46] | |||
Pene FET | NO2 | 26 | 40 ppb | 500 | [61] | |
Pene FET | NO2 | 0.28 | 1600 | 100 ppb | 600 | [20] |
Pene FET | NO2 | 88 | 100 ppb | 290 | [7] | |
MWCNT/AuNPs | NO2 | 7 | 0.5 ppm | [58] | ||
MoS2/PtNPs | NO2 | 2 | 0.025 ppb | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Liu, Y.; Liu, X. Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO. Molecules 2025, 30, 3085. https://doi.org/10.3390/molecules30153085
Guo H, Liu Y, Liu X. Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO. Molecules. 2025; 30(15):3085. https://doi.org/10.3390/molecules30153085
Chicago/Turabian StyleGuo, Huimin, Yuhan Liu, and Xin Liu. 2025. "Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO" Molecules 30, no. 15: 3085. https://doi.org/10.3390/molecules30153085
APA StyleGuo, H., Liu, Y., & Liu, X. (2025). Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO. Molecules, 30(15), 3085. https://doi.org/10.3390/molecules30153085