Saponins from Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh: Comparative Assessment of Cytotoxic Potential Against a Wide Panel of Cancer Cell Lines
Abstract
1. Introduction
2. Results and Discussion
2.1. Isolation and Structure Elucidation of Saponins
2.2. Cytotoxicity Screening
2.3. Multivariate Analysis of Cytotoxicity Screening Results
2.4. Structure-Activity Observations
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. General Experimental Procedures
3.3. Plant Material
3.4. Extraction and Isolation
3.5. Acid Hydrolysis
3.6. Compounds
3.7. Cell Cultures and Cytotoxicity Assay
3.8. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Column chromatography |
CHCl3 | Chloroform |
COSY | Correlated spectroscopy |
GI | Gastrointestinal tract |
DOX | Doxorubicin |
ESI | Electrospray ion |
HCA | Hierarchical cluster analysis |
HMBC | Heteronuclear multiple bond correlation |
HPLC | High-performance column chromatography |
HSQC | Heteronuclear single quantum coherence |
IC50 | Concentration with 50% of maximal inhibitory effect |
KMO | Kaiser-Meyer-Olkin measure of sampling adequacy index |
LC-MS | Liquid chromatography–mass spectrometry |
LDH | Lactate dehydrogenase |
MPLC | Medium-pressure liquid chromatography |
NMR | Nuclear magnetic resonance |
PCA | Principal component analysis |
pTLC | Preparative thin-layer chromatography |
ROESY | Rotating-frame Overhauser enhancement spectroscopy |
TOCSY | Total correlation spectroscopy |
References
- Jamshidi-kia, F.; Lorigooini, Z.; Amini-khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Bazan, S.; Uotila, P.; Borsch, T. A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 2012, 42, 5–24. [Google Scholar] [CrossRef]
- Hartwell, J.L. Plants used against cancer. A survey 967–1971. Lloydia 1971, 34, 103–160. [Google Scholar]
- Chamberlin, R.V. The Ethno-Botany of the Gosiute Indians of Utah; New Era Printing Company: Singapore, 1911; Volume 2, Available online: https://books.google.pl/books?id=5LQUAAAAYAAJ (accessed on 18 May 2025).
- Kokanova-Nedialkova, Z.; Nedialkov, P.T.; Nikolov, S.D. The genus Chenopodium: Phytochemistry, ethnopharmacology and pharmacology. Pharmacol. Rev. 2009, 3, 280–306. [Google Scholar]
- Iamonico, D.; Mereu, G. On the occurrence of Oxybasis rubra (Amaranthaceae) in Sardinia, with notes on Chenopodium blitoides and C. humile. Collect. Bot. 2024, 43, e0003. [Google Scholar] [CrossRef]
- Plants of the World Online. Available online: https://powo.science.kew.org (accessed on 12 May 2025).
- Williams, J.T. Chenopodium rubrum L. J. Ecol. 1969, 57, 831–841. [Google Scholar] [CrossRef]
- Ter Heerdt, G.N.J.; Veen, C.G.F.; Van der Putten, W.H.; Bakker, J.P. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species. Aquat. Bot. 2017, 136, 82–94. [Google Scholar] [CrossRef]
- Bokern, M.; Wray, V.; Strack, D. Accumulation of phenolic acid conjugates and betacyanins, and changes in the activities of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum L. Planta 1991, 184, 261–270. [Google Scholar] [CrossRef]
- Kolář, J.; Macháčková, I.; Eder, J.; Prinsen, E.; Van Dongen, W.; Van Onckelen, H.; Illnerová, H. Melatonin: Occurrence and daily rhythm in Chenopodium rubrum. Phytochemistry 1997, 44, 1407–1413. [Google Scholar] [CrossRef]
- Meyer, W.; Spiteller, G. Oxidized phytosterols increase by ageing in photoautotrophic cell cultures of Chenopodium rubrum. Phytochemistry 1997, 45, 297–302. [Google Scholar] [CrossRef]
- Dembitsky, V.; Shkrob, I.; Hanus, L.O. Ascaridole and related peroxides from the genus Chenopodium. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2008, 152, 209–215. [Google Scholar] [CrossRef]
- Nowak, R.; Szewczyk, K.; Gawlik-Dziki, U.; Rzymowska, J.; Komsta, Ł. Antioxidative and cytotoxic potential of some Chenopodium L. species growing in Poland. Saudi J. Biol. Sci. 2016, 23, 15–23. [Google Scholar] [CrossRef]
- Mynarski, A.; Pietrzak, W.; Galanty, A.; Dawiec, E.; Nowak, R.; Podolak, I. Phenolic acid LC/MS profile of Chenopodium rubrum and evaluation of cytotoxic activity. Nat. Prod. Commun. 2018, 13, 855–857. [Google Scholar] [CrossRef]
- Grabowska, K.; Żmudzki, P.; Galanty, A.; Podolak, I. Simultaneous Quantification of Bioactive Triterpene Saponins Calenduloside E and Chikusetsusaponin IVa in Different Plant Parts of Ten Amaranthaceae Species by UPLC-ESI-MS/MS Method. Molecules 2025, 30, 1088. [Google Scholar] [CrossRef]
- Sundaram, S.; Verma, S.K.; Dwivedi, P. In vitro cytotoxic activity of Indian medicinal plants used traditionally to treat cancer. Asian J. Pharm. Clin. Res. 2011, 4, 27–29. [Google Scholar] [CrossRef]
- Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem. Rev. 2015, 14, 577–605. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Tekieli, A.; Skalicka-Woźniak, K.; Grzegorczyk, A.; Świergosz, T.; Wybraniec, S. Characterization of triterpene saponin composition of white, yellow and red beetroot (Beta vulgaris L.). Pol. J. Food Nutr. Sci. 2022, 72, 159–170. [Google Scholar] [CrossRef]
- Kuljanabhagavad, T.; Thongphasuk, P.; Chamulitrat, W.; Wink, M. Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry 2008, 69, 1919–1926. [Google Scholar] [CrossRef]
- Nedialkov, P.T.; Kokanova-Nedialkova, Z.; Buecherl, D.; Momekov, G.; Heilmann, J.; Nikolov, S. 30-normedicagenic acid glycosides from Chenopodium foliosum. Nat. Prod. Commun. 2012, 7, 1419–1422. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S. Phytochemistry, Traditional uses, pharmacology of Indian medicinal plant Chenopodium album (Linn). World J. Pharm. Pharm. Sci. 2015, 4, 10–15. [Google Scholar]
- Kokanova-Nedialkova, Z.; Nedialkov, P.T.; Momekov, G. Saponins from the roots of Chenopodium bonus—henricus L. Nat. Prod. Res. 2019, 33, 2024–2031. [Google Scholar] [CrossRef]
- El Hazzam, K.; Hafsa, J.; Sobeh, M.; Mhada, M.; Taourirte, M.; El Kacimi, K.; Yasri, A. An Insight into Saponins from Quinoa (Chenopodium quinoa Willd): A Review. Molecules 2020, 25, 1059. [Google Scholar] [CrossRef]
- Grabowska, K.; Pecio, Ł.; Galanty, A.; Żmudzki, P.; Oleszek, W.; Podolak, I. Serjanic acid glycosides from Chenopodium hybridum L. with good cytotoxicity and selectivity profile against several panels of human cancer cell lines. Molecules 2021, 26, 4915. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Galanty, A.; Pecio, Ł.; Stojakowska, A.; Malarz, J.; Żmudzki, P.; Zagrodzki, P.; Podolak, I. Selectivity screening and structure—Cytotoxic activity observations of selected oleanolic acid (OA)-type saponins from the Amaranthaceae family on a wide panel of human cancer cell lines. Molecules 2024, 29, 3794. [Google Scholar] [CrossRef]
- Jolly, A.; Hour, Y.; Lee, Y.C. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024, 174, 105858. [Google Scholar] [CrossRef]
- Koczurkiewicz, P.; Klaś, K.; Grabowska, K.; Piska, K.; Rogowska, K.; Wójcik-Pszczoła, K.; Podolak, I.; Galanty, A.; Michalik, M.; Pękala, E. Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug—Minireview of in vitro studies. Phytother. Res. 2019, 33, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Wang, J.; Tang, X.; Liu, F.; Mao, B.; Zhang, Q.; Zhao, J.; Chen, W.; Cui, S. Sources, metabolism, health benefits and future development of saponins from plants. Food Res. Int. 2024, 197, 115226. [Google Scholar] [CrossRef] [PubMed]
- Podolak, I.; Grabowska, K.; Sobolewska, D.; Wróbel-Biedrawa, D.; Makowska-Wąs, J.; Galanty, A. Saponins as cytotoxic agents: An update (2010–2021). Part II—Triterpene saponins. Phytochem. Rev. 2023, 22, 113–167. [Google Scholar] [CrossRef]
- Korda, A.; Rárová, L.; Pakulski, Z.; Strnad, M.; Oklešťková, J.; Kuczynska, K.; Cmoch, P.; Gwardiak, K.; Karczewski, R. New lupane bidesmosides exhibiting strong cytotoxic activities in vitro. Bioorg. Chem. 2020, 100, 103868. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, P.; Zhang, M.L.; Pan, J.; Guan, W.; Li, X.M.; Yang, B.Y.; Kuang, H.X. Triterpenoid saponins from the fruit of Acanthopanax senticosus (rupr. & Maxim.) harms. Front. Chem. 2022, 10, 825763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; He, C.N.; Chew, E.H. Studies on the chemical constituents and biological activities of Ixeris. Chem. Biodiv. 2013, 10, 1373–1391. [Google Scholar] [CrossRef]
- Wen, T.; Li, F.; Liu, J. Phytochemical and Biological Progress of Ixeris sonchifoia (Bge.) Hance. Med. Res. 2019, 3, 190002. [Google Scholar]
- Li, K.W.; Liang, Y.Y.; Xie, S.M.; Niu, F.J.; Guo, L.Y.; Liu, Z.H.; Zhou, C.Z.; Wang, L.Z. Ixeris sonchifolia: A review of its traditional uses, chemical constituents, pharmacology and modern applications. Biomed. Pharmacother. 2020, 125, 109869. [Google Scholar] [CrossRef]
- Feng, X.Z. Studies on the Constituents and Biological Activities of Mixers Sonchifolia. Ph.D. Thesis, Shenyang Pharmaceutical University, Shenyang, China, 2001; p. 73. [Google Scholar]
- Feng, X.Z.; Dong, M.; Gao, Z.J.; Xu, S.X. Three new triterpenoid saponins from Ixeris sonchifolia and their cytotoxic activity. Planta Med. 2003, 69, 1036–1040. [Google Scholar] [CrossRef]
- Dinda, B.; Debnath, S.; Mohanta, B.C.; Harigaya, Y. Naturally occurring triterpenoid saponins. Chem. Biodivers. 2010, 7, 2327–2580. [Google Scholar] [CrossRef] [PubMed]
- Chwalek, M.; Lalun, N.; Bobichon, H.; Plé, K.; Voutquenne-Nazabadioko, L. Structure—Activity relationships of some hederagenin diglycosides: Haemolysis, cytotoxicity and apoptosis induction. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Tatia, R.; Tarcomnicu, I.; Moldovan, Z.; Raiciu, A.D.; Moldovan, L.; Zalaru, C.M. In vitro antiproliferative activity of triterpenoid saponins from leaves of Hedera helix L. grown in Romania. S. Afr. J. Bot. 2023, 158, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, T.; Zhang, G.; Wu, J.; Dai, Y.; Wang, X.; Feng, X.; Shan, Y.; Chen, Y. LC-MS guided isolation of cytotoxic saponins from the flower buds of Lonicera macranthoides. Phytochem. Let. 2023, 55, 146–151. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, T.; Xue, M.; Chen, J.; Feng, L.; Du, R.; Feng, Y. Current knowledge and development of hederagenin as a promising medicinal agent: A comprehensive review. RSC Adv. 2018, 8, 24188–24202. [Google Scholar] [CrossRef]
- Dycha, N.; Michalak-Tomczyk, M.; Jachuła, J.; Okoń, E.; Jarząb, A.; Tokarczyk, J.; Koch, W.; Gaweł-Bęben, K.; Kukuła-Koch, W.; Wawruszak, A. Chemopreventive and anticancer activity of selected triterpenoids in melanoma. Cancers 2025, 17, 1625. [Google Scholar] [CrossRef]
- Wang, W.; Jin, Y.; Liu, M.K.; Zhang, S.Y.; Chen, H.; Song, J. Current progress of hederagenin and its derivatives for disease therapy (2017–Present). Molecules 2025, 30, 1275. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Raghuvanshi, D.S.; Singh, R.V. Recent advances in the chemistry and biology of oleanolic acid and its derivatives. Eur. J. Med. Chem. 2024, 276, 116619. [Google Scholar] [CrossRef] [PubMed]
- Janeczko, Z.; Sendra, J.; Kmieć, K.; Brieskorn, C.H.A. A triterpenoid glycoside from Menyanthes trofoliata. Phytochemistry 1990, 29, 3885–3887. [Google Scholar] [CrossRef]
- Grabowska, K.; Podolak, I.; Galanty, A.; Żmudzki, P.; Koczurkiewicz, P.; Piska, K.; Pękala, E.; Janeczko, Z. Two new triterpenoid saponins from the leaves of Impatiens parviflora DC. and their cytotoxic activity. Ind. Crops Prod. 2017, 96, 71–79. [Google Scholar] [CrossRef]
No. | δC | δH (J in Hz) * |
---|---|---|
1 | 38.48 | 0.93, 1.40 |
2 | 25.81 | 1.86, 2.18 |
3 | 81.76 | 4.22 dd (12.3, 4.4) |
4 | 43.30 | - |
5 | 47.28 | 1.62 |
6 | 17.97 | 1.29, 1.66 |
7 | 32.69 | 1.22, 1.55 |
8 | 39.57 | - |
9 | 47.94 | 1.69 |
10 | 36.71 | - |
11 | 23.65 | 1.85, 2.00 |
12 | 122.29 | 5.40, t (3.5) |
13 | 144.78 | - |
14 | 41.98 | - |
15 | 28.17 | 1.08, 2.10 |
16 | 23.51 | 1.86, 2.01 |
17 | 46.49 | - |
18 | 41.81 | 3.24, dd (13.7, 4.0) |
19 | 46.27 | 1.22, 1.71 |
20 | 30.78 | - |
21 | 34.04 | 1.13, 1.37 |
22 | 33.09 | 1.75, 1.97 |
23 | 64.04 | 3.66, d (10.5), 4.26, d (7.5) |
24 | 13.53 | 0.89, s |
25 | 15.88 | 0.84, s |
26 | 17.32 | 0.95, s |
27 | 26.01 | 1.19, s |
28 | 180.37 | - |
29 | 23.61 | 0.93, s |
30 | 33.09 | 0.86, s |
-OCH3 | ||
3-O-β-D-Glc | ||
1 | 105.33 | 5.02, d (7.0) |
2 | 74.27 | 3.99 |
3 | 88.65 | 4.00 |
4 | 69.44 | 4.06 |
5 | 77.73 | 3.75 |
6 | 62.18 | 4.34, 4.23 |
O-β-D-Glc’ | ||
1 | 105.79 | 5.17, d (7.5) |
2 | 75.35 | 3.99 |
3 | 78.08 | 4.19 |
4 | 71.37 | 4.12 |
5 | 78.56 | 3.97 |
6 | 62.26 | 4.48, 4.24 |
1 | 2 | 3 | 4 | DOX 24 h | |||
---|---|---|---|---|---|---|---|
skin panel | HTB-140 | 24 h | 26.23 ± 0.97 a | >100 | >100 | >100 | 4.91 ± 0.15 b |
48 h | 18.19 ± 0.58 a | >100 | 98.24 ± 6.46 b | >100 | - | ||
A375 | 24 h | 18.00 ± 0.51 a | 32.53 ± 0.25 b | 46.67 ± 0.23 c | >100 c | 0.43 ± 0.01 | |
48 h | 12.73 ± 0.16 a | 30.10 ± 0.45 b | 36.81 ± 0.49 c | >100 | - | ||
WM793 | 24 h | 27.57 ± 0.71 a | 13.82 ± 0.17 b | >100 | >100 | >40 | |
48 h | 17.16 ± 1.42 a | 6.52 ± 0.17 b | >100 | >100 | - | ||
HaCaT | 24 h | 40.42 ± 1.99 a | 44.90 ± 0.76 b | 58.10 ± 2.04 c | >100 | 4.21 ± 0.27 d | |
48 h | 26.99 ± 0.70 a | 39.93 ± 0.52 b | 43.29 ± 1.47 c | >100 | - | ||
prostate panel | DU-145 | 24 h | 16.49 ± 0.75 a | 31.98 ± 1.61 b | 36.07 ± 0.17 c | 51.47 ± 2.06 d | 2.46 ± 0.11 e |
48 h | 11.69 ± 0.50 a | 21.09 ± 0.32 b | 27.04 ± 1.11 c | 20.28 ± 1.16 d | - | ||
PC3 | 24 h | 58.57 ± 2.39 | >100 | >100 | >100 | >40 | |
48 h | 35.17 ± 0.32 a | 67.00 ± 0.96 b | 74.76 ± 5.81 c | 77.73 ± 3.77 c | - | ||
PNT2 | 24 h | 40.71 ± 1.24 a | >100 | 53.84 ± 3.39 b | 91.96 ± 6.19 c | 1.09 ± 0.05 d | |
48 h | 34.08 ± 0.79 a | >100 | 37.76 ± 1.03 b | 75.14 ± 6.48 c | - | ||
thyroid panel | FTC133 | 24 h | 24.52 ± 1.15 a | 41.10 ± 1.29 b | >100 | >100 | 4.65 ± 0.22 c |
48 h | 13.60 ± 0.85 a | 22.54 ± 1.13 b | >100 | >100 | - | ||
8505C | 24 h | 35.89 ± 1.02 | >100 | >100 | >100 | >40 | |
48 h | 25.77 ± 0.87 | >100 | >100 | >100 | - | ||
gastrointestinal panel | Caco-2 | 24 h | 21.61 ± 0.68 a | >100 | 27.04 ± 0.35 b | 90.13 ± 3.63 c | 2.95 ± 0.22 d |
48 h | 19.27 ± 0.53 a | 36.81 ± 0.43 b | 24.16 ± 0.33 a | 74.89 ± 4.09 c | - | ||
HT29 | 24 h | 28.45 ± 0.88 a | >100 | 43.97 ± 1.14 b | >100 | 1.12 ± 0.08 c | |
48 h | 24.96 ± 1.51 a | 63.80 ± 0.56 b | 38.12 ± 0.59 c | 90.33 ± 3.09 d | - | ||
HepG2 | 24 h | 13.21 ± 0.23 a | 94.01 ± 7.13 b | 80.51 ± 6.09 c | >100 | 1.11 ± 0.06 d | |
48 h | 10.84 ± 0.22 a | 60.48 ± 1.71 b | 68.00 ± 3.45 c | >100 | - | ||
lung panel | A549 | 24 h | 14.88 ± 0.88 a | 13.20 ± 0.67 b | 95.32 ± 3.93 c | >100 | 1.09 ± 0.06 d |
48 h | 11.80 ± 0.54 a | 8.23 ± 0.29 a | 46.45 ± 2.12 b | 98.15 ± 10.66 | -- |
Eigenvalues | % Total Variance (Cumulative (%)) | Parameters | PC1 Factor Loadings | PC2 Factor Loadings |
---|---|---|---|---|
10.52 | 80.93% | HTB-140 | −0.922834 | −0.249766 |
1.53 | 11.79% | A375 | −0.962276 | 0.213910 |
(92.72%) | WM793 | −0.743319 | 0.655977 | |
HaCaT | −0.914098 | 0.229255 | ||
DU-145 | −0.968428 | 0.044078 | ||
PC3 | −0.908558 | −0.220620 | ||
PNT2 | −0.894369 | −0.350598 | ||
FTC133 | −0.902028 | 0.366692 | ||
8505C | −0.888196 | −0.156901 | ||
Caco-2 | −0.858857 | −0.468982 | ||
HT29 | −0.917001 | −0.367546 | ||
HepG2 | −0.938572 | −0.082547 | ||
A549 | −0.854339 | 0.497125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabowska, K.; Mynarski, A.; Galanty, A.; Wróbel-Biedrawa, D.; Żmudzki, P.; Podolak, I. Saponins from Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh: Comparative Assessment of Cytotoxic Potential Against a Wide Panel of Cancer Cell Lines. Molecules 2025, 30, 3126. https://doi.org/10.3390/molecules30153126
Grabowska K, Mynarski A, Galanty A, Wróbel-Biedrawa D, Żmudzki P, Podolak I. Saponins from Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh: Comparative Assessment of Cytotoxic Potential Against a Wide Panel of Cancer Cell Lines. Molecules. 2025; 30(15):3126. https://doi.org/10.3390/molecules30153126
Chicago/Turabian StyleGrabowska, Karolina, Adam Mynarski, Agnieszka Galanty, Dagmara Wróbel-Biedrawa, Paweł Żmudzki, and Irma Podolak. 2025. "Saponins from Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh: Comparative Assessment of Cytotoxic Potential Against a Wide Panel of Cancer Cell Lines" Molecules 30, no. 15: 3126. https://doi.org/10.3390/molecules30153126
APA StyleGrabowska, K., Mynarski, A., Galanty, A., Wróbel-Biedrawa, D., Żmudzki, P., & Podolak, I. (2025). Saponins from Oxybasis rubra (L.) S.Fuentes, Uotila & Borsh: Comparative Assessment of Cytotoxic Potential Against a Wide Panel of Cancer Cell Lines. Molecules, 30(15), 3126. https://doi.org/10.3390/molecules30153126