Parallel Palladium-Catalyzed Synthesis of Carboxylic Acids from Aryl Iodides, Bromides, and Vinyl Triflates Using Acetic Anhydride and Formate Anion as an External Condensed Source of Carbon Monoxide
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Experimental Procedures
3.2.1. Typical Procedure for the Parallel Synthesis of Carboxylic Acids
3.2.2. Gram-Scale Synthesis of p-Toluic Acid
3.2.3. Characterization Data of Starting Materials 3a–c, 3e–f
- (10R,13S,17S)-10,13-dimethyl-3-(((trifluoromethyl)sulfonyl)oxy)-2,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl acetate 3a: 81% yield; lit. [27] mp: 110–112 °C; mp: 112–114 °C; 1H NMR (400.13 MHz) (CDCl3): δ 5.98 (d, J = 1.5 Hz, 1H), 5.56 (d, J = 3.1 Hz, 1H), 4.60 (t, J = 8.5 Hz, 1H), 2.61–2.47 (m, 1H), 2.35 (dd, J1 = 18.0 Hz, J2 = 5.0 Hz, 1H), 2.28–2.12 (m, 2H), 2.04 (s, 3H), 1.91 (dd, J1 = 12.9 Hz, J2 = 5.5 Hz, 1H), 1.78 (dt, J1 = 12.5 Hz, J2 = 3.1 Hz, 1H), 1.73–1.28 (m, 9H), 1.21 (td, J1 = 25.8 Hz, J2 = 12.9 Hz, J3 = 4.0 Hz, 1H), 1.13–1.00 (m, 2H), 0.96 (s, 3H), 0.82 (s, 3H); 13C NMR (100.6 MHz) (CDCl3): δ 171.5 (C), 147.3 (C), 138.8 (C), 128.1 (CH), 120.7 (CH), 118.9 (q, JC-F = 318.9 Hz, C), 82.8 (CH), 51.3 (CH), 48.0 (CH), 42.8 (C), 36.9 (CH2), 35.1 (CH2), 31.8 (CH), 27.8 (CH2), 25.8 (CH2), 23.7 (CH2), 21.4 (CH3), 21.0 (CH2), 18.9 (CH3), 12.3 (CH3); 19F NMR (376.5 MHz, CDCl3) δ −73.8 (s).
- (3S,10S,13S)-10,13-dimethyl-17-(((trifluoromethyl)sulfonyl)oxy)-2,3,4,5,6,7,8,9,10,11,12,13,14,15-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate 3b: 70% yield; brown solid; lit. [28] mp: 82–83 °C; mp: 82–84 °C; 1H NMR (400.13 MHz) (CDCl3): δ 5.59−6.61 (m, 1H), 4.83−4.71 (m, 1H), 2.35−2.24 (m, 1H), 2.11 (s, 3H) 2.09−1.88 (m, 2H), 1.85−1.24 (m, 15H), 1.18−1.08 (m, 1H), 1.05 (s, 3H), 0.94 (s, 3H), 0.91−0.81 (m, 1H); 13C NMR (100.6 MHz) (CDCl3): δ 171.0 (C), 159.6 (C), 118.8 (q, JC-F = 324.5 Hz, C), 114.1 (CH), 73.8 (CH), 54.9 (CH), 54.4 (CH), 45.1 (CH), 36.7 (CH2), 36.0 (C), 34.2 (CH2), 33.7 (C), 32.9 (CH2), 31.0 (CH2), 28.8 (CH2), 28.5 (CH2), 27.7 (CH2), 21.7 (CH3), 20.8 (CH2), 15.6 (CH3), 12.4 (CH3); 19F NMR (376.5 MHz, CDCl3) δ −73.6 (s).
- (E)-cyclooct-1-en-1-yl trifluoromethanesulfonate 3c: 68% yield; oil [29]; 1H NMR (400.13 MHz) (CDCl3): δ 5.68 (t, J = 8.6 Hz, 1H), 2.46 (t, J = 6.4 Hz, 2H), 2.23−2.09 (m, 2H), 1.75−1.67 (m, 2H), 1.65−1.52 (m, 6H); 13C NMR (100.6 MHz) (CDCl3): δ 151.2 (C), 120.9 (CH), 118.7 (q, JC-F = 320.2 Hz, C), 29.8 (CH2), 29.4 (CH2), 27.4 (CH2), 26.1 (CH2), 25.8 (CH2), 25.2 (CH2); 19F NMR (376.5 MHz, CDCl3) δ −74.2 (s).
- 1,2,3,6-tetrahydro-[1,1′-biphenyl]-4-yl trifluoromethanesulfonate 3e: 71% yield; oil [30]; 1H NMR (400.13 MHz) (CDCl3): δ 7.24–7.20 (m, 2H), 7.19–7.09 (m, 3H), 5.84–5.70 (m, 1H), 2.85–2.70 (m, 1H), 2.53–2.20 (m, 4H), 2.05–1.95 (m, 1H), 1.94–1.82 (1H); 13C NMR (100.6 MHz) (CDCl3): δ 149.3 (C), 144.8 (C), 128.9 (CH), 127.0 (CH), 126.9 (CH), 126.7 (CH), 118.7 (q, JC-F = 320.0 Hz, C), 118.4 (C), 39.0 (CH2), 31.8 (CH2), 29.6 (CH2), 28.1 (CH2); 19F NMR (376.5 MHz, CDCl3) δ –73.9 (s).
- 4-(tert-butyl)cyclohex-1-en-1-yl trifluoromethanesulfonate 3f: 78% yield; oil [31]; 1H NMR (400.13 MHz) (CDCl3): δ 5.80–5.66 (m, 1H), 2.45–2.27 (m, 2H), 2.25–2.15 (m, 1H), 2.01–1.87 (m, 2H), 1.45–1.26 (m, 2H), 0.89 (s, 9H); 13C NMR (100.6 MHz) (CDCl3): δ 149.5 (C), 118.9 (q, JC-F = 319.1 Hz, C), 43.23 (CH), 32.4 (C), 28.8 (CH2), 27.5 (CH3), 25.6 (CH2), 24.4 (CH2); 19F NMR (376.5 MHz, CDCl3) δ –73.7 (s).
3.2.4. Characterization Data of Final Compounds 2a–k, 4a–g
- 4-(ethoxycarbonyl)benzoic acid 2a: 88% [ArI], 71% [ArBr] yield; lit. [14] mp: 168–170 °C; mp: 168–170 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 13.36 (bs, 1H), 8.12–8.00 (m, 4H), 4.35 (q, J = 7.0 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 167.5 (C), 166.0 (C),135.7 (C), 134.3 (C), 130.5 (CH), 130.2 (CH), 62.1 (CH2), 15.0 (CH3).
- 4-methylbenzoic acid 2b: 98% [ArI], 78% [ArBr] yield; lit. [14] mp: 179–180 °C; mp: 179–180 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 12.79 (bs, 1H), 7.84 (d, J = 7.9 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 2.37 (s, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 168.2 (C), 143.9 (C), 130.2 (CH),130.0 (CH), 128.9 (C), 22.0 (CH3).
- 3-methoxybenzoic acid 2c: 88% [ArI], 72% [ArBr] yield; lit. [14] mp: 105–107 °C; mp: 105–107 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 13.00 (bs, 1H), 7.54 (d, J = 7.2 Hz, 1H), 7.48–7.37 (m, 2H), 7.19 (dd, J1 = 8.1 Hz, J2 = 2.4 Hz, 1H), 3.81 (s, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 168.0 (C), 160.1 (C), 133.1 (C),130.6 (CH), 122.4 (CH), 119.8 (CH), 114.8 (CH), 56.1 (CH3).
- 4-methoxybenzoic acid 2d: 96% [ArI], 69% [ArBr] yield; lit. [14] mp: 178–180 °C; mp: 178–180 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 12.62 (bs, 1H), 7.90 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 3.82 (s, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 167.9 (C), 163.7 (C), 132.2 (CH),128.2 (C), 114.7 (CH), 56.3 (CH3).
- 3-(hydroxymethyl)benzoic acid 2e: 60% yield; lit. [32] mp: 114–115 °C; mp: 112–115 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 12.90 (bs, 1H), 7.93 (s, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 5.31 (bs, 1H), 4.56 (s, 2H); 13C NMR (100.6 MHz) (DMSO-d6): δ 168.3 (C), 144.0 (C),131.7 (CH), 131.5 (C), 129.2 (CH), 128.5 (CH), 128.1 (CH), 63.3 (CH2).
- 4-methyl-2-nitrobenzoic acid 2f: 82% yield; lit. [14] mp: 187–188 °C; mp: 187–188 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 13.53 (bs, 1H), 8.41 (d, J = 1.3 Hz, 1H), 8.12 (dd, J1 = 8.0 Hz, J2 = 1.3 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 2.59 (s, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 166.4 (C), 149.7 (C),138.6 (C), 134.36 (CH), 134.35 (CH), 131.0 (C), 125.9 (CH), 20.6 (CH3).
- 2-methoxybenzoic acid 2g: 70% yield; lit. [14] mp: 101–102 °C; mp: 101–102 °C; mp: 101–102 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 12.58 (bs, 1H), 7.63 (dd, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H), 7.53–7.47 (m, 1H), 7.11 (d, J = 8.3 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 3.81 (s, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 168.2 (C), 158.9 (C),133.9 (CH), 131.5 (CH), 122.2 (C), 120.9 (CH), 113.3 (CH), 56.6 (CH3).
- 4-acetylbenzoic acid 2h: 82% [ArI], 70% [ArBr] yield; lit. [14] mp: 208–210 °C; mp: 208–210 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 13.31 (bs, 1H), 8.08–8.03 (m, 4H), 2.63 (s, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 198.6 (C), 167.5 (C),140.7 (C), 135.4 (C), 130.4 (CH), 129.2 (CH), 27.9 (CH3).
- benzoic acid 2i: 71% yield; lit. [14] mp: 120–121 °C; mp: 120–121 °C, 1H NMR (400.13 MHz) (DMSO-d6): δ 12.96 (bs, 1H), 7.96 (d, J = 7.0 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H); 13C NMR (100.6 MHz) (DMSO-d6): δ 168.2 (C), 133.8 (CH), 131.7 (CH), 130.2 (CH), 129.5 (CH).
- [1,1′-biphenyl]-4-carboxylic acid 2j: 70% yield; lit. [14] mp: 223–224 °C; mp: 223–224 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 12.99 (bs, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 7.2 Hz, 2H), 7.73 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.45–7.39 (m, 1H); 13C NMR (100.6 MHz) (DMSO-d6): δ 168.0 (C), 145.2 (C), 139.9 (C),130.8 (CH), 130.5 (C), 130.0 (CH), 129.2 (C), 127.9 (CH), 127.7 (CH).
- 4-nitrobenzoic acid 2k: 75% yield; lit. [14] mp: 237–239 °C; mp: 237–239 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 13.65 (bs, 1H), 8.33 (d, J = 8.9 Hz, 2H), 8.17 (d, J = 8.9 Hz, 2H); 13C NMR (100.6 MHz) (DMSO-d6): δ 166.7 (C), 150.9 (C), 137.3 (C), 131.6 (CH), 124.6 (CH).
- 4-methylbenzoic acid 2b’: 60% yield; lit. [14] mp: 179–180 °C; mp: 179–180 °C; 1H NMR (400.13 MHz) (DMSO-d6): δ 12.85 (bs, 1H), 7.89 (dd, J1 = 3.6 Hz, J2 = 8.2 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 2.43 (s, 3H); 13C NMR (100.6 MHz) (DMSO-d6): δ 168.2 (enriched C), 143.9 (C), 130.2 (d, J = 2.3 Hz, CH), 130.0 (d, J = 4.4 Hz, CH), 128.9 (d, J = 72.0 Hz, CH), 22.0 (CH3).
- (10R,13S,17S)-17-acetoxy-10,13-dimethyl-2,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3-carboxylic acid 4a: 71% yield; lit. [14] mp: 177–178 °C; mp: 177–178 °C; 1H NMR (400.13 MHz) (CDCl3): δ 7.12–7.09 (m, 1H), 5.89–5.80 (m, 1H), 4.60 (t, J = 8.4 Hz, 1H), 2.50 (dd, J1 = 18.4 Hz, J2 = 5.7 Hz, 1H), 2.20–2.12 (m, 3H), 2.04 (s, 3H), 1.89 (dd, J1 = 12.9 Hz, J2 = 4.5 Hz, 1H), 1.80–0.98 (m, 13H), 0.91 (s, 3H), 0.82 (s, 3H); 13C NMR (100.6 MHz) (CDCl3): δ 173.4 (C), 171.6 (C), 141.6 (C), 140.9 (CH), 133.0 (CH), 125.2 (C), 82.9 (CH), 51.4 (CH), 48.2 (CH), 42.8 (C), 36.9 (CH2), 35.0 (C), 33.6 (CH2), 32.2 (CH2), 31.8 (CH), 27.8 (CH2), 23.7 (CH2), 21.7 (CH2), 21.5 (CH3), 20.8 (CH2), 19.3 (CH3), 12.1 (CH3).
- (3S,10S,13S)-3-acetoxy-10,13-dimethyl-2,3,4,5,6,7,8,9,10,11,12,13,14,15-tetradecahydro-1H-cyclopenta[a]phenanthrene-17-carboxylic acid 4b: 81% yield; lit. [33] mp: 261–263 °C; mp: 259–261 °C; 1H NMR (400.13 MHz) (CDCl3): δ 7.32 (bs, 1H), 6.91–6.83 (m, 1H), 4.75–4.61 (m, 1H), 2.33–2.12 (m, 2H), 2.01 (s, 3H) 1.87–1.64 (m, 3H), 1.63–1.31 (m, 12H), 1.07–0.94 (m, 2H), 0.90 (s, 3H), 0.85 (s, 3H), 0.82–0.69 (m, 2H); 13C NMR (100.6 MHz) (CDCl3): δ 171.1 (C), 170.4 (C), 146.9 (CH), 146.5 (CH), 74.0 (CH), 56.7 (CH), 54.9 (CH), 46.1 (C), 45.1 (CH), 36.8 (CH2), 36.0 (C), 34.9 (CH2), 34.3 (CH2), 34.1 (CH), 32.2 (CH2), 32.0 (CH2), 28.7 (CH2), 27.7 (CH2), 21.7 (CH3), 21.2 (CH2), 16.3 (CH3), 12.4 (CH3).
- (E)-cyclooct-1-ene-1-carboxylic acid 4c: 71% yield; lit. [34] mp: 95 °C; mp: 94–96 °C; 1H NMR (400.13 MHz) (CDCl3): δ 7.14 (t, J = 8.5 Hz, 1H), 2.50–2.40 (m, 2H), 2.35–2.25 (m, 2H), 1.65–1.55 (m, 4H), 1.52–1.42 (m, 4H); 13C NMR (100.6 MHz) (CDCl3): δ 173.5 (C), 145.6 (CH), 133.0 (C), 29.3 (CH2), 29.2 (CH2), 27.7 (CH2), 26.8 (CH2), 26.2 (CH2), 24.7 (CH2).
- 3,3,5,5-tetramethylcyclohex-1-ene-1-carboxylic acid 4d: 86% yield; lit. [35] mp: 154–156 °C; mp: 153–155 °C; 1H NMR (400.13 MHz) (CDCl3): δ 9.97 (bs), 6.86 (s, 1H), 2.02 (s, 2H), 1.35 (s, 2H), 1.08 (s, 6H), 0.96 (s, 6H); 13C NMR (100.6 MHz) (CDCl3): δ 173.9 (C), 150.6 (CH), 126.3 (C), 49.4 (CH2), 37.4 (CH2), 33.92 (C), 30.8 (CH3), 30.7 (C), 29.9 (CH3).
- 1,2,3,6-tetrahydro-[1,1′-biphenyl]-4-carboxylic acid 4e: 82% yield; lit. [36] mp: 197–199 °C; mp: 195–197 °C; 1H NMR (400.13 MHz) (CDCl3): δ 7.23 (d, J = 7.2 Hz, 1H), 7.18–7.09 (m, 4H), 2.80–2.61 (m, 1H), 2.55–2.41 (m, 2H), 2.37–2.18 (m, 2H); 13C NMR (100.6 MHz) (CDCl3): δ 173.0 (C), 146.1 (C), 142.1 (CH),130.0 (C), 128.8 (CH), 127.1 (CH), 126.7 (CH), 39.3 (CH), 34.2 (CH2), 29.6 (CH2), 24.7 (CH2).
- 4-(tert-butyl)cyclohex-1-ene-1-carboxylic acid 4f: 87% yield; lit. [36] mp: 182–183 °C; mp: 180–182 °C; 1H NMR (400.13 MHz) (CDCl3): δ 7.16–7.10 (m, 1H), 2.55–2.44 (m, 1H), 2.33–2.21 (1H), 2.19–2.05 (m, 1H), 2.01–1.86 (m, 2H), 1.33–1.23 (m, 1H), 1.13 (ddd, J1 = 12.2 Hz, J2 = 4.8 Hz, J3 = 2.4 Hz, 1H), 0.88 (s, 9H); 13C NMR (100.6 MHz) (CDCl3): δ 173.2.1 (C), 143.3 (CH), 129.9 (C), 43.5 (CH), 32.4 (C), 28.0 (CH2), 27.4 (CH3), 25.5 (CH2), 23.8 (CH2).
- 6-methoxy-3,4-dihydronaphthalene-1-carboxylic acid 4g: 82% yield; lit. [14] mp: 108–109 °C; mp: 108–109 °C; 1H NMR (400.13 MHz) (CDCl3): δ 10.00 (bs, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.20 (t, J = 4.9 Hz, 1H), 6.69 (dd, J1 = 8.6 Hz, J2 = 2.6 Hz, 1H), 6.65 (d, J = 2.6 Hz, 1H), 3.73 (s, 3H), 2.67 (t, J = 7.6 Hz, 2H), 2.38–2.30 (m, 2H); 13C NMR (100.6 MHz) (CDCl3): δ 172.4 (C), 159.2 (C), 140.8 (CH),138.4 (C), 129.8 (C), 127.8 (CH), 123.8 (C), 113.9 (CH), 111.4 (CH), 55.5 (CH3), 28.2 (CH2), 23.9 (CH2).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colquhoun, H.M.; Thompson, D.J.; Twigg, M.V. Carbonylation: Direct Synthesis of Carbonyl Compounds; Springer-Verlag New York Inc., Plenum: New York, NY, USA, 1991. [Google Scholar]
- Kollär, L. Modern Carbonylation Methods; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Brennführer, A.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. (Int. Ed. Engl.) 2009, 48, 4114–4133. [Google Scholar] [CrossRef]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 2011, 40, 4986–5009. [Google Scholar] [CrossRef]
- Wu, X.F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev. 2013, 113, 1–35. [Google Scholar] [CrossRef]
- Bai, Y.; Davis, D.C.; Dai, M. Natural Product Synthesis via Palladium-Catalyzed Carbonylation. J. Org. Chem. 2017, 82, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
- Conn, M.M.; Kappock, J.; Cammack, R.; Hall, D.; Projan, S.; Cass, T.; Stewart, J.D.; Cousins, G.R.L.; de Miguel, Y.R.; Sanders, J.K.M.; et al. Chemical biology. Curr. Opin. Chem. Biol. 2000, 4, 1–10, see whole issue “Combinatorial chemistry” on page 243. [Google Scholar] [CrossRef]
- Furka, Á. Forty years of combinatorial technology. Drug Discov. Today 2022, 27, 103308. [Google Scholar] [CrossRef]
- Isbrandt, E.S.; Sullivan, R.J.; Newman, S.G. High Throughput Strategies for the Discovery and Optimization of Catalytic Reactions. Angew. Chem. (Int. Ed. Engl.) 2019, 58, 7180–7191. [Google Scholar] [CrossRef]
- Krska, S.W.; DiRocco, D.A.; Dreher, S.D.; Shevlin, M. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis. Acc. Chem. Res. 2017, 50, 2976–2985. [Google Scholar] [CrossRef]
- Morimoto, T.; Kakiuchi, K. Evolution of Carbonylation Catalysis: No Need for Carbon Monoxide. Angew. Chem. (Int. Ed. Engl.) 2004, 43, 5580–5588. [Google Scholar] [CrossRef]
- Khedkar, M.V.; Khan, S.R.; Lambat, T.L.; Chaudhary, R.G.; Abdala, A.A. CO Surrogates: A Green Alternative in Palladium-Catalyzed CO Gas Free Carbonylation Reactions. Curr. Org. Chem. 2020, 24, 2588–2600. [Google Scholar] [CrossRef]
- Friis, S.D.; Lindhardt, A.T.; Skrydstrup, T. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions. Acc. Chem. Res. 2016, 49, 594–605. [Google Scholar] [CrossRef]
- Cacchi, S.; Fabrizi, G.; Goggiamani, A. Palladium-Catalyzed Hydroxycarbonylation of Aryl and Vinyl Halides or Triflates by Acetic Anhydride and Formate Anions. Org. Lett. 2003, 5, 4269–4272. [Google Scholar] [CrossRef]
- Cacchi, S.; Fabrizi, G.; Goggiamani, A. Palladium-Catalyzed Synthesis of Aldehydes from Aryl Iodides and Acetic Formic Anhydride. J. Comb. Chem. 2004, 6, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Cacchi, S.; Cotet, C.L.; Fabrizi, G.; Forte, G.; Goggiamani, A.; Martín, L.; Martínez, S.; Molins, E.; Moreno-Mañas, M.; Petrucci, F.; et al. Efficient hydroxycarbonylation of aryl iodides using recoverable and reusable carbon aerogels doped with palladium nanoparticles as catalyst. Tetrahedron 2007, 63, 2519–2523. [Google Scholar] [CrossRef]
- Berger, P.; Bessmernykh, A.; Caille, J.-C.; Mignonac, S. Palladium-Catalyzed Hydroxycarbonylation of Aryl and Vinyl Bromides by Mixed Acetic Formic Anhydride. Synthesis 2006, 2006, 3106–3110. [Google Scholar] [CrossRef]
- Fife, W.K.; Zhang, Z.D. Phase managed organic synthesis. A new synthesis of mixed formic anhydrides. J. Org. Chem. 1986, 51, 3744–3746. [Google Scholar] [CrossRef]
- Cacchi, S.; Fabrizi, G.; Gavazza, F.; Goggiamani, A. Palladium-Catalyzed Reaction of Aryl Iodides with Acetic Anhydride. A Carbon Monoxide-Free Synthesis of Acetophenones. Org. Lett. 2003, 5, 289–291. [Google Scholar] [CrossRef]
- Grushin, V.V.; Alper, H. Indirect Formation of Carboxylic Acids via Anhydrides in the Palladium-Catalyzed Hydroxycarbonylation of Aromatic Halides. J. Am. Chem. Soc. 1995, 117, 4305–4315. [Google Scholar] [CrossRef]
- Cacchi, S.; Lupi, A. Palladium-catalysed hydroxycarbonylation of vinyl and aryl triflates: Synthesis of α,β-unsaturated and aromatic carboxylic acids. Tetrahedron Lett. 1992, 33, 3939–3942. [Google Scholar] [CrossRef]
- Pri-Bar, I.; Buchman, O. Hydroxycarbonylation of aryl halides with formate salts catalyzed by palladium complexes. J. Org. Chem. 1988, 53, 624–626. [Google Scholar] [CrossRef]
- Nielsen, D.U.; Neumann, K.T.; Lindhardt, A.T.; Skrydstrup, T. Recent developments in carbonylation chemistry using [13C]CO, [11C]CO, and [14C]CO. J. Label Compd. Radiopharm. 2018, 61, 949–987. [Google Scholar] [CrossRef]
- Stang, P.G.; Treptow, W. Single-Step Improved Synthesis of Primary and Other Vinyl Trifluoromethanesulfonates. Synthesis 1980, 1980, 283–284. [Google Scholar] [CrossRef]
- Stang, P.G.; Hanack, M.; Subramanian, L.R. Perfluoroalkanesulfonic Esters: Methods of Preparation and Applications in Organic Chemistry. Synthesis 1982, 1982, 85–126. [Google Scholar] [CrossRef]
- Cacchi, S.; Morera, E.; Ortar, G. Palladium-Catalyzed Reduction of Vinyl Trifluoromethanesulfonates to Alkenes: Cholesta-3,5-Diene. Org. Synth. 1990, 68, 138–147. [Google Scholar] [CrossRef]
- Jigajinni, V.B.; Wightman, R.H. Hydrogenolysis of enol triflates; A new method for the reduction of ketones to methylene compounds. Tetrahedron Lett. 1982, 23, 117–120. [Google Scholar] [CrossRef]
- Harnisch, W.; Morera, E.; Ortar, G. A novel approach to cardenolides. J. Org. Chem. 1985, 50, 1990–1992. [Google Scholar] [CrossRef]
- Arcadi, A.; Cacchi, S.; Marinelli, F. The conversion of vinyl triflates into γ′-hydroxy-α,β-enones. Tetrahedron 1993, 49, 4955–4964. [Google Scholar] [CrossRef]
- Gui, Y.-Y.; Liao, L.-L.; Sun, L.; Zhang, Z.; Ye, J.-H.; Shen, G.; Lu, Z.-P.; Zhou, W.-J.; Yu, D.-G. Coupling of C(sp3)–H bonds with C(sp2)–O electrophiles: Mild, general and selective. Chem. Commun. 2017, 53, 1192–1195. [Google Scholar] [CrossRef]
- Su, X.; Huang, H.; Yuan, Y.; Li, Y. Radical Desulfur-Fragmentation and Reconstruction of Enol Triflates: Facile Access to α-Trifluoromethyl Ketones. Angew. Chem. (Int. Ed. Engl.) 2017, 56, 1338–1341. [Google Scholar] [CrossRef]
- Gilman, H.; Melstrom, D.S. Organolithium Compounds with Hydroxyl, Nitrilo and Sulfonamido Groups. J. Am. Chem. Soc. 1948, 70, 4177–4179. [Google Scholar] [CrossRef]
- Pappo, R.; Bloom, B.M.; Johnson, W.S. Steroid Total Synthesis—Hydrochrysene Approach. IX.1 Preparation of Comparison Substances by Partial Synthesis. J. Am. Chem. Soc. 1956, 78, 6347–6353. [Google Scholar] [CrossRef]
- Hoberg, H.; Ballesteros, A. Ni0-induzierte Herstellung cyclischer C8-Carbonsäuren aus Cyclooctenen und Kohlendioxid. J. Organomet. Chem. 1991, 411, C11–C18. [Google Scholar] [CrossRef]
- Cremlyn, R.J.W.; Ellam, R.M.; Mitra, T.K. Deamination of amino alicyclic carboxylic acids. J. Chem. Soc. C Org. 1971, 1647–1651. [Google Scholar] [CrossRef]
- Vitnik, V.D.; Ivanović, M.D.; Vitnik, Ž.J.; Đorđević, J.B.; Žižak, Ž.S.; Juranić, Z.D.; Juranić, I.O. One-Step Conversion of Ketones to Conjugated Acids Using Bromoform. Synth. Commun. 2009, 39, 1457–1471. [Google Scholar] [CrossRef]
Entry | Aryl Iodide 1 | Benzoic Acid 2 | Yield % b | ||
---|---|---|---|---|---|
1 | p-EtOOC-C6H4-I | 1a | p-EtOOC-C6H4-COOH | 2a | 88 |
2 | p-Me-C6H4-I | 1b | p-Me-C6H4-COOH | 2b | 98 |
3 | m-MeO-C6H4-I | 1c | m-MeO-C6H4-COOH | 2c | 88 |
4 | p-MeO-C6H4-I | 1d | p-MeO-C6H4-COOH | 2d | 96 c |
5 | m-HOCH2-C6H4-I | 1e | m-HOCH2-C6H4-COOH | 2e | 60 d |
6 | o-NO2-p-Me-C6H3-I | 1f | o-NO2-p-Me-C6H3-COOH | 2f | 82 |
7 | o-OMe-C6H4-I | 1g | o-OMe-C6H4-COOH | 2g | 70 |
8 | p-MeCO-C6H4-I | 1h | p-MeCO-C6H4-COOH | 2h | 82 |
Entry | Vinyl Triflate 3 | α,β-Unsaturated Acid 3 | Yield % b | ||
---|---|---|---|---|---|
1 | 3a | 4a | 71 | ||
2 | 3b | 4b | 81 | ||
3 | 3c | 4c | 71 | ||
4 | 3d | 4d | 86 | ||
5 | 3e | 4e | 82 | ||
6 | 3f | 4f | 87 | ||
7 | 3g | 4g | 82 |
Entry | Aryl Bromide 5 | Benzoic Acid 2 | Yield % b | ||
---|---|---|---|---|---|
1 | C6H5-Br | 5a | C6H5-COOH | 2i | 71 |
2 | p-Me-C6H4-Br | 5b | p-Me-C6H4-COOH | 2b | 78 |
3 | m-MeO-C6H4-Br | 5c | m-MeO-C6H4-COOH | 2c | 72 |
4 | p-MeO-C6H4-Br | 5d | p-MeO-C6H4-COOH | 2d | 69 c |
5 | p-Ph-C6H4-Br | 5e | p-Ph-C6H4-COOH | 2j | 70 |
6 | p-NO2-C6H4-Br | 5f | p-NO2-C6H4-COOH | 2k | 75 |
7 | p-EtOOC-C6H4-Br | 5g | p-EtOOC-C6H4-COOH | 2a | 71 |
8 | p-MeCO-C6H4-Br | 5h | p-MeCO-C6H4-COOH | 2h | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iazzetti, A.; Fabrizi, G.; Gazzilli, Y.; Goggiamani, A.; Marrone, F.; Shen, C.; Zoppoli, R. Parallel Palladium-Catalyzed Synthesis of Carboxylic Acids from Aryl Iodides, Bromides, and Vinyl Triflates Using Acetic Anhydride and Formate Anion as an External Condensed Source of Carbon Monoxide. Molecules 2025, 30, 3298. https://doi.org/10.3390/molecules30153298
Iazzetti A, Fabrizi G, Gazzilli Y, Goggiamani A, Marrone F, Shen C, Zoppoli R. Parallel Palladium-Catalyzed Synthesis of Carboxylic Acids from Aryl Iodides, Bromides, and Vinyl Triflates Using Acetic Anhydride and Formate Anion as an External Condensed Source of Carbon Monoxide. Molecules. 2025; 30(15):3298. https://doi.org/10.3390/molecules30153298
Chicago/Turabian StyleIazzetti, Antonia, Giancarlo Fabrizi, Yuri Gazzilli, Antonella Goggiamani, Federico Marrone, Chen Shen, and Roberta Zoppoli. 2025. "Parallel Palladium-Catalyzed Synthesis of Carboxylic Acids from Aryl Iodides, Bromides, and Vinyl Triflates Using Acetic Anhydride and Formate Anion as an External Condensed Source of Carbon Monoxide" Molecules 30, no. 15: 3298. https://doi.org/10.3390/molecules30153298
APA StyleIazzetti, A., Fabrizi, G., Gazzilli, Y., Goggiamani, A., Marrone, F., Shen, C., & Zoppoli, R. (2025). Parallel Palladium-Catalyzed Synthesis of Carboxylic Acids from Aryl Iodides, Bromides, and Vinyl Triflates Using Acetic Anhydride and Formate Anion as an External Condensed Source of Carbon Monoxide. Molecules, 30(15), 3298. https://doi.org/10.3390/molecules30153298