Surface Morphology and Electrochemical Behavior of Microstructured Cu Electrodes in All-Solid-State Sodium Batteries
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of the Microstructured Current Collectors
2.1.1. Topographical Characterization
2.1.2. KPFM Characterization
2.1.3. Charge Transport Measurements
2.2. Pouch Cell Electrochemical Characterization
2.2.1. Potentiostatic Electrochemical Impedance Spectroscopy
2.2.2. Cyclic Voltammetry
2.2.3. Charge/Discharge Cycles and GITT Stability Tests
2.2.4. Comparison of Correlated Parameters
3. Materials and Methods
3.1. Fabrication of the Microstructured Copper Current Collectors
3.1.1. Parylene-C Deposition
3.1.2. Microsphere Deposition
3.1.3. Reactive Ion Etching (RIE)
3.1.4. Copper Deposition
3.2. Characterization of the Microstructured Copper Current Collectors
3.2.1. Charge Transport Measurements
3.2.2. Topography and Surface Potential Measurements
- Root-Mean-Square Roughness (RMS): Automatically calculated using Igor Pro 6 (Asylum Research). RMS quantifies the average deviation in height across the scanned area and serves as a standard metric for surface roughness. A higher RMS value indicates a rougher and more topographically varied surface.
- Surface Area Increase (%): Also obtained via Igor Pro. This parameter reflects the percentage increase in total surface area compared to an ideal flat 2D surface (20 × 20 μm = 400 μm2). It captures the increased electrochemically active area made available by the 3D structuring.
- Number of Particles: Computed via Python 3.11.9 using local maxima detection (skimage.morphology.h_maxima) with a height prominence threshold of 20 nm to isolate individual topographical features (cone-like structures). This metric provides insight into structural density and inter-sample or intra-sample consistency. A uniform particle count across zones indicates good fabrication repeatability.
- Average Distance to Six Nearest Neighbors (D6NN): Using the particle centroids identified above, the average distance to each particle’s six closest neighbors was calculated. The particles tend to form hexagonal arrangements, and this metric captures the characteristic spacing between them. This is relevant to understanding how the electrolyte penetrates between structures, as well as where sodium deposition may preferentially occur.
- Standard Deviation of Nearest-Neighbor Distance (σDNN): For each particle, the distance to its single closest neighbor was computed, and the standard deviation of these distances across each image was used to quantify local ordering. Lower values of σDNN indicate high spatial uniformity (ordered structure), while higher values suggest disorder or irregular spacing. These parameters were computed individually for each AFM frame, allowing for statistical comparison across etching conditions using box plots.
- All non-native analyses were conducted using custom Python scripts in Jupyter Notebooks.
3.2.3. Scanning Electron Microscopy and X-Ray Photoelectron Spectroscopy
3.3. Separator Preparation and Cell Assembly
3.4. Pouch Cell Electrochemical Characterization
3.4.1. Electrochemical Impedance Spectroscopy (PEIS)
3.4.2. Cyclic Voltammetry (CV)
3.4.3. Charge/Discharge Cycles and GITT
3.5. Usage of Generative Artificial Intelligence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEN | Polyethylene Naphthalate |
PET | Polyethylene Terephthalate |
PS | Polystyrene |
RIE | Reactive Ion Etching |
AFM | Atomic Force Microscopy |
KPFM | Kelvin Probe Force Microscopy |
vdP | Van der Pauw (method) |
RMS | Root Mean Square |
WF | Work Function |
SHE | Standard Hydrogen Electrode |
RT | Room Temperature |
PEIS | Potentiostatic Electrochemical Impedance Spectroscopy |
EC fit | Equivalent Circuit Fitting |
CV | Cyclic Voltammetry |
CPE | Constant Phase Element |
Ma | Modified Restricted Diffusion Element |
HF/MF/LF | High Frequency/Mid-Frequency/Low Frequency |
CHF, CMF, CLF | Capacitances Associated with HF, MF, and LF Semicircles, Respectively |
RHF, RMF, RLF | Resistances Associated with HF, MF, and LF Semicircles, Respectively |
RC circuit | Resistor–Capacitor Circuit |
CVD | Chemical Vapor Deposition |
LB | Langmuir–Blodgett (Technique for Depositing Monolayers) |
sccm | Standard Cubic Centimeters per Minute (Unit of Gas Flow Rate) |
PVAc | Polyvinyl Acetate |
OCV | Open-Circuit Voltage |
CC | Current Collector |
CCCbulk | Charge Carrier Concentration of the Bulk CC |
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
References
- Victoria, M.; Zeyen, E.; Brown, T. Speed of technological transformations required in Europe to achieve different climate goals. Joule 2022, 6, 1066–1086. [Google Scholar] [CrossRef]
- Wei, M.; McMillan, C.A.; De La Rue Du Can, S. Electrification of Industry: Potential, Challenges and Outlook. Curr. Sustain. Renew. Energy Rep. 2019, 6, 140–148. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [PubMed]
- Markard, J.; Rosenbloom, D. Phases of the net-zero energy transition and strategies to achieve it. arXiv 2023. [Google Scholar] [CrossRef]
- Fernandez, M.I.; Go, Y.I.; Wong, D.M.L.; Früh, W.-G. Review of challenges and key enablers in energy systems towards net zero target: Renewables, storage, buildings, & grid technologies. Heliyon 2024, 10, e40691. [Google Scholar] [CrossRef] [PubMed]
- Mugyema, M.; Botha, C.D.; Kamper, M.J.; Wang, R.-J.; Sebitosi, A.B. Levelised cost of storage comparison of energy storage systems for use in primary response application. J. Energy Storage 2023, 59, 106573. [Google Scholar] [CrossRef]
- Ahmadzadeh, O.; Rodriguez, R.; Getz, J.; Panneerselvam, S.; Soudbakhsh, D. The impact of lightweighting and battery technologies on the sustainability of electric vehicles: A comprehensive life cycle assessment. Environ. Impact Assess. Rev. 2025, 110, 107668. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, D.; Zhang, C. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renew. Energy 2020, 162, 1629–1648. [Google Scholar] [CrossRef]
- Pandey, A.; Rawat, K.; Phogat, P.; Shreya; Jha, R.; Singh, S. Next-generation energy storage: A deep dive into experimental and emerging battery technologies. J. Alloys Compd. 2025, 1014, 178781. [Google Scholar] [CrossRef]
- Guo, J.; Jing, Y.; Hou, W.; Wang, T.; Ma, S.; He, G. Demands and challenges of energy storage technology for future power system. Energy Internet 2024, 1, 116–122. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef]
- Joshi, A.; Mishra, D.K.; Singh, R.; Zhang, J.; Ding, Y. A comprehensive review of solid-state batteries. Appl. Energy 2025, 386, 125546. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 1–16. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, 1705702. [Google Scholar] [CrossRef] [PubMed]
- Schmaltz, T.; Hartmann, F.; Wicke, T.; Weymann, L.; Neef, C.; Janek, J. A Roadmap for Solid-State Batteries. Adv. Energy Mater. 2023, 13, 2301886. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Oyesanya, A.; Ogba, S.N.; Ayanwunmi, S.O.; Sobajo, M.S.; Chimsunum, V.C.; Ayanwunmi, V.O.; Amoo, M.O.; Adefemi, O.T.; Chukwudi, C.C. Solid-State lithium-ion battery electrolytes: Revolutionizing energy density and safety. Hybrid Adv. 2025, 8, 100339. [Google Scholar] [CrossRef]
- Baggetto, L.; Niessen, R.A.H.; Roozeboom, F.; Notten, P.H.L. High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration. Adv. Funct. Mater. 2008, 18, 1057–1066. [Google Scholar] [CrossRef]
- Beutl, A.; Zhang, N.; Jahn, M.; Nestoridi, M. All-solid state batteries for space exploration. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, France, 30 September–4 October 2019; IEEE: Juan-les-Pins, France, 2019; pp. 1–8. [Google Scholar]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Cabello, J. Lithium brine production, reserves, resources and exploration in Chile: An updated review. Ore Geol. Rev. 2021, 128, 103883. [Google Scholar] [CrossRef]
- Si, H.; Ma, J.; Xia, X.; Wang, Q.; Geng, S.; Fu, L. Solid-State Sodium-Ion Batteries: Theories, Challenges and Perspectives. Chem. A Eur. J. 2025, 31, e202403247. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Danzi, F.; Salgado, R.M.; Oliveira, J.E.; Arteiro, A.; Camanho, P.P.; Braga, M.H. Structural Batteries: A Review. Molecules 2021, 26, 2203. [Google Scholar] [CrossRef]
- Jin, T.; Singer, G.; Liang, K.; Yang, Y. Structural batteries: Advances, challenges and perspectives. Mater. Today 2023, 62, 151–167. [Google Scholar] [CrossRef]
- Liu, P.; Sherman, E.; Jacobsen, A. Design and fabrication of multifunctional structural batteries. J. Power Sources 2009, 189, 646–650. [Google Scholar] [CrossRef]
- Danzi, F.; Camanho, P.P.; Braga, M.H. An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolyte. Molecules 2021, 26, 5226. [Google Scholar] [CrossRef] [PubMed]
- Kalnaus, S.; Asp, L.E.; Li, J.; Veith, G.M.; Nanda, J.; Daniel, C.; Chen, X.C.; Westover, A.; Dudney, N.J. Multifunctional approaches for safe structural batteries. J. Energy Storage 2021, 40, 102747. [Google Scholar] [CrossRef]
- Braga, M.H.; Ferreira, J.A.; Murchison, A.J.; Goodenough, J.B. Electric Dipoles and Ionic Conductivity in a Na+Glass Electrolyte. J. Electrochem. Soc. 2017, 164, A207–A213. [Google Scholar] [CrossRef]
- Carvalho Baptista, M.; Khalifa, H.; Araújo, A.; Maia, B.A.; Souto, M.; Braga, M.H. Giant Polarization in Quasi-Adiabatic Ferroelectric Na+ Electrolyte for Solid-State Energy Harvesting and Storage. Adv. Funct. Mater. 2023, 33, 2212344. [Google Scholar] [CrossRef]
- Danzi, F.; Valente, M.; Terlicka, S.; Braga, M.H. Sodium and potassium ion rich ferroelectric solid electrolytes for traditional and electrode-less structural batteries. APL Mater. 2022, 10, 031111. [Google Scholar] [CrossRef]
- Freitas, Â.; Baptista, M.C.; Braga, M.H. Sustainable Solid-State Sodium-Ion Batteries Featuring Ferroelectric Electrolytes. IJMS 2024, 25, 12694. [Google Scholar] [CrossRef]
- Baptista, M.C.; Gomes, B.M.; Capela, D.; Ferreira, M.F.S.; Guimarães, D.; Silva, N.A.; Jorge, P.A.S.; Silva, J.J.; Braga, M.H. Conditioning Solid-State Anode-Less Cells for the Next Generation of Batteries. Batteries 2023, 9, 402. [Google Scholar] [CrossRef]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S.S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, S.; Shen, H.; Li, S.; Huang, Y.; Shen, Y.; Liu, S.; Zhang, Z.; Liu, F. Developments, Novel Concepts, and Challenges of Current Collectors: From Conventional Lithium Batteries to All-Solid-State Batteries. ChemElectroChem 2024, 11, e202300739. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, Z.; Li, X.; Wang, X.; Liu, D.; Hu, D.; Qiao, L.; He, D. Template-free synthesized Ni nanofoams as nanostructured current collectors for high-performance electrodes in lithium ion batteries. J. Mater. Chem. A 2013, 1, 10002. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z.; Chen, H. Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy 2019, 59, 500–507. [Google Scholar] [CrossRef]
- Yang, I.; Jeong, J.; Seok, J.Y.; Kim, S. Structurally Tailored Hierarchical Cu Current Collector with Selective Inward Growth of Lithium for High-Performance Lithium Metal Batteries. Adv. Energy Mater. 2023, 13, 2202321. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, H.; Wang, Y.; Tang, Z.; Chua, D. Nano-porous copper metal current collector for lithium ion batteries. Mater. Lett. 2018, 226, 8–12. [Google Scholar] [CrossRef]
- Jain, R.; Lakhnot, A.S.; Bhimani, K.; Sharma, S.; Mahajani, V.; Panchal, R.A.; Kamble, M.; Han, F.; Wang, C.; Koratkar, N. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 2022, 7, 736–746. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Pham, H.D.; Nanjundan, A.K.; Fernando, J.F.S.; Jayaramulu, K.; Golberg, D.; Han, Y.; Dubal, D.P. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small 2020, 16, 2002806. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, H.; Lei, Y. Review on Nanoarchitectured Current Collectors for Pseudocapacitors. Small Methods 2019, 3, 1800341. [Google Scholar] [CrossRef]
- Achour, A.; Lucio-Porto, R.; Solaymani, S.; Islam, M.; Ahmad, I.; Brousse, T. Reactive sputtering of vanadium nitride thin films as pseudo-capacitor electrodes for high areal capacitance and cyclic stability. J. Mater. Sci. Mater. Electron. 2018, 29, 13125–13131. [Google Scholar] [CrossRef]
- Yakimets, I.; MacKerron, D.; Giesen, P.; Kilmartin, K.J.; Goorhuis, M.; Meinders, E.; MacDonald, W.A. Polymer Substrates for Flexible Electronics: Achievements and Challenges. Adv. Mater. Res. 2010, 93–94, 5–8. [Google Scholar] [CrossRef]
- Coelho, B.J.; Pinto, J.V.; Martins, J.; Rovisco, A.; Barquinha, P.; Fortunato, E.; Baptista, P.V.; Martins, R.; Igreja, R. Parylene C as a Multipurpose Material for Electronics and Microfluidics. Polymers 2023, 15, 2277. [Google Scholar] [CrossRef]
- Von Metzen, R.P.; Stieglitz, T. The effects of annealing on mechanical, chemical, and physical properties and structural stability of Parylene C. Biomed. Microdevices 2013, 15, 727–735. [Google Scholar] [CrossRef]
- Centeno, P.; Alexandre, M.F.; Chapa, M.; Pinto, J.V.; Deuermeier, J.; Mateus, T.; Fortunato, E.; Martins, R.; Águas, H.; Mendes, M.J. Self-Cleaned Photonic-Enhanced Solar Cells with Nanostructured Parylene-C. Adv. Mater. Inter. 2020, 7, 2000264. [Google Scholar] [CrossRef]
- Zhao, X.-M.; Xia, Y.; Schueller, O.J.A.; Qin, D.; Whitesides, G.M. Fabrication of microstructures using shrinkable polystyrene films. Sens. Actuators A Phys. 1998, 65, 209–217. [Google Scholar] [CrossRef]
- Oliveira, F.S.; Cipriano, R.B.; Da Silva, F.T.; Romão, E.C.; Dos Santos, C.A.M. Simple analytical method for determining electrical resistivity and sheet resistance using the van der Pauw procedure. Sci. Rep. 2020, 10, 16379. [Google Scholar] [CrossRef] [PubMed]
- Ellmer, K. Hall Effect and Conductivity Measurements in Semiconductor Crystals and Thin Films. In Characterization of Materials, 1st ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 1–16. ISBN 978-0-471-26882-6. [Google Scholar]
- Jung, J.; Kim, J.Y.; Kim, I.J.; Kwon, H.; Kim, G.; Doo, G.; Jo, W.; Jung, H.-T.; Kim, H.-T. Insights on the work function of the current collector surface in anode-free lithium metal batteries. J. Mater. Chem. A 2022, 10, 20984–20992. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 88th ed (National Institute of Standards and Technology) CRC Press/Taylor & Francis Group: Boca Raton, FL. 2007. 2640 pp. $139.95. ISBN 0-8493-0488-1. J. Am. Chem. Soc. 2008, 130, 382. [Google Scholar] [CrossRef]
- Cui, X.; Hutt, D.A.; Conway, P.P. Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate. Thin Solid Film. 2012, 520, 6095–6099. [Google Scholar] [CrossRef]
- Allassem, D.; Mahamat, B.M.; Kriga, A.; Dari, Y.D.; Béchir, M.H.; Taha, M.A.; Nimir, Y.N.; Chatelon, J.P.; Rousseau, J.-J. Study of Copper Thin Films Resistivity by Using Van der Pauw Method at Low Frequencies. Open J. Appl. Sci. 2022, 12, 1944–1953. [Google Scholar] [CrossRef]
- Edwards, P.P.; Porch, A.; Jones, M.O.; Morgan, D.V.; Perks, R.M. Basic materials physics of transparent conducting oxides. Dalton Trans. 2004, 19, 2995. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.M.; Oliva, A.I. Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms. Thin Solid Films 2006, 515, 1881–1885. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, Y.; Li, C.; Dang, Y.; Zheng, R.; Wang, Z.; Wang, Y.; Cui, Y.; Arandiyan, H.; Shao, Z.; et al. Recent advances in electrochemical impedance spectroscopy for solid-state batteries. Energy Storage Mater. 2024, 69, 103378. [Google Scholar] [CrossRef]
- Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.L.; Rettie, A.J.E. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [Google Scholar] [CrossRef]
- Braga, M.H. Coherence in the Ferroelectric A3ClO (A = Li, Na) Family of Electrolytes. Materials 2021, 14, 2398. [Google Scholar] [CrossRef]
- Braga, M.H. Energy harnessing and storage from surface switching with a ferroelectric electrolyte. Chem. Commun. 2024, 60, 5395–5398. [Google Scholar] [CrossRef]
- Correia, R.; Deuermeier, J.; Correia, M.R.; Vaz Pinto, J.; Coelho, J.; Fortunato, E.; Martins, R. Biocompatible Parylene-C Laser-Induced Graphene Electrodes for Microsupercapacitor Applications. ACS Appl. Mater. Interfaces 2022, 14, 46427–46438. [Google Scholar] [CrossRef]
- Santos, I.M.; Alexandre, M.; Mihailetchi, V.D.; Silva, J.A.; Mateus, T.; Mouquinho, A.; Boane, J.; Vicente, A.T.; Nunes, D.; Menda, U.D.; et al. Optically-Boosted Planar IBC Solar Cells with Electrically-Harmless Photonic Nanocoatings. Adv. Opt. Mater. 2023, 11, 2300276. [Google Scholar] [CrossRef]
- Gorham, J. NIST X-Ray Photoelectron Spectroscopy Database—SRD 20; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prior, T.; Figueira, J.; Freitas, Â.; Carvalho, D.; Gomes, B.M.; Baptista, M.C.; Lebre, H.; Martins, R.; Pereira, L.; Pinto, J.V.; et al. Surface Morphology and Electrochemical Behavior of Microstructured Cu Electrodes in All-Solid-State Sodium Batteries. Molecules 2025, 30, 3493. https://doi.org/10.3390/molecules30173493
Prior T, Figueira J, Freitas Â, Carvalho D, Gomes BM, Baptista MC, Lebre H, Martins R, Pereira L, Pinto JV, et al. Surface Morphology and Electrochemical Behavior of Microstructured Cu Electrodes in All-Solid-State Sodium Batteries. Molecules. 2025; 30(17):3493. https://doi.org/10.3390/molecules30173493
Chicago/Turabian StylePrior, Tomás, Joana Figueira, Ângela Freitas, David Carvalho, Beatriz Moura Gomes, Manuela C. Baptista, Hugo Lebre, Rodrigo Martins, Luís Pereira, Joana Vaz Pinto, and et al. 2025. "Surface Morphology and Electrochemical Behavior of Microstructured Cu Electrodes in All-Solid-State Sodium Batteries" Molecules 30, no. 17: 3493. https://doi.org/10.3390/molecules30173493
APA StylePrior, T., Figueira, J., Freitas, Â., Carvalho, D., Gomes, B. M., Baptista, M. C., Lebre, H., Martins, R., Pereira, L., Pinto, J. V., & Braga, M. H. (2025). Surface Morphology and Electrochemical Behavior of Microstructured Cu Electrodes in All-Solid-State Sodium Batteries. Molecules, 30(17), 3493. https://doi.org/10.3390/molecules30173493