Influence of Extraction Techniques on Almond Oil Quality: A Comparative Study of Solvent-Extracted and Commercial Products
Abstract
1. Introduction
2. Results and Discussion
2.1. Oil Extraction Yield
2.2. Fatty Acid Profile and Health Indices of Almond Oils
2.3. Determination of Quality Parameters
2.4. Oxidative Stability by Pressure Differential Scanning Calorimetry
2.5. Multivariate Analysis of Almond Oil Quality Parameters
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Methods
3.2.1. Oil Extraction
Cold Solvent Method
Soxhlet Method
Folch Method
3.2.2. Oil Yield Determination and Fatty Acid Composition Analysis
3.2.3. Health Indices of Oils
3.2.4. Quality Parameters Determination
3.2.5. Oxidative Stability Determination
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Index of atherogenicity |
AO | Almond oil |
AO_AF | Oil extracted from almond flakes |
AO_APC | Oil extracted from almond protein concentrate |
AO_BA | Oil extracted from blanched almonds |
AO_ref | Commercial, refined almond oil |
AO_UA | Oil extracted from unpeeled almonds |
AOCS | American Oil Chemists’ Society |
APC | Almond protein concentrate |
AV | Acid value |
CSE | Cold solvent extraction |
FA | Fatty acid |
FE | Folch extraction |
h/H | Hypocholesterolaemic/hypercholesteraemic index |
HCA | Hierarchical Cluster Analysis |
K232 | Specific extinction coefficient at 232 nm |
K268 | Specific extinction coefficient at 268 nm |
LDL | Low-density lipoprotein |
MUFA | Monounsaturated fatty acids |
ND | Not detected |
p-AnV | p-Anisidine value |
PC1 | First principal component |
PC2 | Second principal component |
PCA | Principal Component Analysis |
PDSC | Pressure Differential Scanning Calorimetry |
PUFA | Polyunsaturated fatty acids |
PV | Peroxide value |
SD | Standard deviation |
SE | Soxhlet extraction |
SFA | Saturated fatty acids |
TI | Index of thrombogenicity |
TOTOX | Total oxidation index |
τmax | PDSC oxidation time |
References
- Gharehyakheh, S. Optimization of Bitter Almond Oil (BAO) Extraction Conditions Using Natural Enzymes and Ultrasound Waves. Iran. J. Chem. Eng. 2022, 41, 2000–2012. [Google Scholar] [CrossRef]
- Berkkan, A.; Türk, B.N.D.; Pekacar, S.; Ulutaş, O.K.; Orhan, D.D. Evaluation of Marketed Almond Oils [Prunus dulcis (Mill.) D.A. Webb] in Terms of European Pharmacopoeia Criteria. Turk. J. Pharm. Sci. 2022, 19, 322–329. [Google Scholar] [CrossRef]
- Tian, L.; You, X.; Zhang, S.; Zhu, Z.; Yi, J.; Jin, G. Enhancing Functional Properties and Protein Structure of Almond Protein Isolate Using High-Power Ultrasound Treatment. Molecules 2024, 29, 3590. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.N.; Akinci-Yildirim, F.; San, B.; Sesli, Y. Total Oil Content and Fatty Acid Profile of Some Almond (Amygdalus communis L.) Cultivars. Pol. J. Food Nutr. Sci. 2016, 66, 173–178. [Google Scholar] [CrossRef]
- El Bernoussi, S.; Boujemaa, I.; Harhar, H.; Belmaghraoui, W.; Matthäus, B.; Tabyaoui, M. Evaluation of Oxidative Stability of Sweet and Bitter Almond Oils under Accelerated Storage Conditions. J. Stored Prod. Res. 2020, 88, 101662. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hussain, S.; Syed, S.K. Phytochemistry, Nutritional and Medicinal Importance of Almond. Postep. Biol. Komorki 2021, 48, 167–180. [Google Scholar]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Aires, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Phenolic and Fatty Acid Profiles, α-Tocopherol and Sucrose Contents, and Antioxidant Capacities of Understudied Portuguese Almond Cultivars. J. Food Biochem. 2019, 43, e12887. [Google Scholar] [CrossRef]
- Ouzir, M.; Bernoussi, S.E.; Tabyaoui, M.; Taghzouti, K. Almond Oil: A Comprehensive Review of Chemical Composition, Extraction Methods, Preservation Conditions, Potential Health Benefits, and Safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3344–3387. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; Simón-García, D.; Álvarez-Ortí, M.; Pardo, J.E.; Durán-Merás, I.; Martín-Vertedor, D. Non-Destructive Fluorescence Spectroscopy for Quality Evaluation of Almond Oils Extracted from Roasted Kernel. Talanta Open 2024, 9, 100334. [Google Scholar] [CrossRef]
- Dias, F.F.G.; Teixeira, B.F.; Taha, A.Y.; Bell, J.M.L.N.d.M. Integrated Impact of Environmentally Friendly Extraction and Recovery Methods on Almond Oil Quality: Insights from a Lipidomic Perspective. J. Am. Oil Chem. Soc. 2025, 102, 995–1004. [Google Scholar] [CrossRef]
- Qi, Z.; Xiao, J.; Ye, L.; Chuyun, W.; Chang, Z.; Shugang, L.; Fenghong, H. The Effect of the Subcritical Fluid Extraction on the Quality of Almond Oils: Compared to Conventional Mechanical Pressing Method. Food Sci. Nutr. 2019, 27, 2231–2241. [Google Scholar] [CrossRef]
- Melhaoui, R.; Kodad, S.; Houmy, N.; Belhaj, K.; Mansouri, F.; Abid, M.; Addi, M.; Mihamou, A.; Sindic, M.; Serghini-Caid, H.; et al. Characterization of Sweet Almond Oil Content of Four European Cultivars (Ferragnes, Ferraduel, Fournat, and Marcona) Recently Introduced in Morocco. Scientifica 2021, 9141695. [Google Scholar] [CrossRef]
- Ruchi, V.; Nayanjeet, C.; Kalra, P.; Nair, N.S.; Prabhakar, B. Effects of Almond Consumption Compared with the Consumption of Traditional Isocaloric Cereal/Pulse-Based Snacks on Glycaemic Control and Gut Health in Adults with Pre-Diabetes in Rural India: Protocol for a 16-Week, Parallel-Arm, Cluster Randomised Controlled Trial. BMJ Open 2024, 14, e076934. [Google Scholar] [CrossRef]
- Özcan, M.M.; Al Juhaimi, F.; Ghafoor, K.; Babiker, E.E.; Özcan, M.M. Characterization of Physico-Chemical and Bioactive Properties of Oils of some Important Almond Cultivars by Cold Press and Soxhlet Extraction. J. Food Sci. Technol. 2020, 57, 955–961. [Google Scholar] [CrossRef]
- Sayah, O.; Taibi, S.; Bouakline, H.; El Yousfi, R.; Tayebi, A.; Ziani, I.; Tahani, A.; El Bachiri, A. Comparison of Sweet and Bitter Almond Oil Quality: Impact of Kernel Skin and Green Supercritical CO2 Extraction Method. Food Chem. 2025, 486, 144540. [Google Scholar] [CrossRef]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Nde, D.B.; Foncha, A.C. Optimization Methods for the Extraction of Vegetable Oils: A Review. Processes 2020, 8, 209. [Google Scholar] [CrossRef]
- Danlami, J.M.; Arsad, A.; Zaini, M.A.A.; Sulaiman, H. A Comparative Study of Various Oil Extraction Techniques from Plants. Rev. Chem. Eng. 2014, 30, 605–626. [Google Scholar] [CrossRef]
- Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty Acids and Sterols Composition, and Antioxidant Activity of Oils Extracted from Plant Seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef]
- Krzyczkowska, J.; Kozłowska, M. Effect of Oils Extracted from Plant Seeds on the Growth and Lipolytic Activity of Yarrowia lipolytica Yeast. J. Am. Oil Chem. Soc. 2017, 94, 661–671. [Google Scholar] [CrossRef]
- Gambert, A.; Niţu, S.; Tămaș, A.; Fanani, M.; Dupré, J.; Delepine, C.; Chaveriat, L.; Martin, P.; Rusnac, L. Influence of the Extraction Process on the Characteristics of Romanian Mountain Walnut Oil. Am. J. Plant Sci. 2024, 15, 940–967. [Google Scholar] [CrossRef]
- Miraliakbari, H.; Shahidi, F. Lipid Class Compositions, Tocopherols and Sterols of Tree Nut Oils Extracted with Different Solvents. J. Food Lipids 2008, 15, 81–96. [Google Scholar] [CrossRef]
- Siol, M.; Witkowska, B.; Mańko-Jurkowska, D.; Makouie, S.; Bryś, J. Comprehensive Evaluation of the Nutritional Quality of Stored Watermelon Seed Oils. Appl. Sci. 2025, 15, 830. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Stolp, L.J.; Kodali, D.R. Chapter 2—Naturally occurring high-oleic oils: Avocado, macadamia, and olive oils. In High Oleic Oils; Flider, F.J., Ed.; AOCS Press: Champaign, IL, USA, 2022; pp. 7–52. [Google Scholar] [CrossRef]
- Gülsoy, E.; Kaya, E.D.; Türkhan, A.; Bulut, M.; Koyuncu, M.; Güler, E.; Sayın, F.; Muradoğlu, F. The Effect of Altitude on Phenolic, Antioxidant and Fatty Acid Compositions of Some Turkish Hazelnut (Coryllus avellana L.) Cultivars. Molecules 2023, 28, 5067. [Google Scholar] [CrossRef]
- Poli, A.; Agostoni, C.; Visioli, F. Dietary Fatty Acids and Inflammation: Focus on the n-6 Series. Int. J. Mol. Sci. 2023, 24, 4567. [Google Scholar] [CrossRef]
- Maestri, D.; Cittadini, M.C.; Bodoira, R.; Martínez, M. Tree Nut Oils: Chemical Profiles, Extraction, Stability, and Quality Concerns. Eur. J. Lipid Sci. Technol. 2020, 122, 1900450. [Google Scholar] [CrossRef]
- Rabadán, A.; Pardo, J.E.; Gómez, R.; Álvarez-Ortí, M. Effect of Almond Roasting, Light Exposure and Addition of Different Garlic Cultivars on Almond Oil Stability. Eur. Food Res. Technol. 2018, 244, 219–224. [Google Scholar] [CrossRef]
- Tian, M.; Bai, Y.; Tian, H.; Zhao, X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils—A Review. Molecules 2023, 28, 6393. [Google Scholar] [CrossRef]
- Tilami, S.K.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef]
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef]
- Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Górska, A.; Brzezińska, R.; Piasecka, I. Assessment of the Nutritional Potential and Resistance to Oxidation of Sea Buckthorn and Rosehip Oils. Appl. Sci. 2024, 14, 1867. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Codex-ALINORM 09/32/17; Codex Alimentarius 2009. Codex Standard for Named Vegetable Oils. Codex Alimentarius Commission: Rome, Italy, 2009.
- Gharby, S.; Hajib, A.; Ibourki, M.; Sakar, E.H.; Nounah, I.; Moudden, H.E.; Elibrahimi, M.; Harhar, H. Induced Changes in Olive Oil Subjected to Various Chemical Refining Steps: A Comparative Study of Quality Indices, Fatty Acids, Bioactive Minor Components, and Oxidation Stability Kinetic Parameters. Chem. Data Collect. 2021, 33, 100702. [Google Scholar] [CrossRef]
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 6627013. [Google Scholar] [CrossRef]
- Atamyradova, N.; Özkılıç, S.Y.; Arslan, D. Blanching of Olive Fruits Before Storage at Different Conditions: Effects on Oil Yield, Lipase Activity and Oxidation. J. Agric. Food Res. 2024, 18, 101509. [Google Scholar] [CrossRef]
- PN-EN ISO 3960:2017-03; Vegetable and Animal Oils and Fats. Determination of Peroxide Number (Reference Method). Polish Committee for Standardization: Warsaw, Poland, 2017.
- Rezvankhah, A.; Emam-Djomeh, Z.; Safari, M.; Askari, G.; Salami, M. Microwave-Assisted Extraction of Hempseed Oil: Studying and Comparing of Fatty Acid Composition, Antioxidant Activity, Physiochemical and Thermal Properties with Soxhlet Extraction. J. Food Sci. Technol. 2019, 56, 4198–4210. [Google Scholar] [CrossRef]
- Mortensen, G.; Sørensen, J.; Stapelfeldt, H. Comparison of Peroxide Value Methods used for Semihard Cheeses. J. Agric. Food Chem. 2002, 50, 5007–5011. [Google Scholar] [CrossRef]
- Esfahani, S.T.; Zamindar, N.; Esmaeili, Y.; Sharifian, S. Effect of Initial Quality of Oil and Thermal Processing on Oxidation Indexes in Canned Tuna. Appl. Food Res. 2024, 4, 100553. [Google Scholar] [CrossRef]
- Čolić, S.; Zec, G.; Natić, M.; Fotirić-Akšić, M. Almond (Prunus dulcis) oil. In Fruit Oils: Chemistry and Functionality; Ramadan, M., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Sidhu, A.R.; Naz, S.; Mahesar, S.A.; Kandhro, A.A.; Khaskheli, A.R.; Ali, Z.; Memon, H.D.; Shoaib, H.; Mahesar, H.R. Effect of Storage at Elevated Temperature on the Quality and Stability of Different Almond Oils: A Comprehensive Study. Food Mater. Res. 2023, 3, 30. [Google Scholar] [CrossRef]
- Petkova, Z.; Antova, G. A Comparative Study on Quality Parameters of Pumpkin, Melon and Sunflower Oils During Thermal Treatment. OCL 2019, 26, 32. [Google Scholar] [CrossRef]
- Sánchez-Bel, P.; Martínez-Madrid, M.C.; Egea, I.; Romojaro, F. Quality and Sensory Evaluation of Almond (Prunus amygdalus) Stored after Electron Beam Processing. J. Agric. Food Chem. 2005, 53, 2567–2573. [Google Scholar] [CrossRef]
- Tan, C.P.; Man, Y.B.C.; Selamat, J.; Yusoff, M.S.A. Comparative Studies of Oxidative Stability of Edible Oils by Differential Scanning Calorimetry and Oxidative Stability Index Methods. Food Chem. 2002, 76, 385–389. [Google Scholar] [CrossRef]
- Buranasompob, A.; Tang, J.; Powers, J.R.; Reyes, J.; Clark, S.; Swanson, B.G. Lipoxygenase Activity in Walnuts and Almonds. LWT Food Sci. Technol. 2007, 40, 893–899. [Google Scholar] [CrossRef]
- Mwaurah, P.W.; Kumar, S.; Kumar, N.; Attkan, A.K.; Panghal, A.; Singh, V.K.; Garg, M.K. Novel Oil Extraction Technologies: Process Conditions, Quality Parameters, and Optimization. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Magangana, T.P.; Makunga, N.P.; la Grange, C.; Stander, M.A.; Fawole, O.A.; Opara, U.L. Blanching Pre-Treatment Promotes High Yields, Bioactive Compounds, Antioxidants, Enzyme Inactivation and Antibacterial Activity of ‘Wonderful’ Pomegranate Peel Extracts at Three Different Harvest Maturities. Antioxidants 2021, 10, 1119. [Google Scholar] [CrossRef]
- Salcedo, C.L.; de Mishima, B.A.L.; Nazareno, M.A. Walnuts and Almonds as Model Systems of Foods Constituted by Oxidisable, Pro-Oxidant and Antioxidant Factors. Food Res. Int. 2010, 43, 1187–1197. [Google Scholar] [CrossRef]
- Symoniuk, E.; Wroniak, M.; Napiórkowska, K.; Brzezińska, R.; Ratusz, K. Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils and Oils Mixtures. Foods 2022, 11, 1597. [Google Scholar] [CrossRef]
- Ratusz, K.; Kowalski, B.; Bekas, W.; Wirkowska, M. Monitorowanie Autooksydacji Oleju Rzepakowego i Słonecznikowego. Rośliny Oleiste Oilseed Crops 2005, 26, 211–220. [Google Scholar]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Caboni, M.F.; Lercker, G. Pressurized Liquid Extraction of Lipids for the Determination of Oxysterols in Egg-Containing Food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef]
- PN-EN ISO 5509:2001; Vegetable and Animal Oils and Fats. Preparation of Fatty Acid Methyl Esters. Polish Committee for Standardization: Warsaw, Poland, 2001.
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2022, 77, 187–194. [Google Scholar] [CrossRef]
- AOCS Official Method Te 1a-64; Acid Value Official Methods and Recommended Practices of the AOCS. AOCS Press: Champaign, IL, USA, 2009.
- AOCS Official Method Cd 8b-90; Peroxide Value Acetic Acid-Isooctane Method Official Methods and Recommended Practices of the AOCS. AOCS Press: Champaign, IL, USA, 2009.
- AOCS Official Method Cd 18-90. p-Anisidine Value. In Official Methods and Recommended Practices of the AOCS; American Oil Chemists Society Press: Champaign, IL, USA, 2011. [Google Scholar]
- ISO 3656:2011; Animal and Vegetable Fats and Oils-Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
Extraction Method | AO_UA | AO_BA | AO_AF | AO_APC |
---|---|---|---|---|
Soxhlet extraction | 37.56 ± 1.52 b | 46.42 ± 2.66 a | 43.12 ± 2.21 a | 3.78 ± 0.19 c |
Folch extraction | 37.66 ± 2.68 b | 42.55 ± 1.03 b | 40.20 ± 1.76 a | 7.51 ± 0.16 a |
Cold solvent extraction | 43.43 ± 1.91 a | 37.02 ± 2.03 c | 41.42 ± 2.47 a | 5.72 ± 0.39 b |
Cold Solvent Extraction | Soxhlet Extraction | Folch Extraction | Refined Oil | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AO_UA | AO_BA | AO_AF | AO_APC | AO_UA | AO_BA | AO_AF | AO_APC | AO_UA | AO_BA | AO_AF | AO_APC | AO_ref | |
Palmitic C16:0 | 7.34 ±0.02 b | 6.78 ±0.17 ef | 7.10 ±0.05 cd | 6.68 ±0.03 f | 7.23 ±0.02 bc | 7.12 ±0.03 cd | 7.09 ±0.08 d | 6.67 ±0.03 f | 7.42 ±0.03 a | 6.85 ±0.06 e | 6.91 ±0.05 e | 7.37 ±0.05 a | 5.19 ±0.01 f |
Palmitoleic C16:1 | 0.68 ±0.01 a | 0.51 ±0.01 f | 0.68 ±0.01 a | 0.65 ±0.01 cd | 0.68 ±0.01 a | 0.52 ±0.01 f | 0.64 ±0.01 d | 0.64 ±0.01 d | 0.68 ±0.01 a | 0.51 ±0.01 f | 0.66 ±0.01 bc | 0.60 ±0.01 e | 0.14 ±0.01 g |
Heptadecenoic C17:1 | 0.13 ±0.01 ab | 0.14 ±0.01 a | 0.13 ±0.01 ab | 0.12 ±0.01 cd | 0.13 ±0.01 ab | 0.12 ±0.01 cd | 0.13 ±0.01 ab | 0.11 ±0.01 d | 0.14 ±0.01 a | 0.12 ±0.01 cd | 0.13 ±0.01 ab | 0.11 ±0.01 d | ND |
Stearic C18:0 | 2.44 ±0.01 h | 2.69 ±0.01 g | 2.33 ±0.01 j | 3.39 ±0.01 c | 2.43 ±0.01 hi | 2.44 ±0.02 h | 2.97 ±0.03 e | 3.33 ±0.04 d | 2.41 ±0.02 hi | 2.81 ±0.01 f | 2.40 ±0.01 i | 3.50 ±0.01 b | 3.83 ±0.01 a |
Oleic C18:1 n-9 | 66.93 ±0.04 f | 69.79 ±0.23 a | 68.34 ±0.06 e | 69.18 ±0.05 c | 66.99 ±0.03 f | 68.66 ±0.06 d | 66.89 ±0.16 f | 69.32 ±0.02 c | 66.64 ±0.03 g | 69.59 ±0.06 b | 68.73 ±0.06 d | 68.71 ±0.03 d | 60.92 ±0.10 h |
Linoleic C18:2 n-6 | 22.38 ±0.04 c | 19.97 ±0.02 g | 21.33 ±0.01 e | 19.83 ±0.02 h | 22.41 ±0.01 c | 21.05 ±0.01 f | 22.14 ±0.04 d | 19.77 ±0.04 h | 22.58 ±0.01 b | 19.97 ±0.01 g | 21.08 ±0.01 f | 19.50 ±0.01 i | 27.60 ±0.07 a |
Arachidic C20:0 | 0.13 ±0.01 gh | 0.15 ±0.01 de | 0.11 ±0.01 i | 0.17 ±0.01 c | 0.14 ±0.01 fg | 0.12 ±0.01 hi | 0.15 ±0.01 ef | 0.16 ±0.01 cd | 0.15 ±0.01 ef | 0.16 ±0.01 cd | 0.11 ±0.01 i | 0.23 ±0.01 b | 0.37 ±0.01 a |
other | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 1.97 ±0.01 |
Σ SFA | 9.90 ±0.01 | 9.62 ±0.18 | 9.54 ±0.05 | 10.23 ±0.03 | 9.79 ±0.01 | 9.67 ±0.06 | 10.21 ±0.11 | 10.16 ±0.01 | 9.97 ±0.01 | 9.82 ±0.05 | 9.41 ±0.04 | 11.09 ±0.04 | 11.06 ±0.01 |
Σ MUFA | 67.74 ±0.04 | 70.43 ±0.21 | 69.15 ±0.05 | 69.95 ±0.05 | 67.46 ±0.02 | 67.66 ±0.14 | 69.52 ±0.05 | 70.06 ±0.03 | 67.80 ±0.02 | 70.21 ±0.06 | 69.52 ±0.05 | 69.42 ±0.04 | 61.35 ±0.08 |
Σ PUFA | 22.38 ±0.04 | 19.97 ±0.02 | 21.33 ±0.01 | 19.83 ±0.02 | 19.77 ±0.04 | 22.14 ±0.04 | 21.08 ±0.01 | 19.50 ±0.01 | 22.58 ±0.01 | 19.97 ±0.01 | 21.08 ±0.01 | 19.50 ±0.01 | 27.60 ±0.07 |
Samples | Oil Source | Acid Value (mg KOH/g) | Peroxide Value (mEq O2/kg) | p-Anisidine Value | TOTOX | Specific Extinction Coefficients | |
---|---|---|---|---|---|---|---|
K232 | K268 | ||||||
AO_UA | Cold solvent extraction | 0.26 ± 0.01 f | 2.89 ± 0.13 f | 0.58 ± 0.23 ef | 6.36 ± 0.50 f | 2.00 ± 0.02 j | 0.26 ± 0.01 ef |
AO_BA | 0.89 ± 0.03 d | 3.87 ± 0.16 e | 0.45 ± 0.03 ef | 8.19 ± 0.36 e | 2.51 ± 0.06 h | 0.13 ± 0.01 g | |
AO_AF | 1.49 ± 0.03 c | 2.05 ± 0.06 g | 0.30 ± 0.01 f | 4.40 ± 0.11 g | 2.67 ± 0.11 gh | 0.10 ± 0.01 g | |
AO_APC | 0.24 ± 0.01 f | 3.78 ± 0.15 e | 0.75 ± 0.10 e | 8.31 ± 0.39 e | 3.42 ± 0.07 c | 0.37 ± 0.01 cd | |
AO_UA | Soxhlet extraction | 0.25 ± 0.02 f | 1.77 ± 0.21 g | 1.22 ± 0.20 d | 4.77 ± 0.62 g | 1.89 ± 0.06 j | 0.27 ± 0.01 ef |
AO_BA | 0.90 ± 0.01 d | 1.99 ± 0.01 g | 0.51 ± 0.12 ef | 4.48 ± 0.14 g | 2.19 ± 0.01 i | 0.12 ± 0.01 g | |
AO_AF | 1.37 ± 0.04 c | 1.87 ± 0.26 g | 0.62 ± 0.01 ef | 4.35 ± 0.51 g | 2.64 ± 0.04 gh | 0.12 ± 0.01 g | |
AO_APC | 0.40 ± 0.02 ef | 2.25 ± 0.06 g | 1.54 ± 0.21 d | 6.04 ± 0.09 f | 3.18 ± 0.04 d | 0.41 ± 0.01 c | |
AO_UA | Folch extraction | 0.74 ± 0.04 de | 10.19 ± 0.20 b | 1.93 ± 0.13 c | 22.31 ± 0.53 b | 2.87 ± 0.01 ef | 0.40 ± 0.01 c |
AO_BA | 1.50 ± 0.11 c | 5.04 ± 0.07 d | 3.84 ± 0.15 a | 13.92 ± 0.30 d | 2.75 ± 0.15 fg | 0.23 ± 0.01 f | |
AO_AF | 2.04 ± 0.10 b | 5.74 ± 0.12 c | 3.99 ± 0.03 a | 15.47 ± 0.27 c | 2.99 ± 0.06 e | 0.31 ± 0.03 de | |
AO_APC | 16.77 ± 0.69 a | 13.07 ± 0.13 a | 3.98 ± 0.11 a | 30.11 ± 0.15 a | 4.97 ± 0.19 b | 0.86 ± 0.02 b | |
AO_ref | Refined Oil | 0.24 ± 0.01 f | 9.65 ± 0.67 b | 3.24 ± 0.39 b | 22.53 ± 0.94 b | 5.83 ± 0.05 a | 1.24 ± 0.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, M.; Mańko-Jurkowska, D.; Zieniuk, B.; Rudzińska, M. Influence of Extraction Techniques on Almond Oil Quality: A Comparative Study of Solvent-Extracted and Commercial Products. Molecules 2025, 30, 3519. https://doi.org/10.3390/molecules30173519
Kozłowska M, Mańko-Jurkowska D, Zieniuk B, Rudzińska M. Influence of Extraction Techniques on Almond Oil Quality: A Comparative Study of Solvent-Extracted and Commercial Products. Molecules. 2025; 30(17):3519. https://doi.org/10.3390/molecules30173519
Chicago/Turabian StyleKozłowska, Mariola, Diana Mańko-Jurkowska, Bartłomiej Zieniuk, and Magdalena Rudzińska. 2025. "Influence of Extraction Techniques on Almond Oil Quality: A Comparative Study of Solvent-Extracted and Commercial Products" Molecules 30, no. 17: 3519. https://doi.org/10.3390/molecules30173519
APA StyleKozłowska, M., Mańko-Jurkowska, D., Zieniuk, B., & Rudzińska, M. (2025). Influence of Extraction Techniques on Almond Oil Quality: A Comparative Study of Solvent-Extracted and Commercial Products. Molecules, 30(17), 3519. https://doi.org/10.3390/molecules30173519