Application of High-Quality Dried Olive with High Polyphenol Content for Bread Fortification: Effects on Nutritional, Technological, and Sensory Properties
Abstract
1. Introduction
2. Results
2.1. Crust and Crumb Colourimetry
2.2. Height and Weight Loss
2.3. Phenolic Compounds and Antioxidant Capacity Analyses
2.4. Texture Evolution
2.5. Accelerated Mould Growth Inhibition Test
2.6. Descriptive Sensorial Analysis
3. Discussion
3.1. Crust and Crumb Colourimetry
3.2. Height and Weight Loss
3.3. Phenolic Compounds and Antioxidant Capacity Analyses
3.4. Texture Evolution
3.5. Accelerated Mould Growth Inhibition Test
3.6. Descriptive Sensorial Analysis
4. Materials and Methods
4.1. Raw Materials
4.2. Bread Making
4.3. Crust and Crumb Colourimetry
4.4. Height and Weight Loss
4.5. Texture Evolution
4.6. Phenolic Compounds and Antioxidant Capacity Analyses
4.7. Accelerated Mould Growth Inhibition Test
4.8. Descriptive Sensorial Analysis
- –
- Appearance: The following values are included in this attribute: crust thickness, internal colour, external colour, and crumb size.
- –
- Texture: The following values are included in this attribute: crust chewiness and crumb chewiness and astringency.
- –
- Aroma: The following aromas are included in this attribute: toasted, nutty, yeasty, rancid oil, grain, and earthy.
- –
- Flavour: In this case, the evaluation was given according to the intensity with which the tasters detected the different flavours: sweet, salt, sour, bitter, etc.
- –
- Aftertaste: The following flavours are included in this attribute: sweet, sour, astringent, salty, bitter, and olives.
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef]
- Banias, G.; Achillas, C.; Vlachokostas, C.; Moussiopoulos, N.; Stefanou, M. Environmental impacts in the life cycle of Olive Oil: A Literature Review. J. Sci. Food Agric. 2017, 97, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Kapellakis, I.E.; Tsagarakis, K.P.; Crowther, J.C. Olive oil history, production and by-product management. Rev. Environ. Sci. Biotechnol. 2007, 7, 1–26. [Google Scholar] [CrossRef]
- Kumar, R.; Kansara, S. Supply chain process of olive oil industry. Int. J. Manag. Pract. 2018, 11, 141–170. [Google Scholar] [CrossRef]
- Marín Iniesta, F.M.; Saura Martínez, J.; Tortosa Díaz, L. Obtención de Zumo Natural de Aceituna (ZNA) de Tipo Not From Concentrate (NFC) y su uso Como Ingrediente en un Alimento o en Una Bebida. Solicitud de Patente No. P20243, 28 June 2024. [Google Scholar]
- Silva, A.F.R.; Resende, D.; Monteiro, M.; Coimbra, M.A.; Silva, A.M.S.; Cardoso, S.M. Application of hydroxytyrosol in the functional foods field: From ingredient to dietary supplements. Antioxidants 2020, 9, 1246. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef]
- Jarmul, S.; Dangour, A.D.; Green, R.; Liew, Z.; Haines, A.; Scheelbeek, P.F. Climate change mitigation through dietary change: A systematic review of empirical and modelling studies on the environmental footprints and health effects of ‘sustainable diets’. Environ. Res. Lett. 2020, 15, 123014. [Google Scholar] [CrossRef]
- Cardinali, F.; Belleggia, L.; Reale, A.; Cirlini, M.; Boscaino, F.; Di Renzo, T.; Del Vecchio, L.; Cavalca, N.; Milanovic, V.; Garofalo, C.; et al. Exploitation of black olive (Olea europaea L. cv. Piantone di Mogliano) pomace for the production of high-value bread. Foods 2024, 13, 460. [Google Scholar] [CrossRef]
- Cecchi, L.; Schuster, N.; Flynn, D.; Bechtel, R.; Bellumori, M.; Innocenti, M.; Mulinacci, N.; Guinard, J.-X. Sensory Profiling and Consumer Acceptance of Pasta, Bread, and Granola Bar Fortified with Dried Olive Pomace (Pâté): A Byproduct from Virgin Olive Oil Production. J. Food Sci. 2019, 84, 2995–3008. [Google Scholar] [CrossRef]
- Cedola, A.; Cardinali, A.; Del Nobile, M.A.; Conte, A. Enrichment of Bread with Olive Oil Industrial By-Product. J. Agric. Sci. Technol. 2019, 9, 119–127. [Google Scholar] [CrossRef]
- Conte, P.; Pulina, S.; Del Caro, A.; Fadda, C.; Urgeghe, P.P.; De Bruno, A.; Difonzo, G.; Caponio, F.; Romeo, R.; Piga, A. Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods 2021, 10, 923. [Google Scholar] [CrossRef]
- Dahdah, P.; Cabizza, R.; Farbo, M.G.; Fadda, C.; Del Caro, A.; Montanari, L.; Hassoun, G.; Piga, A. Effect of partial substitution of wheat flour with freeze-dried olive pomace on the technological, nutritional, and sensory properties of bread. Front. Sustain. Food Syst. 2024, 8, 1400339. [Google Scholar] [CrossRef]
- de Gennaro, G.; Difonzo, G.; Summo, C.; Pasqualone, A.; Caponio, F. Olive Cake Powder as Functional Ingredient to Improve the Quality of Gluten-Free Breadsticks. Foods 2021, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M.; Tsatalas, P.; Charalambous, Z.; Galanakis, I.M. Control of microbial growth in bakery products fortified with polyphenols recovered from olive mill wastewater. Environ. Technol. Innov. 2018, 10, 1–15. [Google Scholar] [CrossRef]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F.; Pasini, G. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT Food Sci. Technol. 2019, 114, 108368. [Google Scholar] [CrossRef]
- Criado, M.-N.; Morelló, J.R.; Motilva, M.-J.; Romero, M.-P. Effect of growing area on pigment and phenolic fractions of virgin olive oils of the arbequina variety in Spain. J. Am. Oil Chem. Soc. 2004, 81, 633–640. [Google Scholar] [CrossRef]
- Criado, M.-N.; Romero, M.-P.; Casanovas, M.; Motilva, M.-J. Pigment profile and colour of monovarietal virgin olive oils from Arbequina cultivar obtained during two consecutive crop seasons. Food Chem. 2008, 110, 873–880. [Google Scholar] [CrossRef]
- Helou, C.; Jacolot, P.; Niquet-Léridon, C.; Gadonna-Widehem, P.; Tessier, F.J. Maillard reaction products in bread: A novel semi-quantitative method for evaluating melanoidins in bread. Food Chem. 2016, 190, 904–911. [Google Scholar] [CrossRef]
- Singh, M.; Liu, S.X.; Vaughn, S.F. Effect of corn bran as dietary fiber addition on baking and sensory quality. Biocatal. Agric. Biotechnol. 2012, 1, 348–352. [Google Scholar] [CrossRef]
- Kasprzak, M.; Rzedzicki, Z. Effect of pea seed coat admixture on physical properties and chemical composition of bread. Int. Agrophys. 2010, 24, 149–156. [Google Scholar]
- Scanlon, M.G.; Zghal, M.C. Bread properties and crumb structure. Food Res. Int. 2001, 34, 841–864. [Google Scholar] [CrossRef]
- Choi, Y.J.; Ahn, S.C.; Choi, H.S.; Hwang, D.K.; Kim, B.Y.; Baik, M.Y. Role of water in bread staling: A review. Food Sci. Biotechnol. 2008, 17, 1139–1145. [Google Scholar]
- Khan, J.; Khurshid, S.; Sarwar, A.; Aziz, T.; Naveed, M.; Ali, U.; Makhdoom, S.I.; Nadeem, A.A.; Khan, A.A.; Sameeh, M.Y.; et al. Enhancing Bread Quality and Shelf Life via Glucose Oxidase Immobilized on Zinc Oxide Nanoparticles—A Sustainable Approach towards Food Safety. Sustainability 2022, 14, 14255. [Google Scholar] [CrossRef]
- Nissim, Y.; Shloberg, M.; Biton, I.; Many, Y.; Doron-Faigenboim, A.; Zemach, H.; Hovav, R.; Kerem, Z.; Avidan, B.; Ben-Ari, B. High temperature environment reduces olive oil yield and quality. PLoS ONE 2020, 15, e0231956. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Dwyer, J.T.; Wiemer, K.L.; Dary, O.; Keen, C.L.; King, J.C.; Miller, K.B.; Philbert, M.A.; Tarasuk, V.; Taylor, C.L.; Gaine, P.C.; et al. Fortification and Health: Challenges and Opportunities. Adv. Nutr. 2015, 1, 348–352. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Liu, H.-M.; Yu, Y.-W.; Lin, S.-D.; Mau, J.-L. Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem. 2009, 112, 987–991. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The possibility of using by-products from the flaxseed industry for functional bread production. LWT Food Sci. Technol. 2020, 118, 108860. [Google Scholar] [CrossRef]
- Ronda, F.; Pérez-Quirce, S.; Villanueva, M. Chapter 12—Rheological Properties of Gluten-Free Bread Doughs: Relationship With Bread Quality. In Advances in Food Rheology and Its Applications; Ahmed, J., Ptaszek, P., Basu, S., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 297–334. ISBN 978-0-08-100431-9. [Google Scholar] [CrossRef]
- Obied, H.K.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. 2007, 45, 1238–1248. [Google Scholar] [CrossRef]
- Topuz, S.; Bayram, M. Oleuropein extraction from leaves of three olive varieties (Olea europaea L.): Antioxidant and antimicrobial properties of purified oleuropein and oleuropein extracts. J. Food Process. Preserv. 2021, 46, e15697. [Google Scholar] [CrossRef]
- Zorić, N.; Kosalec, I. The Antimicrobial Activities of Oleuropein and Hydroxytyrosol. In Promising Antimicrobials from Natural Products; Rai, M., Kosalec, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 75–90. [Google Scholar]
- Cayuela, M.L.; Millner, P.D.; Meyer, S.L.F.; Roig, A. Potential of olive mill waste compost as biobased pesticides against weeds fungi nematodes. Sci. Total Environ. 2008, 399, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Sharifzadeh, A.; Moghadam, S.; Hajigholamreza, H.; Shams, G.; Aghamohammadi, A.; Ghanati, K. In-vitro Assessment of Antifungal and Antioxidant Activities of Olive Leaves and Fruits at Various Extraction Conditions. Appl. Food Biotechnol. 2024, 11, e10. [Google Scholar] [CrossRef]
- Petrović, E.; Vrandečić, K.; Albreht, A.; Gruntar, I.; Major, N.; Ćosić, J.; Užila, Z.; Goreta Ban, S.; Godena, S. Integrated Analysis of Olive Mill Wastewaters: Physicochemical Profiling, Antifungal Activity, and Biocontrol Potential Against Botryosphaeriaceae. Horticulturae 2025, 11, 819. [Google Scholar] [CrossRef]
- Huey, S.L.; Bhargava, A.; Friesen, V.M.; Konieczynski, E.M.; Krisher, J.T.; Mduduzi, N.N.M.; Mehta, N.H.; Monterrosa, E.; Nyangaresi, A.M.; Mehta, S. Sensory acceptability of biofortified foods and food products: A systematic review. Nutr. Rev. 2023, 82, 892–912. [Google Scholar] [CrossRef]
- Giovanelli, G.; Cappa, C. 5-hydroxymethylfurfural formation in bread as a function of heat treatment intensity Correlations with browning indices. Foods 2021, 10, 417. [Google Scholar] [CrossRef]
- Renoldi, N.; Lucci, P.; Peressini, D. Impact of oleuropein on rheology and breadmaking performance of wheat doughs, and functional features of bread. Int. J. Food Sci. Technol. 2022, 57, 2321–2332. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods of the AACC, AACC Method 74-09; American Association of Cereal Chemists: St. Paul, MN, USA, 1988. [Google Scholar]
- ISO 14502-1:2005; Determination of Substances Characteristics of Green and Black Tea. Part 1: Content of Total Polyphenols in Tea-Colorimetric Method Using Folin-Ciocalteu Reagent. International Standard Organization: Geneva, Switzerland, 2005.
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Campo, E.; del Arco, L.; Urtasun, L.; Oria, R.; Ferrer-Mairal, A. Impact of sourdough on sensory properties and consumers’ preference of gluten-free breads enriched with teff flour. J. Cereal Sci. 2016, 67, 75–82. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
Sample | L* | a* | b* | BI | hº | TCD |
---|---|---|---|---|---|---|
CON | 64.3 ± 1.1 a | 5.1 ± 0.2 b | 24.0 ± 0.4 a | 51.7 ± 1.1 b | 1.4 ± 0.0 a | |
HQDO1 | 53.5 ± 7.7 b | 9.0 ± 4.2 b | 22.0 ± 4.1 a | 64.8 ± 7.7 ab | 1.2 ± 0.1 b | 12.7 ± 7.4 b |
HQDO5 | 43.5 ± 4.3 c | 9.5 ± 0.8 b | 16.9 ± 0.7 b | 67.2 ± 4.3 ab | 1.0 ± 0.0 bc | 22.5 ± 4.1 b |
HQDO10 | 30.6 ± 3.2 d | 8.7 ± 1.2 a | 13.9 ± 2.5 b | 81.6 ± 3.1 a | 1.0 ± 0.1 c | 35.5 ± 3.0 a |
Sample | L* | a* | b* | WI | hº | TCD |
---|---|---|---|---|---|---|
CON | 56.0 ± 1.8 a | 1.9 ± 1.3 c | 12.7 ± 2.0 a | 54.1 ± 1.4 a | 1.4 ± 0.1 a | |
HQDO1 | 43.8 ± 8.2 b | 3.9 ± 1.5 bc | 13.0 ± 0.6 a | 42.1 ± 8.2 b | 1.3 ± 0.1 a | 12.4 ± 8.4 b |
HQDO5 | 31.6 ± 6.7 c | 5.9 ± 1.4 ab | 9.4 ± 3.1 a | 30.6 ± 6.3 c | 1.0 ± 0.2 b | 25.1 ± 6.8 ab |
HQDO10 | 28.7 ± 3.5 c | 8.1 ± 1.6 a | 9.3 ± 1.5 a | 27.6 ± 3.2 c | 0.8 ± 0.1 b | 28.3 ± 3.4 a |
Sample | Appearance | Texture | Aroma | Flavour | Aftertaste |
---|---|---|---|---|---|
CON | 9.1 ± 0.7 a | 9.3 ± 0.7 a | 7.5 ± 1.2 b | 8.1 ± 1.2 a | 7.7 ± 1.6 a |
HQDO1 | 7.5 ± 2.2 b | 7.9 ± 2.3 b | 8.5 ± 1.0 a | 7.9 ± 1.7 a | 7.6 ± 1.7 a |
HQDO5 | 7.6 ± 1.1 b | 7.2 ± 1.3 c | 7.5 ± 1.6 b | 7.9 ± 1.2 a | 8.0 ± 0.7 a |
HQDO10 | 7.3 ± 1.4 b | 7.3 ± 1.2 bc | 7.1 ± 1.1 b | 6.7 ± 1.6 b | 6.8 ± 1.4 b |
Fractions | Weight (g 100 g−1) |
---|---|
Total fats | 0.9 |
Saturated fats | 0.2 |
Total carbohydrates | 68.8 |
Sugars | 0.4 |
Dietary fibre | 2.5 |
Fractions | Weight (g 100 g−1) | Method |
---|---|---|
Total fats | 17.2 ± 1.7 | §64 LFBG L 17.00-4, mod.:2017-10, Weibull-Stoldt-Gravimetry |
Saturated fats | 2.7 ± 0.27 | DGF C-VI 10a:2023 |
Total carbohydrates | 17.4 ± 6.1 | §64 LFBG L 17.00-4, mod.:2017-10 |
Sugars | 8.8 ± 2.6 | §64 LFBG L 17.00-4, mod.:2017-10 |
Dietary fibre | 48.0 ± 17 | §64 LFGB L 00.00-18: 1997-01 |
Proteins | 7.6 ± 0.76 | §64 LFBG L 17.00-15:2013-08, Kjeldahl |
Salt | 0.015 ± 0.0023 | §64 LFBG L 17.00-4, mod.:2017-10 |
Sample 1 | Flour (g) | Water (ml) | HQDO (g) | Yeast (g) | Sugar (g) | Salt (g) | Olive Oil (g) |
---|---|---|---|---|---|---|---|
CON | 500 | 300 | 0 | 15 | 5 | 10 | 20 |
HQDO1 | 495 | 300 | 5 | 15 | 5 | 10 | 20 |
HQDO5 | 475 | 300 | 25 | 15 | 5 | 10 | 20 |
HQDO10 | 450 | 300 | 50 | 15 | 5 | 10 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saura-Martínez, J.; Tortosa-Díaz, L.; López-Avilés, F.J.; Juárez-Marín, M.; Hidalgo, A.M.; Marín-Iniesta, F. Application of High-Quality Dried Olive with High Polyphenol Content for Bread Fortification: Effects on Nutritional, Technological, and Sensory Properties. Molecules 2025, 30, 3564. https://doi.org/10.3390/molecules30173564
Saura-Martínez J, Tortosa-Díaz L, López-Avilés FJ, Juárez-Marín M, Hidalgo AM, Marín-Iniesta F. Application of High-Quality Dried Olive with High Polyphenol Content for Bread Fortification: Effects on Nutritional, Technological, and Sensory Properties. Molecules. 2025; 30(17):3564. https://doi.org/10.3390/molecules30173564
Chicago/Turabian StyleSaura-Martínez, Jorge, Luis Tortosa-Díaz, Francisco José López-Avilés, Miguel Juárez-Marín, Asunción María Hidalgo, and Fulgencio Marín-Iniesta. 2025. "Application of High-Quality Dried Olive with High Polyphenol Content for Bread Fortification: Effects on Nutritional, Technological, and Sensory Properties" Molecules 30, no. 17: 3564. https://doi.org/10.3390/molecules30173564
APA StyleSaura-Martínez, J., Tortosa-Díaz, L., López-Avilés, F. J., Juárez-Marín, M., Hidalgo, A. M., & Marín-Iniesta, F. (2025). Application of High-Quality Dried Olive with High Polyphenol Content for Bread Fortification: Effects on Nutritional, Technological, and Sensory Properties. Molecules, 30(17), 3564. https://doi.org/10.3390/molecules30173564