Structural Basis for D3/D4-Selective Antagonism of Piperazinylalkyl Pyrazole/Isoxazole Analogs
Abstract
1. Introduction
2. Results and Discussion
2.1. 3D-QSAR of Piperazinylalkyl Pyrazole/Isoxazole Analogs for the Activity of D2/D3/D4 Subtypes
2.2. Graphical Interpretation of Contour Maps of 3D-QSAR Models
2.3. Structural Requirement for Ligand Binding on Dopamine D2/D3/D4 Receptors
3. Materials and Methods
3.1. Dataset
3.2. Molecular Alignment
3.3. Building 3D-QSAR Models
3.4. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gingrich, J.A.; Caron, M.G. Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 1993, 16, 299–321. [Google Scholar] [CrossRef] [PubMed]
- van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.-M.; Gainetdinov, R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef]
- Seeman, P. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1987, 1, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Duncan, G.; Marx, C.; Lieberman, J. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry 2005, 10, 79–104. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Bymaster, F.P.; Meltzer, H.Y.; Deutch, A.Y.; Duncan, G.E.; Marx, C.E.; Aprille, J.R.; Dwyer, D.S.; Li, X.-M.; Mahadik, S.P. Antipsychotic drugs: Comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol. Rev. 2008, 60, 358–403. [Google Scholar] [CrossRef]
- Lindenmayer, J.; Khan, A. Pharmacological treatment strategies for schizophrenia. Expert Rev. Neurother. 2004, 4, 705–723. [Google Scholar] [CrossRef]
- Seeman, P.; Van Tol, H.H. Dopamine receptor pharmacology. Trends Pharmacol. Sci. 1994, 15, 264–270. [Google Scholar] [CrossRef]
- Fleischhacker, W.W. New developments in the pharmacotherapy of schizophrenia. J. Neural Transmission. Suppl. 2003, 64, 105–117. [Google Scholar]
- Sanyal, S.; Van Tol, H.H. Review the role of dopamine D4 receptors in schizophrenia and antipsychotic action. J. Psychiatr. Res. 1997, 31, 219–232. [Google Scholar] [CrossRef]
- Wahlbeck, K.; Cheine, M.; Essali, A.; Adams, C. Evidence of clozapine’s effectiveness in schizophrenia: A systematic review and meta-analysis of randomized trials. Am. J. Psychiatry 1999, 156, 990–999. [Google Scholar] [CrossRef]
- Jardemark, K.; Wadenberg, M.-L.; Grillner, P.; Svensson, T.H. Dopamine D3 and D4 receptor antagonists in the treatment of schizophrenia. Curr. Opin. Investig. Drugs 2002, 3, 101–105. [Google Scholar]
- Löber, S.; Hübner, H.; Tschammer, N.; Gmeiner, P. Recent advances in the search for D3-and D4-selective drugs: Probes, models and candidates. Trends Pharmacol. Sci. 2011, 32, 148–157. [Google Scholar] [CrossRef]
- Den Boer, J.A.; Korf, J. Dopamine receptor subtypes and schizophrenia: A clinical perspective. In Atypical Antipsychotics; Springer: Berlin/Heidelberg, Germany, 2000; pp. 163–190. [Google Scholar]
- Boeckler, F.; Russig, H.; Zhang, W.; Löber, S.; Schetz, J.; Hübner, H.; Ferger, B.; Gmeiner, P.; Feldon, J. FAUC 213, a highly selective dopamine D4 receptor full antagonist, exhibits atypical antipsychotic properties in behavioural and neurochemical models of schizophrenia. Psychopharmacology 2004, 175, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Micheli, F.; Heidbreder, C. Dopamine D3 receptor antagonists: A patent review (2007–2012). Expert Opin. Ther. Pat. 2013, 23, 363–381. [Google Scholar] [CrossRef]
- Newman, A.H.; Grundt, P.; Cyriac, G.; Deschamps, J.R.; Taylor, M.; Kumar, R.; Ho, D.; Luedtke, R.R. N-(4-(4-(2, 3-dichloro-or 2-methoxyphenyl) piperazin-1-yl) butyl) heterobiarylcarboxamides with functionalized linking chains as high affinity and enantioselective D3 receptor antagonists. J. Med. Chem. 2009, 52, 2559–2570. [Google Scholar] [CrossRef]
- Grundt, P.; Carlson, E.E.; Cao, J.; Bennett, C.J.; McElveen, E.; Taylor, M.; Luedtke, R.R.; Newman, A.H. Novel heterocyclic trans olefin analogues of N-{4-[4-(2, 3-dichlorophenyl) piperazin-1-yl] butyl} arylcarboxamides as selective probes with high affinity for the dopamine D3 receptor. J. Med. Chem. 2005, 48, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Pivonello, R.; Ferone, D.; Lombardi, G.; Colao, A.; Lamberts, S.W.; Hofland, L.J. Novel insights in dopamine receptor physiology. Eur. J. Endocrinol. 2007, 156, S13–S21. [Google Scholar] [CrossRef]
- Chien, E.Y.; Liu, W.; Zhao, Q.; Katritch, V.; Won Han, G.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010, 330, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, P.R.; Löber, S.; Hübner, H.; Gmeiner, P. Click chemistry on solid phase: Parallel synthesis of N-benzyltriazole carboxamides as super-potent G-protein coupled receptor ligands. J. Comb. Chem. 2006, 8, 252–261. [Google Scholar] [CrossRef]
- Loaiza, P.R.; Löber, S.; Hübner, H.; Gmeiner, P. Parallel synthesis of potent dopaminergic N-phenyltriazole carboxamides applying a novel click chemistry based phenol linker. Bioorg. Med. Chem. 2009, 17, 5482–5487. [Google Scholar] [CrossRef]
- Pettersson, F.; Pontén, H.; Waters, N.; Waters, S.; Sonesson, C. Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl) phenyl]-1-propylpiperidine (huntexil, pridopidine, ACR16). J. Med. Chem. 2010, 53, 2510–2520. [Google Scholar] [CrossRef]
- Heidbreder, C.A.; Newman, A.H. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders. Ann. N. Y. Acad. Sci. 2010, 1187, 4–34. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.H.; Beuming, T.; Banala, A.K.; Donthamsetti, P.; Pongetti, K.; LaBounty, A.; Levy, B.; Cao, J.; Michino, M.; Luedtke, R.R. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor. J. Med. Chem. 2012, 55, 6689–6699. [Google Scholar] [CrossRef] [PubMed]
- Michino, M.; Donthamsetti, P.; Beuming, T.; Banala, A.; Duan, L.; Roux, T.; Han, Y.; Trinquet, E.; Newman, A.H.; Javitch, J.A. A single glycine in extracellular loop 1 is the critical determinant for pharmacological specificity of dopamine D2 and D3 receptors. Mol. Pharmacol. 2013, 84, 854–864. [Google Scholar] [CrossRef]
- Luedtke, R.R.; Mishra, Y.; Wang, Q.; Griffin, S.A.; Bell-Horner, C.; Taylor, M.; Vangveravong, S.; Dillon, G.H.; Huang, R.-Q.; Reichert, D.E. Comparison of the binding and functional properties of two structurally different D2 dopamine receptor subtype selective compounds. ACS Chem. Neurosci. 2012, 3, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.M.; Ballesteros, J.A.; Chiappa, V.; Chen, J.; Suehiro, M.; Hartman, D.S.; Godel, T.; Snyder, L.A.; Sakmar, T.P.; Javitch, J.A. Dopamine D4/D2 receptor selectivity is determined by a divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol. Pharmacol. 1999, 56, 1116–1126. [Google Scholar] [CrossRef]
- Ehrlich, K.; Gotz, A.; Bollinger, S.; Tschammer, N.; Bettinetti, L.; Harterich, S.; Hubner, H.; Lanig, H.; Gmeiner, P. Dopamine D2, D3, and D4 selective phenylpiperazines as molecular probes to explore the origins of subtype specific receptor binding. J. Med. Chem. 2009, 52, 4923–4935. [Google Scholar] [CrossRef]
- Schetz, J.A.; Benjamin, P.S.; Sibley, D.R. Nonconserved residues in the second transmembrane-spanning domain of the D4 dopamine receptor are molecular determinants of D4-Selective pharmacology. Mol. Pharmacol. 2000, 57, 144–152. [Google Scholar] [CrossRef]
- El-Atawneh, S.; Goldblum, A. A Machine Learning Algorithm Suggests Repurposing Opportunities for Targeting Selected GPCRs. Int. J. Mol. Sci. 2024, 25, 10230. [Google Scholar] [CrossRef]
- Zell, L.; Bretl, A.; Temml, V.; Schuster, D. Dopamine Receptor Ligand Selectivity—An In Silico/In Vitro Insight. Biomedicines 2023, 11, 1468. [Google Scholar] [CrossRef] [PubMed]
- Namballa, H.K.; Dorogan, M.; Gudipally, A.R.; Okafor, S.; Gadhiya, S.; Harding, W.W. Discovery of Selective Dopamine Receptor Ligands Derived from (−)-Stepholidine via C-3 Alkoxylation and C-3/C-9 Dialkoxylation. J. Med. Chem. 2023, 66, 10060–10079. [Google Scholar] [CrossRef]
- Kiss, B.; Krámos, B.; Laszlovszky, I. Potential mechanisms for why not all antipsychotics are able to occupy dopamine D3 receptors in the brain in vivo. Front. Psychiatry 2022, 13, 785592. [Google Scholar] [CrossRef]
- Juza, R.; Stefkova, K.; Dehaen, W.; Randakova, A.; Petrasek, T.; Vojtechova, I.; Kobrlova, T.; Pulkrabkova, L.; Muckova, L.; Mecava, M. Synthesis and In Vitro Evaluation of Novel Dopamine Receptor D2 3, 4-dihydroquinolin-2 (1 H)-one Derivatives Related to Aripiprazole. Biomolecules 2021, 11, 1262. [Google Scholar] [CrossRef]
- Landge, K.P.; Song, H.J.; Lee, J.G.; Chae, S.E.; Pae, A.N.; Park, W.K.; Sampath, V.; Lee, H.Y.; Koh, H.Y. Synthesis and biological evaluation of substituted pyrazole constrained piperazine derivative library for dopamine receptor antagonist. Bull. Korean Chem. Soc. 2016, 37, 2076–2079. [Google Scholar] [CrossRef]
- Cha, M.Y.; Choi, B.C.; Kang, K.H.; Pae, A.N.; Choi, K.I.; Cho, Y.S.; Koh, H.Y.; Lee, H.-Y.; Jung, D.; Kong, J.Y. Design and synthesis of a piperazinylalkylisoxazole library for subtype selective dopamine receptor ligands. Bioorg. Med. Chem. Lett. 2002, 12, 1327–1330. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Jung, S.-H.; Koh, H.-Y.; Pae, A.-N.; Park, W.-K.; Kong, J.-Y. Synthesis of piperazinylalkylisoxazoline analogues and their binding affinities for dopamine receptor subtypes. Bull. Korean Chem. Soc. 2006, 27, 1861–1864. [Google Scholar] [CrossRef]
- Landge, K.P.; Kim, J.H.; Park, W.-K.; Gong, J.Y.; Koh, H.Y.; Lee, H.Y. Identification of substituted pyrazole constrained arylpiperazines as selective ligands for serotonin 5HT (1a) and 5HT (2a) receptors. Bull. Korean Chem. Soc. 2011, 32, 2861–2862. [Google Scholar] [CrossRef]
- Kong, J.Y.; Park, W.-K.; Cho, H.; Jeong, D.; Choi, G.; Koh, H.Y.; Kim, S.H.; Pae, A.N.; Cho, Y.S.; Cha, J.H.; et al. Piperazinyl-propyl-pyrazole derivatives as dopamine d4 receptor antagonists, and pharmaceutical compositions containing the same. US20120209001A1, 16 August 2012. [Google Scholar]
- Szczepanńska, K.; Podlewska, S.; Dichiara, M.; Gentile, D.; Patamia, V.; Rosier, N.; Mönnich, D.; Ruiz Cantero, M.C.; Karcz, T.; Łażewska, D. Structural and molecular insight into piperazine and piperidine derivatives as histamine H3 and sigma-1 receptor antagonists with promising antinociceptive properties. ACS Chem. Neurosci. 2021, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Han, S.; Chen, T.; Chen, J. 3D-QSAR and docking studies of arylmethylamine-based DPP IV inhibitors. Acta Pharm. Sin. B 2012, 2, 411–420. [Google Scholar] [CrossRef]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell Jr, A.D.; Pastor, R.W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef] [PubMed]
- Maple, J.; Hwang, M.J.; Jalkanen, K.J.; Stockfisch, T.P.; Hagler, A.T. Derivation of class II force fields: V. Quantum force field for amides, peptides, and related compounds. J. Comput. Chem. 1998, 19, 430–458. [Google Scholar] [CrossRef]
- Höskuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228. [Google Scholar] [CrossRef]
PLS Statistics | D2 | D3 | D4 |
---|---|---|---|
r2 | 0.960 | 0.912 | 0.946 |
r2 RMS residual error | 0.107 | 0.2056 | 0.1682 |
q2 | 0.476 | 0.677 | 0.618 |
q2 RMS residual error | 0.394 | 0.397 | 0.449 |
Number of components | 6 | 3 | 4 |
Q2 | 0.511 | 0.808 | 0.560 |
Q2 RMS error | 0.423 | 0.426 | 0.550 |
Mean absolute error | 0.327 | 0.322 | 0.414 |
Num. | Structure | D2 | D3 | D4 | Num. | Structure | D2 | D3 | D4 |
---|---|---|---|---|---|---|---|---|---|
7 | 6.33 | 5.28 | 8.23 | 81 | 5.11 | 6.34 | 6.29 | ||
8 | 7.06 | 6.16 | 8.46 | 84 | 6.08 | 7.07 | 6.39 | ||
9 | 6.88 | 5.69 | 8.89 | 86 | 5.66 | 6.75 | 6.04 | ||
18 | 6.45 | 6.70 | 7.12 | 88 | 5.94 | 7.08 | 6.28 | ||
19 | 5.99 | 5.97 | 7.53 | 96 | 6.04 | 7.04 | 6.17 | ||
21 | 5.72 | 5.74 | 7.52 | 103 | 5.48 | 6.10 | 5.30 | ||
22 | 5.55 | 6.05 | 7.61 | 109 | 5.60 | 7.37 | 5.44 | ||
29 | 6.00 | 6.52 | 6.63 | 112 | 5.60 | 7.92 | 7.02 | ||
32 | 7.69 | 6.99 | 7.26 | 121 | 5.19 | 6.53 | 6.17 | ||
39 | 6.09 | 6.82 | 5.99 | 124 | 6.38 | 8.28 | 6.59 | ||
46 | 5.55 | 5.83 | 8.01 | 130 | 6.92 | 8.59 | 7.55 | ||
51 | 6.20 | 5.85 | 7.40 | 137 | 5.58 | 7.70 | 5.61 | ||
55 | 6.22 | 7.02 | 7.31 | 140 | 6.3 | 7.8 | 5.6 | ||
78 | 6.06 | 5.00 | 6.94 | 141 | 6.31 | 7.40 | 6.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.-E.; Jang, S.H.; Park, W.-K.; No, K.T.; Koh, H.Y.; Pae, A.N.; Cho, N.-C. Structural Basis for D3/D4-Selective Antagonism of Piperazinylalkyl Pyrazole/Isoxazole Analogs. Molecules 2025, 30, 3917. https://doi.org/10.3390/molecules30193917
Choi K-E, Jang SH, Park W-K, No KT, Koh HY, Pae AN, Cho N-C. Structural Basis for D3/D4-Selective Antagonism of Piperazinylalkyl Pyrazole/Isoxazole Analogs. Molecules. 2025; 30(19):3917. https://doi.org/10.3390/molecules30193917
Chicago/Turabian StyleChoi, Kwang-Eun, Seong Hun Jang, Woo-Kyu Park, Kyoung Tai No, Hun Yeong Koh, Ae Nim Pae, and Nam-Chul Cho. 2025. "Structural Basis for D3/D4-Selective Antagonism of Piperazinylalkyl Pyrazole/Isoxazole Analogs" Molecules 30, no. 19: 3917. https://doi.org/10.3390/molecules30193917
APA StyleChoi, K.-E., Jang, S. H., Park, W.-K., No, K. T., Koh, H. Y., Pae, A. N., & Cho, N.-C. (2025). Structural Basis for D3/D4-Selective Antagonism of Piperazinylalkyl Pyrazole/Isoxazole Analogs. Molecules, 30(19), 3917. https://doi.org/10.3390/molecules30193917