Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes
Abstract
1. Introduction
2. Results and Discussion
2.1. Demonstration of Full Cells
2.2. Electrochemical Performance of Half Cells
2.3. SEM Images of Graphite Anodes
2.4. XPS Analysis of Graphite Anodes
2.5. Property Differences Between AQC and CMC
3. Materials and Methods
3.1. Materials
3.2. Preparation of Aqueous Composites
3.3. Preparation of Graphite Anode
3.4. Preparation of NMC811 Cathode Slurry
3.5. Fabrication of the LIBs
3.6. Characterization
3.6.1. Analysis of Aqueous Composites and CMC
3.6.2. Analysis of Half-Coin Cells
3.6.3. Analysis of Full-Coin Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Zhao, C.; Wu, H.; Li, L.; Zhang, C. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review. J. Energy Storage 2024, 81, 110409. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, B.; Qin, X.; Wang, Z.; Lv, W.; He, Y.; Kang, F. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 2022, 34, 2106704. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, H.; Wu, Z. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy Environ. Sci. 2023, 16, 4834–4871. [Google Scholar] [CrossRef]
- He, S.; Liu, L.; Wang, J.; Zhang, W.; Wang, J.; Li, H. Considering Critical Factors of Silicon/Graphite Anode Materials for Practical High-Energy Lithium-Ion Battery Applications. Energy Fuels 2020, 35, 944–964. [Google Scholar] [CrossRef]
- Wu, J.; Cao, Y.; Zhao, H.; Mao, J.; Guo, Z. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 2019, 1, 57–76. [Google Scholar] [CrossRef]
- Gao, C.; Cui, X.; Wang, C.; Wang, M.; Wu, S.; Quan, Y.; Wang, P.; Zhao, D.; Li, S. 3D-printed hierarchical porous and multidimensional conductive network based on conducting polymer/graphene oxide. J. Mater. 2024, 10, 234–244. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, S.H.; Ahn, K.H. Role of carboxymethyl cellulose binder and its effect on the preparation process of anode slurries for Li-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131130. [Google Scholar] [CrossRef]
- Ishii, M.; Makino, S.; Nakamura, H. The role of carboxymethyl cellulose on the rheology of anode slurries in lithium-ion batteries. Curr. Opin. Colloid Interface Sci. 2024, 74, 101858. [Google Scholar] [CrossRef]
- Kim, K.J.; Ahn, K.H. Effect of carboxymethyl cellulose on silicon dispersion and the performance of graphite/Si-based electrodes for lithium-ion batteries. Powder Technol. 2025, 452, 120452. [Google Scholar] [CrossRef]
- Liao, K.Y.; Chang, C.C.; Lee, Y.L.; Wen, T.C. Carboxymethyl cellulose grafted with lithium acrylate as anode binder for improving performance of lithium-ion batteries at low temperatures. J. Taiwan Inst. Chem. Eng. 2025, 174, 106188. [Google Scholar] [CrossRef]
- Gong, T.; Duan, X.; Shan, Y.; Huang, L. Gas generation in lithium-ion batteries: Mechanisms, failure pathways, and thermal safety implications. Batteries 2025, 11, 152. [Google Scholar] [CrossRef]
- Lin, J. Strategies for constructing stable solid electrolyte interface on the surface of lithium metal negative electrodes. J. Phys. Conf. Ser. 2024, 2798, 012001. [Google Scholar] [CrossRef]
- Ren, F. Contribution of Raman Micro-Spectroscopy to the Study of the Electrolyte for Li-Metal Batteries. Ph.D. Thesis, Université de Montpellier, Montpellier, France, 2022. [Google Scholar]
- Verma, P. Electrochemical and Chemical Surface Modifications of Carbons for Li-Ion Batteries. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2011. [Google Scholar]
- Agubra, V.A.; Fergus, J.W. The formation and stability of the solid electrolyte interface on the graphite anode. J. Power Sources 2014, 268, 153–162. [Google Scholar] [CrossRef]
- Bommier, C.; Ji, X. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes. Small 2018, 14, 1703576. [Google Scholar] [CrossRef]
- Beheshti, S.H.; Javanbakht, M.; Omidvar, H.; Hosen, M.S.; Hubin, A.; Van Mierlo, J.; Berecibar, M. Development, retainment, and assessment of the graphite–electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives. iScience 2022, 25, 103862. [Google Scholar] [CrossRef]
- Lv, X.; Liu, J.; Li, C.; Yu, F. Probing a solid electrolyte interphase layer with sub-nanometer pores using redox mediators. eScience 2024, 6, 100351. [Google Scholar] [CrossRef]
- Liao, K.Y.; Li, W.C.; Wen, T.C. Constructing supercapacitors with biopolymer bearing zwitterion as hydrogel electrolyte and binder for superior performance at −40 °C. J. Power Sources 2024, 598, 234191. [Google Scholar] [CrossRef]
- Liao, K.Y.; Chang, C.C.; Lee, Y.L.; Wen, T.C. Applying Carboxymethyl cellulose-based aqueous binder with zwitterion molecules in graphite anode for lithium-ion batteries. Appl. Surf. Sci. 2025, 711, 164099. [Google Scholar] [CrossRef]
- Li, J.; Fan, S.; Xiu, H.; Wu, H.; Huang, S.; Wang, S.; Yin, D.; Deng, Z.; Xiong, C. TiO2-Coated Silicon Nanoparticle Core-Shell Structure for High-Capacity Lithium-Ion Battery Anode Materials. Nanomaterials 2023, 13, 1144. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, W.Z.; Wang, J.; Zhao, Z.N.; Yin, W.A.; Lv, Z.; Zhang, J.F.; Wang, R.; Wu, F.; Tan, G.Q. High-capacity and low-expansion MnCO3@cyclized-PAN composite anodes for high-performance lithium-ion batteries. Rare Met. 2025, 44, 3575–3581. [Google Scholar] [CrossRef]
- Chang, C.C.; Liang, P.C.; Chen, W.H.; Luo, D.; Balasubramanian, D. Comparative analysis of Li-ion batteries with carbonate-based liquid and PVdF-based gel polymer electrolytes: Performance, temperature sensitivity, aging rate, and life cycle assessment. ACS Appl. Energy Mater. 2024, 7, 8035–8053. [Google Scholar] [CrossRef]
- Wang, J.; Batara, B.; Xu, K.; Zhang, K.; Hua, W.; Peng, Y.; Liu, W.; Putri, A.H.I.; Xu, Y.; Sun, A.X.; et al. Co-precipitation of Ni-rich Me(OH)2 Precursors for High-Performance LiNixMnyCo1-x-yO2 Cathodes: A Review. Energy Environ. Mater. 2025, 8, e70078. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, K.-Y.; Chang, C.-C.; Lee, Y.-L.; Wen, T.-C. Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes. Molecules 2025, 30, 3947. https://doi.org/10.3390/molecules30193947
Liao K-Y, Chang C-C, Lee Y-L, Wen T-C. Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes. Molecules. 2025; 30(19):3947. https://doi.org/10.3390/molecules30193947
Chicago/Turabian StyleLiao, Kuan-Yi, Chia-Chin Chang, Yuh-Lang Lee, and Ten-Chin Wen. 2025. "Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes" Molecules 30, no. 19: 3947. https://doi.org/10.3390/molecules30193947
APA StyleLiao, K.-Y., Chang, C.-C., Lee, Y.-L., & Wen, T.-C. (2025). Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes. Molecules, 30(19), 3947. https://doi.org/10.3390/molecules30193947