Advances in Analytical Strategies to Study Cultural Heritage Samples—2nd Edition
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Doménech-Carbó, M.T.; Pasíes Oviedo, T.; Roca, R.C.; Múgica Mestanza, J. Between Heritage Conservation and Forensic Science: An Analytical Study of Personal Items Found in Mass Graves of the Francoism (1939–1956) (Spain). Molecules 2025, 30, 2783. https://doi.org/10.3390/molecules30132783.
- Chiodini, C.; Rovellini, P.; Chiodini, M.; Giacomelli, L.; Baglio, D.; the 5B IISS Torno Working Group. Modern Analytical Chemistry Meets Heritage Books: Analysis of Volatile Organic Compounds (VOCs) from Two Books Preserved at the Biblioteca Capitolare of Busto Arsizio. Molecules 2025, 30, 2447. https://doi.org/10.3390/molecules30112447.
- Botti, S.; Bonfigli, F.; D’Amato, R.; Rodesi, J.; Santonicola, M.G. Poly(Acrylic Acid)/TiO2 Nanocomposite Hydrogels for Paper Artwork Cleaning and Protection. Molecules 2025, 30, 75. https://doi.org/10.3390/molecules30010075.
- Labate, M.; Aceto, M.; Chiari, G.; Baiocco, S.; Operti, L.; Agostino, A. Multi-Analytical and Non-Invasive Approach for Characterising Blackened Areas of Originally Blue Paints. Molecules 2024, 29, 6043. https://doi.org/10.3390/molecules29246043.
- Poli, T.; Haaf, M.P.; Piccirillo, A.; Costa, A.P.; Craig, R.L.; Pozzi, F. First Insights into the Formation of Metal Soaps in Alkyd-Based Paints: A Proof-of-Concept Investigation Using FTIR Spectroscopy. Molecules 2024, 29, 5840. https://doi.org/10.3390/molecules29245840.
- Freixas-Jambert, R.; Ruiz-Recasens, C.; Nieto-Villena, A.; Oriola-Folch, M. Non-Invasive Characterisation of Bromoil Prints by External Reflection FTIR Spectroscopy. Molecules 2024, 29, 5833. https://doi.org/10.3390/molecules29245833.
- Forleo, T.; Giannossa, L.C.; De Juan Capdevila, A.; Lagioia, G.; Mangone, A. Hats Off to Modeling! Profiling Early Synthetic Dyes on Historic Woolen Samples with ATR-FTIR Spectroscopy and Multivariate Curve Resolution–Alternating Least Square Algorithm. Molecules 2024, 29, 4651. https://doi.org/10.3390/molecules29194651.
- de Caro, T.; Toro, R.G.; Cassone, L.; Barbaccia, F.I.; Zaratti, C.; Colasanti, I.A.; La Russa, M.F.; Macchia, A. Functionalization of Artwork Packaging Materials Utilizing Ag-Doped TiO2 and ZnO Nanoparticles. Molecules 2024, 29, 3712. https://doi.org/10.3390/molecules29153712.
- Nádvorníková, J.; Pitthard, V.; Kurka, O.; Kučera, L.; Barták, P. Egg vs. Oil in the Cookbook of Plasters: Differentiation of Lipid Binders in Wall Paintings Using Gas Chromatography–Mass Spectrometry and Principal Component Analysis. Molecules 2024, 29, 1520. https://doi.org/10.3390/molecules29071520.
References
- Astolfi, M.L. Advances in analytical strategies to study cultural heritage samples. Molecules 2023, 28, 6423. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Dou, H.; Zhao, Z.; Qiu, X.; Li, H.; Wang, X. Review of in-situ non- and micro-destructive techniques for pigment analysis in architectural heritage. npj Herit. Sci. 2025, 13, 222. [Google Scholar] [CrossRef]
- Yogurtcu, B.; Cebi, N.; Koçer, A.T.; Erarslan, A. A review of non-destructive Raman spectroscopy and chemometric techniques in the analysis of cultural heritage. Molecules 2024, 29, 5324. [Google Scholar] [CrossRef]
- Daher, C.; Bellot-Gurlet, L.; Le Hô, A.S.; Paris, C.; Regert, M. Advanced discriminating criteria for natural organic substances of cultural heritage interest: Spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures. Talanta 2013, 115, 540–547. [Google Scholar] [CrossRef]
- Possenti, E.; Miliani, C.; Cotte, M.; Realini, M.; Colombo, C. SR-based μXRD–μXRF 2D mapping to study Mg-rich historical frescoes subjected to inorganic conservation treatments. Analyst 2025, 150, 1590–1604. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, Y.; Shi, S.; Zong, S.; Li, Y.; Wei, S. Identification of organic binding media in ancient architectural decoration by THM–Py–GC/MS. J. Cult. Herit. 2024, 67, 421–429. [Google Scholar] [CrossRef]
- Tamburini, D.; Fulcher, K.; Briggs, L.; von Aderkas, N.; Pulak, C.; Stacey, R. Advances in the characterisation and identification of mastic (Pistacia sp.) resin in archaeological samples by GC-QToF-MS. RSC Adv. 2024, 14, 836–854. [Google Scholar] [CrossRef]
- Ding, L.; Yang, Q.; Liu, J.; Lee, Z. Evaluating volatile organic compounds from Chinese traditional handmade paper by SPME-GC/MS. Herit. Sci. 2021, 9, 145. [Google Scholar] [CrossRef]
- Tammekivi, E.; Vahur, S.; Vilbaste, M.; Leito, I. Quantitative GC–MS analysis of artificially aged paints with variable pigment and linseed oil ratios. Molecules 2021, 26, 2218. [Google Scholar] [CrossRef]
- Vettorazzo, C.; Sandström, E.; Troalen, L.G.; Mackay, C.L.; Hulme, A.N. Heritage science applications of ambient mass spectrometry. Anal. Methods 2025, 17, 3357–3369. [Google Scholar] [CrossRef]
- Mastrangelo, R.; Chelazzi, D.; Baglioni, P. New horizons on advanced nanoscale materials for cultural heritage conservation. Nanoscale Horiz. 2024, 9, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Ioan, M.; Anghel, D.F.; Anastasescu, M.; Gifu, I.C.; Alexandrescu, E.; Matei, R.I.; Petcu, C.; Stanculescu, I.; Sanda, G.A.; Bala, D.; et al. Hybrid materials based on ZnO nanoparticles and organo-modified silica coatings as eco-friendly anticorrosive protection for metallic historic artifacts. Coatings 2023, 13, 1193. [Google Scholar] [CrossRef]
- Fiorini, L.; Conti, A.; Pellis, E.; Bonora, V.; Masiero, A.; Tucci, G. Machine learning-based monitoring for planning climate-resilient conservation of built heritage. Drones 2024, 8, 249. [Google Scholar] [CrossRef]
- Catelli, E.; Li, Z.; Sciutto, G.; Oliveri, P.; Prati, S.; Occhipinti, M.; Tocchio, A.; Alberti, R.; Frizzi, T.; Malegori, C.; et al. Towards the non-destructive analysis of multilayered samples: A novel XRF-VNIR-SWIR hyperspectral imaging system combined with multiblock data processing. Anal. Chim. Acta 2023, 1239, 340710. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.; Shao, H.; Ba, Z.; Liu, J.; Albu Kaya, M.G.; Tang, K.; Han, G. Development trend in non-destructive techniques for cultural heritage: From material characterization to AI-driven diagnosis. Heritage 2025, 8, 381. [Google Scholar] [CrossRef]
- Hermans, J.J.; Keune, K.A.; van Loon, A.N.; Stols-Witlox, M.J.; Corkery, R.W.; Iedema, P.D. The synthesis of new types of lead and zinc soaps: A source of information for the study of oil paint degradation. In Proceedings of the Building Strong Culture through Conservation: Pre-prints ICOM-CC 17th Triennial Conference, Melbourne, Australia, 15 September 2014; pp. 17–19. [Google Scholar]
- Quintero Balbas, D.; Lanterna, G.; Cirrincione, C.; Fontana, R.; Striova, J. Non-invasive identification of textile fibres using near-infrared fibre optics reflectance spectroscopy and multivariate classification techniques. Eur. Phys. J. Plus 2022, 137, 85. [Google Scholar] [CrossRef]
- Koochakzaei, A.; Mobasher Maghsoud, E.; Jelodarian Bidgoli, B. Non-invasive imaging and spectroscopy techniques for identifying historical pigments: A case study of Iranian manuscripts from the Qajar era. Herit. Sci. 2023, 11, 157. [Google Scholar] [CrossRef]
- Tarilonte, E.; González-Mendia, O.; Costantini, I.; Castro, K.; Maguregui, I. A multi-analytical approach for the identification of surface whitening phenomena in contemporary oil painting and its application to metal soaps. J. Cult. Herit. 2025, 74, 195–203. [Google Scholar] [CrossRef]
- Poli, T.; Haaf, M.P.; Piccirillo, A.; Costa, A.P.; Craig, R.L.; Pozzi, F. First insights into the formation of metal soaps in alkyd-based paints: A proof-of-concept investigation using FTIR spectroscopy. Molecules 2024, 29, 5840. [Google Scholar] [CrossRef]
- Edwards, H.G.; Vandenabeele, P.; Colomban, P. Raman Spectroscopy in Cultural Heritage Preservation; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Donais, M.K.; Vandenabeele, P. Portable spectroscopy for on-site and in situ archaeology studies. In Portable Spectroscopy and Spectrometry; Wiley: Hoboken, NJ, USA, 2021; pp. 523–544. [Google Scholar] [CrossRef]
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced materials in cultural heritage conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef]
- Magdy, M. Analytical techniques for the preservation of cultural heritage: Frontiers in knowledge and application. Crit. Rev. Anal. Chem. 2022, 52, 1171–1196. [Google Scholar] [CrossRef]
- Sammartino, M.P.; Grendene, A.; Astolfi, M.L.; Marcheggiani, S.; Mancini, L.; Vitali, M.; Antonucci, A.; Baldassarri, P.; Della Giovampaola, I.; Visco, G. Ancient spring waters still emerging and accessible in the Roman Forum area: Chemical–physical and microbiological characterization. Open Chem. 2023, 21, 20230366. [Google Scholar] [CrossRef]
- Colantonio, C.; Baldassarri, P.; Avino, P.; Astolfi, M.L.; Visco, G. Visual and physical degradation of the black and white mosaic of a Roman Domus under Palazzo Valentini in Rome: A preliminary study. Molecules 2022, 27, 7765. [Google Scholar] [CrossRef] [PubMed]
- del Hoyo-Meléndez, J.M. Physico-chemical characterisation and light stability of dyes and pigments found in cultural heritage objects: Insights from microfading testing for assessing light fastness. Color. Technol. 2025, 141, 265–290. [Google Scholar] [CrossRef]
- Paolin, E.; Strlič, M. Volatile organic compounds (VOCs) in heritage environments and their analysis: A review. Appl. Sci. 2024, 14, 4620. [Google Scholar] [CrossRef]
- Uring, P.; Chabas, A.; Alfaro, S.C. Textile ageing due to atmospheric gases and particles in indoor cultural heritage. Environ. Sci. Pollut. Res. 2021, 28, 66340–66354. [Google Scholar] [CrossRef]
- Harth, A. The study of pigments in cultural heritage: A review using machine learning. Heritage 2024, 7, 3664–3695. [Google Scholar] [CrossRef]
- Coletti, C.; Antonelli, F.; Germinario, L.; Maritan, L.; Piovesan, R.; Tesser, E.; Mazzoli, C. Investigating stone materials from some European cultural heritage sites for predicting future decay. Rend. Lincei Sci. Fis. Nat. 2025, 36, 103–127. [Google Scholar] [CrossRef]
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astolfi, M.L.; Sammartino, M.P. Advances in Analytical Strategies to Study Cultural Heritage Samples—2nd Edition. Molecules 2025, 30, 3952. https://doi.org/10.3390/molecules30193952
Astolfi ML, Sammartino MP. Advances in Analytical Strategies to Study Cultural Heritage Samples—2nd Edition. Molecules. 2025; 30(19):3952. https://doi.org/10.3390/molecules30193952
Chicago/Turabian StyleAstolfi, Maria Luisa, and Maria Pia Sammartino. 2025. "Advances in Analytical Strategies to Study Cultural Heritage Samples—2nd Edition" Molecules 30, no. 19: 3952. https://doi.org/10.3390/molecules30193952
APA StyleAstolfi, M. L., & Sammartino, M. P. (2025). Advances in Analytical Strategies to Study Cultural Heritage Samples—2nd Edition. Molecules, 30(19), 3952. https://doi.org/10.3390/molecules30193952
 
        


