Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Compound Analysis
2.1.1. Total Phenolic Acid and Total Flavonoid Content Analysis
2.1.2. Quantitative Analysis of 23 Phenolic Compounds
2.2. Antioxidant Activity Analysis
2.2.1. FRAP Assay Analysis
2.2.2. ABTS Free Radical Capacity Analysis
2.2.3. DPPH Free Radical Scavenging Ability Analysis
2.3. Correlation Analysis
3. Materials and Methods
3.1. Materials
3.1.1. Sample Information
3.1.2. Chemicals
3.2. Methods
3.2.1. Melissopalynology Analysis
3.2.2. Water Contents
3.2.3. Color Measurement
3.2.4. Phenolic Compound Determination
Total Phenolic Acid Content Determination
Total Flavonoid Content Determination
23 Phenolic Compound Determination
3.2.5. Antioxidant Activity Evaluation
FRAP Assay Evaluation
ABTS Free Radical Capacity Evaluation
DPPH Free Radical Scavenging Ability Evaluation
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Council Directive 2001/110/EC relating to honey. Off. J. Eur. Communities 2001, L10, 47–52.
- Sousa, J.M.B.; Souza, E.L.; Marques, G.; Benassi, M.D.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT—Food Sci. Technol. 2016, 65, 645–651. [Google Scholar] [CrossRef]
- Silva, B.; Brugnerotto, P.; Seraglio, S.K.T.; Bergamo, G.; Biluca, F.C.; Santos, A.C.d.; Braghini, F.; Schulz, M.; Colombo, C.H.; Samochvalov, K.B. Physicochemical, phenolic, and mineral characterization of Mimosa scabrella Bentham honeydew honey: A trial for obtaining the geographical identification. J. Food Compos. Anal. 2022, 114, 104851. [Google Scholar] [CrossRef]
- Nayik, G.A.; Nanda, V. A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT—Food Sci. Technol. 2016, 74, 504–513. [Google Scholar] [CrossRef]
- Ayoub, W.S.; Ritu; Zahoor, I.; Dar, A.H.; Farooq, S.; Mir, T.A.; Ganaie, T.A.; Srivastava, S.; Pandey, V.K.; Altaf, A. Exploiting the polyphenolic potential of honey in the prevention of chronic diseases. Food Chem. Adv. 2023, 3, 100373. [Google Scholar] [CrossRef]
- Mădaş, M.N.; Mărghitaş, L.A.; Dezmirean, D.S.; Bobiş, O.; Abbas, O.; Danthine, S.; Francis, F.; Haubruge, E.; Nguyen, B.K. Labeling Regulations and Quality Control of Honey Origin: A Review. Food Rev. Int. 2019, 36, 215–240. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Lawag, I.L.; Lim, L.-Y.; Joshi, R.; Hammer, K.A.; Locher, C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, K.; Aidhen, I.S. Convenient Synthesis of 3-Glycosylated Isocoumarins. Eur. J. Org. Chem. 2016, 2017, 34–38. [Google Scholar] [CrossRef]
- Sudarshan, K.; Boda, A.k.; Dogra, S.; Bose, I.; Yadav, P.N.; Aidhen, I.S. Discovery of an isocoumarin analogue that modulates neuronal functions via neurotrophin receptor TrkB. Bioorgan. Med. Chem. Lett. 2019, 29, 585–590. [Google Scholar] [CrossRef]
- Khoddami, A.; Wilkes, M.; Roberts, T. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Küçükaydın, S.; Tel-Çayan, G.; Çayan, F.; Taş-Küçükaydın, M.; Eroğlu, B.; Duru, M.E.; Öztürk, M. Characterization of Turkish Astragalus honeys according to their phenolic profiles and biological activities with a chemometric approach. Food Biosci. 2023, 53, 102507. [Google Scholar] [CrossRef]
- Hernanz, D.; Jara-Palacios, M.J.; Santos, J.L.; Gómez Pajuelo, A.; Heredia, F.J.; Terrab, A. The profile of phenolic compounds by HPLC-MS in Spanish oak (Quercus) honeydew honey and their relationships with color and antioxidant activity. LWT—Food Sci. Technol. 2023, 180, 114724. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.; Tosti, T.; Trifković, J.; Baošić, R.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Physicochemical analysis and phenolic profile of polyfloral and honeydew honey from Montenegro. RSC Adv. 2020, 10, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Puścion-Jakubik, A.; Karpińska, E.; Moskwa, J.; Socha, K. Content of Phenolic Acids as a Marker of Polish Honey Varieties and Relationship with Selected Honey-Quality-Influencing Variables. Antioxidants 2022, 11, 1312. [Google Scholar] [CrossRef]
- Dżugan, M.; Grabek-Lejko, D.; Swacha, S.; Tomczyk, M.; Bednarska, S.; Kapusta, I. Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Biosci. 2020, 34, 100538. [Google Scholar] [CrossRef]
- Ongalbek, D.; Tokul-Ölmez, Ö.; Şahin, B.; Küçükaydın, S.; Aydoğmuş-Öztürk, F.; Sıcak, Y.; Yeskaliyeva, B.; Öztürk, M. Classification of buckwheat honey produced in Kazakhstan according to their biochemical ingredients and bioactivities by chemometric approach. Food Chem. 2024, 451, 139409. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Zalibera, M.; Staško, A.; Šlebodová, A.; Jančovičová, V.; Čermáková, T.; Brezová, V. Antioxidant and radical-scavenging activities of Slovak honeys—An electron paramagnetic resonance study. Food Chem. 2008, 110, 512–521. [Google Scholar] [CrossRef]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Total Phenolic Contents and Colour Intensity of Malaysian Honeys from the Apis spp. and Trigona spp. Bees. Agric. Agric. Sci. Procedia 2014, 2, 150–155. [Google Scholar] [CrossRef]
- Sant’ana, L.D.o.; Buarque Ferreira, A.B.; Lorenzon, M.C.A.; Berbara, R.L.L.; Castro, R.N. Correlation of Total Phenolic and Flavonoid Contents of Brazilian Honeys with Colour and Antioxidant Capacity. Int. J. Food Prop. 2013, 17, 65–76. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Stryjecka, M.; Teter, A.; Skałecki, P.; Domaradzki, P.; Florek, M. Relationships between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties as a Tool for Botanical Discrimination. Molecules 2021, 26, 1810. [Google Scholar] [CrossRef] [PubMed]
- Czigle, S.; Filep, R.; Balažová, E.; Szentgyörgyi, H.; Balázs, V.L.; Kocsis, M.; Purger, D.; Papp, N.; Farkas, Á. Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys. Plants 2022, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Trinh, N.T.N.; Tuan, N.N.; Thang, T.D.; Kuo, P.-C.; Thanh, N.B.; Tam, L.N.; Tuoi, L.H.; Nguyen, T.H.D.; Vu, D.C.; Ho, T.L.; et al. Chemical Composition Analysis and Antioxidant Activity of Coffea robusta Monofloral Honeys from Vietnam. Foods 2022, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Zammit Young, G.-W.; Blundell, R. A review on the phytochemical composition and health applications of honey. Heliyon 2023, 9, e12507. [Google Scholar] [CrossRef]
- Panda, P.K.; Yang, J.-M.; Chang, Y.-H.; Su, W.-W. Modification of different molecular weights of chitosan by p-Coumaric acid: Preparation, characterization and effect of molecular weight on its water solubility and antioxidant property. Int. J. Biol. Macromol. 2019, 136, 661–667. [Google Scholar] [CrossRef]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.-M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef]
- Lawag, I.L.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys. Antioxidants 2023, 12, 189. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Zawawi, N.; Chong, P.J.; Mohd Tom, N.N.; Saiful Anuar, N.S.; Mohammad, S.M.; Ismail, N.; Jusoh, A.Z. Establishing Relationship between Vitamins, Total Phenolic and Total Flavonoid Content and Antioxidant Activities in Various Honey Types. Molecules 2021, 26, 4399. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhao, L.; Wang, M.; Qi, S.; Xue, X.; Wu, L.; Li, Q. Identification of characteristic markers for monofloral honey of Astragalus membranaceus var. mongholicus Hsiao: A combined untargeted and targeted MS-based study. Food Chem. 2023, 404, 134312. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, C.; Xue, X.; Lu, H.; Wang, K.; Wu, L. Safflomin A: A novel chemical marker for Carthamus tinctorius L. (Safflower) monofloral honey. Food Chem. 2022, 366, 130584. [Google Scholar] [CrossRef]
- Wen, Y.-Q.; Zhang, J.; Li, Y.; Chen, L.; Zhao, W.; Zhou, J.; Jin, Y. Characterization of Chinese Unifloral Honeys Based on Proline and Phenolic Content as Markers of Botanical Origin, Using Multivariate Analysis. Molecules 2017, 22, 735. [Google Scholar] [CrossRef]
- Shen, S.; Wang, J.; Zhuo, Q.; Chen, X.; Liu, T.; Zhang, S.-Q. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins. Molecules 2018, 23, 1110. [Google Scholar] [CrossRef]
- Yangoua, H.; Dibacto, R.E.K.; Tchuente, B.R.T.; Nyobe, E.C.; Wandji Nguedjo, M.; Alex Dimitri, T.K.; Kamini, M.F.G. Physicochemical properties and antioxidant potential of honey from Cameroon agroecological zones. Heliyon 2024, 10, e40232. [Google Scholar] [CrossRef] [PubMed]
- Gang, R.; Komakech, R.; Chung, Y.; Okello, D.; Kim, W.J.; Moon, B.C.; Yim, N.-H.; Kang, Y. In vitro propagation of Codonopsis pilosula (Franch.) Nannf. using apical shoot segments and phytochemical assessments of the maternal and regenerated plants. BMC Plant Biol. 2023, 23, 33. [Google Scholar] [CrossRef]
- Nunes, A.; Azevedo, G.Z.; Santos, B.R.d.; Liz, M.S.M.d.; Schneider, F.S.d.S.; Rodrigues, E.R.d.O.; Moura, S.; Maraschin, M. A guide for quality control of honey: Application of UV–vis scanning spectrophotometry and NIR spectroscopy for determination of chemical profiles of floral honey produced in southern Brazil. Food Humanit. 2023, 1, 1423–1435. [Google Scholar] [CrossRef]
- Gao, Y.; Xue, A.; Li, X.; Huang, X.; Ning, F.; Zhang, X.; Liu, T.; Chen, H.; Luo, L. Analysis of chemical composition of nectars and honeys from Citrus by extractive electrospray ionization high resolution mass spectrometry. LWT—Food Sci. 2020, 131, 109748. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Y.; Li, J.; Zheng, W.; Gong, B.; Jin, X.; Zhou, X.; Yang, H.; Yang, F.; Guo, J. Changes in health-promoting metabolites associated with high-altitude adaptation in honey. Food Chem. 2024, 449, 139246. [Google Scholar] [CrossRef]
- Benzie, I.F.F. The Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power the FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Takatsuka, M.; Goto, S.; Kobayashi, K.; Otsuka, Y.; Shimada, Y. Evaluation of pure antioxidative capacity of antioxidants: ESR spectroscopy of stable radicals by DPPH and ABTS assays with singular value decomposition. Food Biosci. 2022, 48, 101714. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Liu, J.; Qin, W.; Liang, M.; Liu, Q.; Chen, D. Antioxidant and Cytoprotective effects of Pyrola decorata H. Andres and its five phenolic components. BMC Complement. Altern. Med. 2019, 19, 275. [Google Scholar] [CrossRef]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Maffei Facino, R. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Z.; Ning, F.; Yuan, L.; Yang, X.; Luo, L. New theoretical perspective for easy evaluation of the antioxidant properties of typical flavonoids. Microchem. J. 2024, 197, 109786. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Mei, S.; Jie, X.; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Singleton, V.L.; Ross, J.A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardisation d’un extrait de propolis et identification des principaux constituants. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar] [PubMed]
- Larrauri, J.A.; Sanchez Moreno, C.; Saura Calixto, F. Effect oftemperature on the free radical scavenging capacity of ex-tracts from red and white grape pomace peels. Agric. Food Chem. 1998, 46, 2694. [Google Scholar] [CrossRef]
No. | Phenolic Compounds | C. pi. Shen Honey | Linden Honey | Acacia Honey | Rape Honey | Jujube Honey |
---|---|---|---|---|---|---|
1 | Apigenin | 118.7 ± 46.0 b | <2.5 | <2.5 | <2.5 | 268.2 ± 143.3 a |
2 | Caffeic acid | 122.6 ± 27.0 c | 339.7 ± 42.8 b | 48.2 ± 29.5 c | 35.9 ± 12.1 c | 722.3 ± 320.9 a |
3 | CAPE | <2 | <2 | 36.0 ± 3.5 a | 7.4 ± 1.2 c | 17.8 ± 14.5 b |
4 | Chlorogenic acid | 337.2 ± 154.3 b | <5 | <5 | 28.0 ± 0.6 b | 2654.8 ± 815.2 a |
5 | Chrysin | 9.1 ± 7.3 c | 140.8 ± 10.2 b | 274.1 ± 42.4 a | 111.3 ± 5.0 b | 342.2 ± 147.9 a |
6 | Ellagic acid | 43.6 ± 10.9 b | 276.6 ± 2.6 | 13.0 ± 0.1 c | 230.8 ± 9.4 a | 17.3 ± 2.9 c |
7 | Ferulic acid | 29.5 ± 14.5 c | 74.7 ± 2.0 a | 33.4 ± 1.6 b,c | 16.8 ± 0.3 c | 62.9 ± 28.3 a,b |
8 | Galangin | 5.9 ± 4.6 c | 28.3 ± 1.9 c | 201.1 ± 37.1 a | 83.3 ± 10.2 b | 208.3 ± 91.5 a |
9 | Gallic acid | 217.8 ± 73.5 b | 139.0 ± 125.9 c | 32.7 ± 1.3 c | 400.3 ± 67.0 a | 54.2 ± 12.8 c |
10 | Isorhamnetin | 758.7 ± 316.3 a | 89.6 ± 48.5 b | 53.4 ± 46.1 b | 141.2 ± 20.5 b | 45.5 ± 30.8 b |
12 | Kaempferol | 1353.9 ± 815.8 a | 207.7 ± 0.7 b | 85.3 ± 62.0 b | 265.3 ± 38.4 c | 300.4 ± 78.3 c |
11 | Luteolin | 95.2 ± 69.6 a,b | 77.3 ± 9.3 a,b | 3.4 ± 2.4 b | 9.5 ± 1.2 b | 187.1 ± 109.7 a |
13 | Morin | <5 | <5 | <5 | <5 | <5 |
14 | Naringin | 12.0 ± 2.3 a,b | 10.2 ± 0.1 b | 10.4 ± 0.4 a,b | 15.3 ± 1.3 a | 10.6 ± 0.1 a,b |
15 | p-Coumaric acid | 54.4 ± 12.7 b | 137.1 ± 43.4 a,b | 32.7 ± 27.2 c | 25.3 ± 1.8 c | 211.0 ± 149.0 a |
16 | p-Hydroxybenzoic acid | 145.1 ± 78.6 a | 85.4 ± 18.0 a | 63.2 ± 46.4 a | 108.9 ± 6.5 a | 50.0 ± 8.5 a |
17 | Pinobanksin | 6.0 ± 2.8 d | 387.7 ± 139.8 b,c | 544.8 ± 100.7 b | 185.3 ± 21.2 c,d | 870.1 ± 434.4 a |
18 | Pinocembrine | 4.6 ± 1.6 c | 223.5 ± 33.7 b | 475.4 ± 120.5 a | 121.5 ± 7.4 b, c | 444.7 ± 331.0 a |
19 | Protocatechuic acid | 1855.6 ± 640.7 a | 724.2 ± 22.3 b | 23.9 ± 5.6 b | 322.3 ± 43.5 b | 322.0 ± 111.4 b |
20 | Quercetin | 573.9 ± 302.7 a | 73.3 ± 0.1 a | <2 | 124.0 ± 46.0 a | 22.0 ± 15.9 a |
21 | Rosmarinic acid | 15.0 ± 2.1 a | 12.2 ± 0.1 a | 12.3 ± 0.1 a | 12.3 ± 0.1 a | 13.9 ± 2.3 a |
22 | Rutin | 55.0 ± 8.50 a | 28.8 ± 2.7 b | 15.8 ± 0.9 c | 43.5 ± 23.1 a,b | 41.1 ± 32.1 a,b |
23 | Salicylic acid | 144.6 ± 80.0 a | 90.6 ± 12.6 a | 63.5 ± 44.6 a | 110.6 ± 0.2 a | 54.4 ± 12.0 a |
Botanic Origin | Geographical Origin | Number of Phenolic Compounds Investigated | Top 2 Compounds and Mean Contents (μg/kg) | Reference |
---|---|---|---|---|
C. pi. Shen | Gansu, China | 23 | Protocatechuic acid (1855.6) | / |
Kaempferol (1353.9 a) | ||||
Codonopsis 1 | Xinjiang, China | 18 | Benzoic acid (611) | [35] |
p-Hydroxybenzoic acid (513) | ||||
Codonopsis 2 | Jinlin, China | 38 | p-Hydroxybenzoic acid (924.2) Kaempferol (637.9 b) | [36] |
C. pi. Shen Honey | Acacia Honey | Linden Honey | Rape Honey | Jujube Honey | |
---|---|---|---|---|---|
Color Scale (mm Pfund) | 88~117 | 32~40 | 53~63 | 93~105 | 90~110 |
Water (%) | 16.5~17.8 | 16.2~17.0 | 16.5~17.0 | 16.6~17.2 | 16.7~17.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, N.; Zhao, W.; Xue, C.; Zhang, L.; Hu, H.; Jin, Y.; Xue, X.; Chen, R.; Zhang, J. Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey. Molecules 2025, 30, 370. https://doi.org/10.3390/molecules30020370
Qi N, Zhao W, Xue C, Zhang L, Hu H, Jin Y, Xue X, Chen R, Zhang J. Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey. Molecules. 2025; 30(2):370. https://doi.org/10.3390/molecules30020370
Chicago/Turabian StyleQi, Ningxin, Wen Zhao, Chenghua Xue, Lin Zhang, Han Hu, Yue Jin, Xiaofeng Xue, Rui Chen, and Jinzhen Zhang. 2025. "Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey" Molecules 30, no. 2: 370. https://doi.org/10.3390/molecules30020370
APA StyleQi, N., Zhao, W., Xue, C., Zhang, L., Hu, H., Jin, Y., Xue, X., Chen, R., & Zhang, J. (2025). Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey. Molecules, 30(2), 370. https://doi.org/10.3390/molecules30020370