Application of Transformers to Chemical Synthesis
Abstract
:1. Introduction
2. Task Adaptation and Reaction Dataset
2.1. Adaptability of Transformer
2.2. Architecture of Transformer
2.3. Chemical Data Representation
2.4. Reaction Datasets and Structuring
3. Transformer-Based Chemical Synthesis Applications
3.1. Retrosynthesis Pathway Planning
3.1.1. Predictive Validity Improvement
3.1.2. Predicting Generalizability Improvement
3.1.3. Combined Molecular Graph
3.1.4. Reaction Center Identification
3.1.5. Combined Search Algorithms
3.2. Prediction of Forward Chemical Reactions
4. Discussion and Outlook
4.1. Extended Model
Model | Year | Top-k Accuracy (%) | |||||
---|---|---|---|---|---|---|---|
Reaction Class Known | Reaction Class Unknown | ||||||
1 | 3 | 5 | 1 | 3 | 5 | ||
Template-based | |||||||
NeuralSym [9] | 2017 | 55.3 | 76.0 | 81.4 | 44.4 | 65.3 | 72.4 |
Semi-template-based | |||||||
RetroXpert [58] | 2020 | 62.1 | 75.8 | 78.5 | 50.4 | 61.1 | 62.3 |
RetroPrime [57] | 2021 | 64.8 | 81.6 | 85.0 | 51.4 | 70.8 | 74.0 |
Template-free | |||||||
SCROP [26] | 2020 | 59.0 | 74.8 | 78.1 | 43.7 | 60.0 | 65.2 |
Aug. Transformer [10] | 2020 | - | - | - | 48.3 | - | 73.4 |
Tied Transformer [51] | 2021 | - | - | - | 47.1 | 67.1 | 73.1 |
GTA [28] | 2021 | - | - | - | 51.1 | 67.6 | 74.8 |
Graph2SMILES [64] | 2022 | - | - | - | 52.9 | 66.5 | 70.0 |
GET [54] | 2021 | 57.4 | 71.3 | 74.8 | 44.9 | 58.8 | 62.4 |
Retroformer [56] | 2022 | 64.0 | 82.5 | 86.7 | 53.2 | 71.1 | 76.6 |
RetroExplainer [55] | 2023 | 66.8 | 88.0 | 92.5 | 57.7 | 79.2 | 84.8 |
Ualign [25] | 2024 | 66.4 | 86.7 | 91.5 | 53.5 | 77.3 | 84.6 |
4.2. Limitations in Dataset
4.3. Molecular Conformational Information
4.4. Multi-Task Learning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campos, K.R.; Coleman, P.J.; Alvarez, J.C.; Dreher, S.D.; Garbaccio, R.M.; Terrett, N.K.; Tillyer, R.D.; Truppo, M.D.; Parmee, E.R. The importance of synthetic chemistry in the pharmaceutical industry. Science 2019, 363, eaat0805. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Zinchenko, A. Design and synthesis of functional materials by chemical recycling of waste polyethylene terephthalate (PET) plastic: Opportunities and challenges. J. Clean. Prod. 2023, 433, 139828. [Google Scholar] [CrossRef]
- Ahmad, S.; Jaiswal, R.; Yadav, R.; Verma, S. Recent advances in green chemistry approaches for pharmaceutical synthesis. Sustain. Chem. One World 2024, 4, 100029. [Google Scholar] [CrossRef]
- Coley, C.W.; Green, W.H.; Jensen, K.F. Machine Learning in Computer-Aided Synthesis Planning. Acc. Chem. Res. 2018, 51, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative models for matter engineering. Science 2018, 361, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, O.; Mansimov, E.; Bonneau, R.; Cho, K. Masked graph modeling for molecule generation. Nat. Commun. 2021, 12, 3156. [Google Scholar] [CrossRef] [PubMed]
- Coley, C.W.; Jin, W.; Rogers, L.; Jamison, T.F.; Jaakkola, T.S.; Green, W.H.; Barzilay, R.; Jensen, K.F. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 2019, 10, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Probst, D.; Schwaller, P.; Reymond, J.-L. Reaction classification and yield prediction using the differential reaction fingerprint DRFP. Digit. Discov. 2022, 1, 91–97. [Google Scholar] [CrossRef]
- Segler, M.H.S.; Waller, M.P. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. Chem. Eur. J. 2017, 23, 5966–5971. [Google Scholar] [CrossRef] [PubMed]
- Tetko, I.V.; Karpov, P.; Van Deursen, R.; Godin, G. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nat. Commun. 2020, 11, 5575. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Nicolaou, C.A. Molecular property prediction: Recent trends in the era of artificial intelligence. Drug Discov. Today Technol. 2019, 32, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zavala, V.M. Convolutional neural nets in chemical engineering: Foundations, computations, and applications. AIChE J. 2021, 67, e17282. [Google Scholar] [CrossRef]
- Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. ACS Cent. Sci. 2018, 4, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph neural networks for materials science and chemistry. Commun. Mater. 2022, 3, 93. [Google Scholar] [CrossRef] [PubMed]
- Chithrananda, S.; Grand, G.; Ramsundar, B. ChemBERTa: Large-scale self-supervised pretraining for molecular property prediction. arXiv 2020, arXiv:2010.09885. [Google Scholar]
- Vaškevičius, M.; Kapočiūtė-Dzikienė, J.; Šlepikas, L. Generative LLMs in Organic Chemistry: Transforming Esterification Reactions into Natural Language Procedures. Appl. Sci. 2023, 13, 13140. [Google Scholar] [CrossRef]
- Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C.A.; Bekas, C.; Lee, A.A. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci. 2019, 5, 1572–1583. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Luong, K.-D.; Singh, A. Application of Transformers in Cheminformatics. J. Chem. Inf. Model. 2024, 64, 4392–4409. [Google Scholar] [CrossRef]
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Bai, R.; Li, J.; Duan, H. Heck reaction prediction using a transformer model based on a transfer learning strategy. Chem. Commun. 2020, 56, 9368–9371. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Li, Y.-P. Machine learning-guided strategies for reaction conditions design and optimization. Beilstein J. Org. Chem. 2024, 20, 2476–2492. [Google Scholar] [CrossRef]
- Probst, D.; Manica, M.; Nana Teukam, Y.G.; Castrogiovanni, A.; Paratore, F.; Laino, T. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 2022, 13, 964. [Google Scholar] [CrossRef]
- Lin, K.; Xu, Y.; Pei, J.; Lai, L. Automatic retrosynthetic route planning using template-free models. Chem. Sci. 2020, 11, 3355–3364. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Yang, B.; Zhao, X.; Zhang, Y.; Nie, F.; Yang, X.; Jin, Y.; Xu, Y. Ualign: Pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment. J. Cheminform. 2024, 16, 80. [Google Scholar] [CrossRef]
- Zheng, S.; Rao, J.; Zhang, Z.; Xu, J.; Yang, Y. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks. J. Chem. Inf. Model. 2020, 60, 47–55. [Google Scholar] [CrossRef]
- Westerlund, A.M.; Manohar Koki, S.; Kancharla, S.; Tibo, A.; Saigiridharan, L.; Kabeshov, M.; Mercado, R.; Genheden, S. Do Chemformers Dream of Organic Matter? Evaluating a Transformer Model for Multistep Retrosynthesis. J. Chem. Inf. Model. 2024, 64, 3021–3033. [Google Scholar] [CrossRef]
- Seo, S.-W.; Song, Y.Y.; Yang, J.Y.; Bae, S.; Lee, H.; Shin, J.; Hwang, S.J.; Yang, E. GTA: Graph Truncated Attention for Retrosynthesis. Proc. AAAI Conf. Artif. Intell. 2021, 35, 531–539. [Google Scholar] [CrossRef]
- Ba, J.L. Layer normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. AI Open 2022, 3, 111–132. [Google Scholar] [CrossRef]
- Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V.H.; Haeuselmann, R.A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, T. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 2020, 11, 3316–3325. [Google Scholar] [CrossRef]
- Kearnes, S.M.; Maser, M.R.; Wleklinski, M.; Kast, A.; Doyle, A.G.; Dreher, S.D.; Hawkins, J.M.; Jensen, K.F.; Coley, C.W. The Open Reaction Database. J. Am. Chem. Soc. 2021, 143, 18820–18826. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.A.; Yang, Q.; Sresht, V.; Bolgar, P.; Hou, X.; Klug-McLeod, J.L.; Butler, C.R. Molecular Transformer unifies reaction prediction and retrosynthesis across pharma chemical space. Chem. Commun. 2019, 55, 12152–12155. [Google Scholar] [CrossRef] [PubMed]
- Heller, S.R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. InChI, the IUPAC International Chemical Identifier. J. Cheminform. 2015, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D. Chemical Reactions from US Patents (1976-Sep2016); figshare: London, UK, 2017. [Google Scholar]
- Schneider, N.; Stiefl, N.; Landrum, G.A. What’s What: The (Nearly) Definitive Guide to Reaction Role Assignment. J. Chem. Inf. Model. 2016, 56, 2336–2346. [Google Scholar] [CrossRef] [PubMed]
- Bharti, N.; Leonard, M.; Singh, S. Review and Comparison of the Search Effectiveness and User Interface of Three Major Online Chemical Databases. J. Chem. Educ. 2016, 93, 852–863. [Google Scholar] [CrossRef]
- Singh, D.; Taspinar, Y.S.; Kursun, R.; Cinar, I.; Koklu, M.; Ozkan, I.A.; Lee, H.-N. Classification and Analysis of Pistachio Species with Pre-Trained Deep Learning Models. Electronics 2022, 11, 981. [Google Scholar] [CrossRef]
- Krallinger, M.; Rabal, O.; Lourenço, A.; Oyarzabal, J.; Valencia, A. Information Retrieval and Text Mining Technologies for Chemistry. Chem. Rev. 2017, 117, 7673–7761. [Google Scholar] [CrossRef]
- Qiang, B.; Zhou, Y.; Ding, Y.; Liu, N.; Song, S.; Zhang, L.; Huang, B.; Liu, Z. Bridging the gap between chemical reaction pretraining and conditional molecule generation with a unified model. Nat. Mach. Intell. 2023, 5, 1476–1485. [Google Scholar] [CrossRef]
- Corey, E.J.; Wipke, W.T. Computer-Assisted Design of Complex Organic Syntheses. Science 1969, 166, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhao, M.; Liu, Y.; Su, Y.; Zeng, X. Deep learning in retrosynthesis planning: Datasets, models and tools. Brief. Bioinform. 2021, 23, 319. [Google Scholar] [CrossRef] [PubMed]
- Nakao, A.; Harabuchi, Y.; Maeda, S.; Tsuda, K. Leveraging algorithmic search in quantum chemical reaction path finding. Phys. Chem. Chem. Phys. 2022, 24, 10305–10310. [Google Scholar] [CrossRef]
- Chen, B.; Li, C.; Dai, H.; Song, L. Retro*: Learning retrosynthetic planning with neural guided A* search. In Proceedings of the 37th International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; Volume 119, pp. 1608–1616. [Google Scholar]
- Sun, Y.; Sahinidis, N.V. Computer-aided retrosynthetic design: Fundamentals, tools, and outlook. Curr. Opin. Chem. Eng. 2022, 35, 100721. [Google Scholar] [CrossRef]
- Zhong, Z.; Song, J.; Feng, Z.; Liu, T.; Jia, L.; Yao, S.; Hou, T.; Song, M. Recent advances in deep learning for retrosynthesis. WIREs Comput. Mol. Sci. 2024, 14, e1694. [Google Scholar] [CrossRef]
- Thakkar, A.; Kogej, T.; Reymond, J.L.; Engkvist, O.; Bjerrum, E.J. Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chem. Sci. 2020, 11, 154–168. [Google Scholar] [CrossRef]
- Karpov, P.; Godin, G.; Tetko, I.V. A Transformer Model for Retrosynthesis. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17–19 September 2019; Volume 11731, pp. 817–830. [Google Scholar]
- Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.; Luu Nguyen, Q.; Ho, S.; Sloane, J.; Wender, P.; Pande, V. Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models. ACS Cent. Sci. 2017, 3, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Lee, D.; Kwon, Y.; Park, M.S.; Choi, Y.S. Valid, Plausible, and Diverse Retrosynthesis Using Tied Two-Way Transformers with Latent Variables. J. Chem. Inf. Model. 2021, 61, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, X.; Hsieh, C.-Y.; Ding, K.; Xu, H.; Xu, R.; Hou, T.; Zhang, Q.; Chen, H. Retrosynthesis prediction with an iterative string editing model. Nat. Commun. 2024, 15, 6404. [Google Scholar] [CrossRef]
- Chen, B.; Shen, T.; Jaakkola, T.; Barzilay, R. Learning to Make Generalizable and Diverse Predictions for Retrosynthesis. arXiv 2019, arXiv:1910.09688. [Google Scholar]
- Mao, K.; Xiao, X.; Xu, T.; Rong, Y.; Huang, J.; Zhao, P. Molecular graph enhanced transformer for retrosynthesis prediction. Neurocomputing 2021, 457, 193–202. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, C.; Wang, Y.; Jin, J.; Zhang, J.; Zeng, X.; Su, R.; Zou, Q.; Wei, L. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks. Nat. Commun. 2023, 14, 6155. [Google Scholar] [CrossRef]
- Wan, Y.; Hsieh, C.-Y.; Liao, B.; Zhang, S. Retroformer: Pushing the Limits of End-to-end Retrosynthesis Transformer. Proc. Mach. Learn. Res. 2022, 162, 22475–22490. [Google Scholar]
- Wang, X.; Li, Y.; Qiu, J.; Chen, G.; Liu, H.; Liao, B.; Hsieh, C.-Y.; Yao, X. RetroPrime: A Diverse, plausible and Transformer-based method for Single-Step retrosynthesis predictions. Chem. Eng. J. 2021, 420, 129845. [Google Scholar] [CrossRef]
- Yan, C.; Ding, Q.; Zhao, P.; Zheng, S.; Yang, J.; Yu, Y.; Huang, J. Retroxpert: Decompose retrosynthesis prediction like a chemist. Adv. Neural Inf. Process. Syst. 2020, 33, 11248–11258. [Google Scholar]
- Schwaller, P.; Probst, D.; Vaucher, A.C.; Nair, V.H.; Kreutter, D.; Laino, T.; Reymond, J.-L. Mapping the space of chemical reactions using attention-based neural networks. Nat. Mach. Intell. 2021, 3, 144–152. [Google Scholar] [CrossRef]
- Qiao, H.; Wu, Y.; Zhang, Y.; Zhang, C.; Wu, X.; Wu, Z.; Zhao, Q.; Wang, X.; Li, H.; Duan, H. Transformer-based multitask learning for reaction prediction under low-resource circumstances. RSC Adv. 2022, 12, 32020–32026. [Google Scholar] [CrossRef] [PubMed]
- Jaume-Santero, F.; Bornet, A.; Valery, A.; Naderi, N.; Vicente Alvarez, D.; Proios, D.; Yazdani, A.; Bournez, C.; Fessard, T.; Teodoro, D. Transformer Performance for Chemical Reactions: Analysis of Different Predictive and Evaluation Scenarios. J. Chem. Inf. Model. 2023, 63, 1914–1924. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Song, J.; Feng, Z.; Liu, T.; Jia, L.; Yao, S.; Wu, M.; Hou, T.; Song, M. Root-aligned SMILES: A tight representation for chemical reaction prediction. Chem. Sci. 2022, 13, 9023–9034. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Coley, C.W. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction. J. Chem. Inf. Model. 2022, 62, 3503–3513. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, Y. Unified Deep Learning Model for Multitask Reaction Predictions with Explanation. J. Chem. Inf. Model. 2022, 62, 1376–1387. [Google Scholar] [CrossRef]
- Bi, H.; Wang, H.; Shi, C.; Coley, C.; Tang, J.; Guo, H. Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction. Proc. Mach. Learn. Res. 2021, 139, 904–913. [Google Scholar]
- Wu, F.; Radev, D.; Li, S.Z. Molformer: Motif-based transformer on 3D heterogeneous molecular graphs. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 5312–5320. [Google Scholar] [CrossRef]
- Kwak, B.; Park, J.; Kang, T.; Jo, J.; Lee, B.; Yoon, S. GeoT: A Geometry-Aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning. ACS Omega 2023, 8, 39759. [Google Scholar] [CrossRef]
Database | Data Volume | Data Sources | Open Source | Address * |
---|---|---|---|---|
Reaxys | 64 million | Integration of Beilstein and Gmelin databases, patent chemistry databases from journals, patents, etc. | No | https://www.reaxys.com |
CAS SciFindern | 150 million | Sourced from more than 10,000 journals and 64 patent offices around the world, including Patent Markush Structures. | No | https://scifinder-n.cas.org |
USPTO Reaction Database | 50,000 (USPTO-50k) 1 million (USPTO-full) 480,000 (USPTO-MIT) 1.8 million (USPTO-STEREO) | Data from U.S. Patent Literature, which is free and open. | Yes | https://tdcommons.ai/generation_tasks/retrosyn/#uspto-50k https://github.com/wengong-jin/nips17-rexgen/tree/master/USPTO |
Open Reaction Database | 2 million | Sourced from journals, patents, and experimental data, supporting researcher uploading and sharing. | Yes | https://docs.open-reaction-database.org/en/latest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Liang, Y.; Xiong, Z.; Yang, X.; Wang, H.; Zeng, J.; Gu, S. Application of Transformers to Chemical Synthesis. Molecules 2025, 30, 493. https://doi.org/10.3390/molecules30030493
Jin D, Liang Y, Xiong Z, Yang X, Wang H, Zeng J, Gu S. Application of Transformers to Chemical Synthesis. Molecules. 2025; 30(3):493. https://doi.org/10.3390/molecules30030493
Chicago/Turabian StyleJin, Dong, Yuli Liang, Zihao Xiong, Xiaojie Yang, Haifeng Wang, Jie Zeng, and Shuangxi Gu. 2025. "Application of Transformers to Chemical Synthesis" Molecules 30, no. 3: 493. https://doi.org/10.3390/molecules30030493
APA StyleJin, D., Liang, Y., Xiong, Z., Yang, X., Wang, H., Zeng, J., & Gu, S. (2025). Application of Transformers to Chemical Synthesis. Molecules, 30(3), 493. https://doi.org/10.3390/molecules30030493