A Study on the Iodine Vapor Adsorption Performance and Desorption Behavior of HKUST-1 with Varying Particle Sizes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of HKUST-1
2.2. Iodine Adsorption Kinetics
2.3. Instrumental Characterization After Adsorption
2.4. Adsorption Stability of HKUST-1
3. Synthesis of Adsorbents and Experimental Methods
3.1. Synthesis of HKUST-1
3.2. Iodine Adsorption
3.3. Characterization
4. Conclusions
- HKUST-1 materials with particle sizes of 100 nm and 20 μm were successfully synthesized. The 20 μm HKUST-1 exhibits higher crystallinity and a more complete pore structure. In an 80 °C iodine vapor environment, the saturated iodine adsorption capacity of 20 μm HKUST-1 reaches 700 mg/g, significantly higher than the 300 mg/g of the 100 nm sample.
- The iodine adsorption behavior of HKUST-1 follows a pseudo-second-order kinetic model, primarily driven by physical adsorption, with iodine molecules filling the pores without disrupting the overall framework structure. The 20 μm HKUST-1 demonstrates higher internal diffusion rates and superior structural stability.
- After iodine adsorption, the 20 μm HKUST-1 shows a self-desorption phenomenon when exposed to air, with its weight decreasing by approximately 20% within 10 h and its color gradually returning to green. To improve long-term iodine retention, future studies may focus on modifying the material to enhance its binding stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.T.; Li, G.H.; Wei, L.S. Nuclear Power Plant Fuel Reprocessing; Atomic Energy Press: Beijing, China, 1980. [Google Scholar]
- Sakurai, T.; Komatsu, K.; Takahashi, A. Behavior of Iodine in the Dissolution of Spent Nuclear Fuels. In Proceedings of the 24th DOE/NRC Nuclear Air Cleaning and Treatment Conference, Portland, OR, USA, 15–18 July 1996; pp. 550–562. [Google Scholar]
- Lind, P.; Langsteger, W.; Molnar, M.; Gallowitsch, H.; Mikosch, P.; Gomez, I. Epidemiology of thyroid diseases in iodine sufficiency. Thyroid 1998, 8, 1179–1183. [Google Scholar] [CrossRef]
- Ewing, R.C.; Von Hippel, F.N. Nuclear waste management in the United States—Starting over. Science 2009, 325, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J.; Navrotsky, A.; Stefanovsky, S.; Vance, E.R.; Vernaz, E. Materials science of high-level nuclear waste immobilization. MRS Bull. 2009, 34, 46–53. [Google Scholar] [CrossRef]
- National Research Council. Waste Forms Technology and Performance; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Trevorrow, L.E.; Vandegrift, G.F.; Kolba, V.M.; Steindler, M.J. Compatibility of Technologies with Regulations in the Waste Management of H-3, I-129, C-14, and Kr-85. Part I. Initial Information Base; Argonne National Laboratory: Argonne, IL, USA, 1983. [Google Scholar]
- Collard, G.E.R.; Hennart, D.; Van Dooren, J.; Goosens, W.R.A. Iodine trapping and conditioning in the Mercurex process. In Proceedings of the 16th DOE Nuclear Air and Cleaning Conference, San Diego, CA, USA, 20–23 October 1980; pp. 20–23. [Google Scholar]
- Mailen, J.; Horner, D. Removal of radioiodine from gas streams by electrolytic scrubbing. Nucl. Technol. 1976, 30, 317–324. [Google Scholar] [CrossRef]
- Horner, D.E.; Mailen, J.C.; Posey, F.A. Electrolytic Trapping of Iodine from Process Gas Streams. U.S. Patent No. 4,004,993, 25 January 1977. [Google Scholar]
- Haefner, D.R.; Tranter, T.J. Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey; Idaho National Laboratory: Idaho Falls, ID, USA, 2007. [Google Scholar]
- Chapman, K.W.; Chupas, P.J.; Nenoff, T.M. Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J. Am. Chem. Soc. 2010, 132, 8897–8899. [Google Scholar] [CrossRef] [PubMed]
- Vienna, J.D.; Collins, E.D.; Crum, J.V.; Ebert, W.L.; Frank, S.M.; Garn, T.G.; Gombert, D.; Jones, R.; Jubin, R.T.; Maio, V.; et al. Closed Fuel Cycle Waste Treatment Strategy (No. PNNL-24114); Pacific Northwest National Lab: Richland, WA, USA, 2015. [Google Scholar]
- Puppe, L.; Wilhelm, J. Process for Removal of Iodine and Iodine Compounds from Gases and Vapours with Silver Containing Zeolite X. European Patent EP0332964A3, 16 May 1990. [Google Scholar]
- Jubin, R.T. Organic Iodine Removal from Simulated Dissolver Off-Gas Systems Utilizing Silver-Exchanged Mordenite; Oak Ridge National Lab: New Orleans, LA, USA, 1981. [Google Scholar]
- Mineo, H.; Gotoh, M.; Iizuka, M.; Fujisaki, S.; Hagiya, H.; Uchiyama, G. Applicability of a model predicting iodine-129 profile in a silver nitrate silica-gel column for dissolver off-gas treatment of fuel reprocessing. Sep. Sci. Technol. 2003, 38, 1981–2001. [Google Scholar] [CrossRef]
- Mineo, H.; Gotoh, M.; Iizuka, M.; Fujisaki, S.; Uchiyama, G. A simple model predicting iodine profile in a packed bed of silica-gel impregnated with silver nitrate. J. Nucl. Sci. Technol. 2002, 39, 241–247. [Google Scholar] [CrossRef]
- Tanabe, H.; Sakuragi, T.; Yamaguchi, K.; Sato, T.; Owada, H. Development of new waste forms to immobilize iodine-129 released from a spent fuel reprocessing plant. Adv. Sci. Technol. 2011, 73, 158–170. [Google Scholar] [CrossRef]
- Nenoff, T.M.; Krumhansl, J.L.; Gao, H.; Rajan, A.N.; McMahon, K.A. Iodine Waste Form Summary Report; Sandia National Laboratories (SNL): Albuquerque, NM, USA, 2007. [Google Scholar]
- Meng, G.; Song, X.; Ji, M.; Hao, J.; Shi, Y.; Ren, S.; Qiu, J.; Hao, C. Molecular simulation of adsorption of NO and CO2 mixtures by a Cu-BTC metal organic framework. Curr. Appl Phys. 2015, 15, 1070–1074. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, X.; Zhang, J.; Yan, X.; Liu, Y.; Yuan, A. Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1-1 composites. Int. J. Hydrogen Energy 2014, 39, 2160–2167. [Google Scholar] [CrossRef]
- Belmabkhout, Y.; Mouttaki, H.; Eubank, J.F.; Guillerm, V.; Eddaoudi, M. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-1-like tbo-MOFs: Application to methane purification and storage. RSC Adv. 2014, 4, 63855–63859. [Google Scholar] [CrossRef]
- Sun, B.; Kayal, S.; Chakraborty, A. Study of HKUST-1 (Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental Investigation with GCMC (grand canonical Monte-carlo) simulation. Energy 2014, 76, 419–427. [Google Scholar] [CrossRef]
- Sava, D.F.; Chapman, K.W.; Rodriguez, M.A.; Greathouse, J.A.; Crozier, P.S.; Zhao, H.; Chupas, P.J.; Nenoff, T.M. Competitive I2 sorption by Cu-BTC from humid gas streams. Chem. Mater. 2013, 25, 2591–2596. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejiang Univ.-Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Musah, M.; Azeh, Y.; Mathew, J.T.; Umar, M.T.; Abdulhamid, Z.; Muhammad, A.I. Adsorption kinetics and isotherm models: A review. CaJoST 2022, 4, 20–26. [Google Scholar] [CrossRef]
- Wang, F.; Guo, H.; Chai, Y.; Li, Y.; Liu, C. The controlled regulation of morphology and size of HKUST-1-1 by “coordination modulation method”. Micropor. Mesopor. Mater. 2013, 173, 181–188. [Google Scholar] [CrossRef]
- Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Micropor. Mesopor. Mater. 2009, 117, 406–413. [Google Scholar] [CrossRef]
Particle Size | Pseudo-First-Order Dynamics Model | Pseudo-Second-Order Dynamics Model | ||||
---|---|---|---|---|---|---|
k1st | qe | R2 | k2nd | qe | R2 | |
(1/h) | (mg/g) | / | (g/mg/h) | (mg/g) | / | |
100 nm | 0.293 | 356.45 | 0.953 | 1.83 × 10−3 | 384.62 | 0.997 |
20 μm | 0.325 | 1125.1 | 0.975 | 1.06 × 10−3 | 769.23 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, T.; Ding, X.; Chen, Q.; Xiao, S.; Yan, T.; Li, T.; Zheng, W. A Study on the Iodine Vapor Adsorption Performance and Desorption Behavior of HKUST-1 with Varying Particle Sizes. Molecules 2025, 30, 502. https://doi.org/10.3390/molecules30030502
Lan T, Ding X, Chen Q, Xiao S, Yan T, Li T, Zheng W. A Study on the Iodine Vapor Adsorption Performance and Desorption Behavior of HKUST-1 with Varying Particle Sizes. Molecules. 2025; 30(3):502. https://doi.org/10.3390/molecules30030502
Chicago/Turabian StyleLan, Tian, Xiaofan Ding, Qi Chen, Songtao Xiao, Taihong Yan, Tianchi Li, and Weifang Zheng. 2025. "A Study on the Iodine Vapor Adsorption Performance and Desorption Behavior of HKUST-1 with Varying Particle Sizes" Molecules 30, no. 3: 502. https://doi.org/10.3390/molecules30030502
APA StyleLan, T., Ding, X., Chen, Q., Xiao, S., Yan, T., Li, T., & Zheng, W. (2025). A Study on the Iodine Vapor Adsorption Performance and Desorption Behavior of HKUST-1 with Varying Particle Sizes. Molecules, 30(3), 502. https://doi.org/10.3390/molecules30030502