Rapid Identification of Constituents in Polygonatum cyrtonema Hua Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Establishment of Analytical Strategy
2.2. Profiling of the Chemical Composition of PCH by LC-MS/MS
2.2.1. Characterization of the Alkaloids in PCH
2.2.2. Characterization of the Organic Acids in PCH
2.2.3. Characterization of the Flavonoids in PCH
2.2.4. Characterization of the Aponins in PCH
2.2.5. Other Chemical Constituents in PCH
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reference Standards
4.2. Preparation of Standard and Sample Solutions
4.3. Instruments and LC–MS/MS Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, C.-Y.; Xu, D.-P.; Wu, Y.-M.; Ou, S.-Y. Triterpenoid saponins from the rhizome of Polygonatum sibiricum. J. Asian Nat. Prod. Res. 2010, 12, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cheng, H.; Xu, J.; Liu, J.; Xing, L.; Shi, S.; Wang, R.; Wu, Z.; Yu, N.; Peng, D. Determination and analysis of monosaccharides in Polygonatum cyrtonema Hua polysaccharides from different areas by ultra-high-performance liquid chromatography quadrupole trap tandem mass spectrometry. J. Sep. Sci. 2021, 44, 3506–3515. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.-B.; Chen, P.-F.; Liu, Y. The Active Ingredient of Polygonatum cyrtonema Hua: A Review. J. Chongqing Technol. Bus. Univ. (Soc. Sci. Ed.) 2024, 41, 1–11. [Google Scholar] [CrossRef]
- Huang, Z.Z.; Du, X.; Ma, C.D.; Zhang, R.R.; Gong, W.L.; Liu, F. Identification of Antitumor Active Constituents in Polygonatum sibiricum Flower by UPLC-Q-TOF-MS E and Network Pharmacology. ACS Omega 2020, 46, 29755–29764. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Feng, Y.-Q. Rapid Determination of Endogenous 20-Hydroxyecdysone in Plants on MALDI-TOF/TOF Mass Spectrometry via Chemical Labeling Based on Boronate Affinity. J. Anal. Test. 2022, 6, 318–326. [Google Scholar] [CrossRef]
- Shen, S.; Chang, C.; Shen, C.; Xu, H.; Miao, S.; Wills, S. Quantitative analysis of azodicarbonamide in insulation layers of extruded cables by HPLC–UV detection. J. Anal. Test. 2021, 5, 370–378. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Zhang, X.; Xing, J.; Liu, Z.; Song, F. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry. J. Chromatogr. A 2016, 1452, 47–57. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, S.; Tang, S.; E, S.; Li, K.; Li, J.; Cai, W.; Sun, L.; Li, H. Qualitative analysis of multiple phytochemical compounds in tojapride based on UHPLC Q-exactive orbitrap mass spectrometry. Molecules 2022, 27, 6639. [Google Scholar] [CrossRef]
- He, Z.; Xia, W. Preparative separation and purification of phenolic compounds from Canarium album L. by macroporous resins. J. Sci. Food Agric. 2008, 3, 493–498. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Qin, L.; Wang, G.; Li, P.; Yu, A.; Liu, A.; Sun, R. Separation and purification of two saponins from Paris polyphylla var. yunnanensis by a macroporous resin. Molecules 2022, 19, 6626. [Google Scholar]
- Do, T.C.M.V.; Nguyen, T.D.; Tran, H.; Stuppner, H.; Ganzera, M. Analysis of alkaloids in Lotus (Nelumbo nucifera Gaertn.) leaves by non-aqueous capillary electrophoresis using ultraviolet and mass spectrometric detection. J. Chromatogr. A 2013, 1302, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.M.; Zhang, J.L.; Deng, Y.L.; Ye, X.W.; Xia, L.T.; Liu, M.M.; Liu, Y.; Chen, Y.; Zhang, Q.; Wang, T. Analysis of Chemical Constitutions of Polygonatum cyrtonema Dried Rhizomes Before and After Processing with Wine Based on UPLC-Q-TOF-MS. Chin. J. Exp. Tradit. Med. Formulae 2021, 27, 110–121. [Google Scholar]
- Shang, Z.C.; Qin, S.H.; Li, K.L.; Liu, Y.N.; Wu, J.L.; Yan, F.; Cai, W. A Systematic Method for the Identification of Aporphine Alkaloid Constituents in Sabia schumanniana Diels Using UHPLC-Q-Exactive Orbitrap/Mass Spectrometry. Molecules 2022, 27, 7643. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhang, Y.; Li, Z.; Hu, P.; Chen, M.; Sun, Z.; Lin, Y.; Pan, G.; Huang, C. Systematic and comprehensive strategy for metabolite profiling in bioanalysis using software-assisted HPLC-Q-TOF: Magnoflorine as an example. Anal. Bioanal. Chem. 2016, 408, 2239–2254. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Guo, Q.; Zhao, Y.; Gao, X.; Chai, X.; Tu, P. Characterization and simultaneous quantification of biological aporphine alkaloids in Litsea cubeba by HPLC with hybrid ion trap time-of-flight mass spectrometry and HPLC with diode array detection. J. Sep. Sci. 2015, 38, 2614–2624. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Zhang, X.; Xu, H.; Liu, C. Chemical fingerprint analysis of Phellodendri Amurensis Cortex by ultra performance LC/Q-TOF-MS methods combined with chemometrics. J. Sep. Sci. 2010, 33, 3347–3353. [Google Scholar] [CrossRef]
- Yilmaz, M.A.; Ertas, A.; Yener, I.; Olmez, O.T.; Firat, M.; Temel, H.; Ozturk, M.; Kolak, U. Development and Validation of a Novel LC–MS/MS Method for the Quantitation of 19 Fingerprint Phytochemicals in Salvia Species: A Chemometric Approach. J. Chromatogr. Sci. 2022, 60, 770–785. [Google Scholar] [CrossRef]
- Ji, K.Y.; Wang, H.P.; Yang, J.; Qin, J.C.; Yang, S.X.; Lv, C.J.; Huang, J. Rapid analysis and identification of the chemical constituents of wild Polygonatum kingianum Coll. et Hemsl in Sichuan Aba by UPLC-Q-TOF-MSE. Appl. Chem. Ind. 2019, 48, 271–275. [Google Scholar]
- Wang, Z.; Song, M.; Cui, B.; Ren, Y.; Zhu, W.; Yang, B.; Kuang, H. A LC-MS/MS method for simultaneous determination of seven alkaloids in rat plasma after oral administration of Phellodendri chinensis cortex extract and its application to a pharmacokinetic study. J. Sep. Sci. 2019, 42, 1351–1363. [Google Scholar] [CrossRef]
- Koh, H.; Wang, H.; Zhou, S.; Chan, E.; Woo, S. Detection of aristolochic acid I, tetrandrine and fangchinoline in medicinal plants by high performance liquid chromatography and liquid chromatography/mass spectrometry. J. Pharm. Biomed. Anal. 2006, 40, 653–661. [Google Scholar] [CrossRef]
- Jiang, W.; Weng, G.; Chen, J.; Ye, C.; Jiang, X.; Tao, Z. Comparative Analysis of Chemical Constituents of Polygonatum Cyrtonema Hua of Red and Green Stem Type Based on LC-MS Metabolomics. Chin. Agric. Sci. Bull. 2021, 37, 32–38. [Google Scholar]
- Kowalski, S.; Kopuncová, M.; Ciesarová, Z.; Kukurová, K. Free amino acids profile of Polish and Slovak honeys based on LC–MS/MS method without the prior derivatisation. J. Food Sci. Technol. 2017, 54, 3716–3723. [Google Scholar] [CrossRef] [PubMed]
- Jaitz, L.; Mueller, B.; Koellensperger, G.; Huber, D.; Oburger, E.; Puschenreiter, M.; Hann, S. LC–MS analysis of low molecular weight organic acids derived from root exudation. Anal. Bioanal. Chem. 2011, 400, 2587–2596. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.N.; Yang, J.B.; E, S.; He, S.; Li, J.X.; Yu, K.Q.; Zhang, M.; Li, Q.; Sun, L.; Li, H. Rapid Identification of Constituents in Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2022, 27, 4038. [Google Scholar] [CrossRef]
- Liang, Z.H.; Pan, Y.J.; Qiu, L.Y.; Wu, X.Y.; Xu, X.Q.; Shu, W.Y.; Yuan, Q. Analysis on chemical components changes of Polygonati Rhizoma in processing of nine times steaming and nine times sunning by UPLC-Q-TOF-MS/MS. Chin. Tradit. Herb. Drugs 2022, 53, 4948–4957. [Google Scholar]
- Duan, K.; Yuan, Z.; Guo, W.; Meng, Y.; Cui, Y.; Kong, D.; Zhang, L.; Wang, N. LC–MS/MS determination and pharmacokinetic study of five flavone components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. J. Ethnopharmacol. 2011, 135, 201–208. [Google Scholar] [CrossRef]
- Yu, Y.M.; Ma, X.Y.; Zhang, T.J.; Tang, C. Rapid Characterization on Components of Polygonatum sibiricum based on HPLC-MS Technology. Lishizhen Med. Mater. Med. 2016, 27, 794–796. [Google Scholar]
- Chen, X.; Zhang, X.; Zhang, Y.; Wang, L.; Kong, Q.; Liu, Y.; Yang, S. Study on the Chemical Constituents Differences of Polygonati Rhizoma Before and After Simmering by UPLC-Q-Exactive Orbitrap-MS. Chin. Tradit. Herb. Drugs 2022, 45, 1595–1600. [Google Scholar]
- Li, J.; Wang, Y.; Mei, X.; Liu, Z.; Song, S.; Ma, T.; Lin, F.; Zhang, J. Characterization of chemical constituents in aqueous extracts and fermentation broth fr rom Polygonati Rhizoma by UHPLC-LTQ-Orbitrap MS combined with solid phase extractio on. Chin. Tradit. Herb. Drugs 2019, 50, 3029–3036+3043. [Google Scholar]
- Liu, D.; Kikuchi, T.; Li, W. Characterization and Comparison of Steroidal Glycosides from Polygonatum Species by High-Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Molecules 2023, 28, 705. [Google Scholar] [CrossRef]
- Zhang, K. Comparative Study on Chemical Components of Plant from Polygonatum. Master’s Thesis, Peking Union Medical College Hospital, Beijing, China, 2022. [Google Scholar]
- Ge, Q.; Wan, J.I.; Zhu, Y.L.; Wan, Y.S.; He, X.C.; Wei, Y.A.; Ouyang, Z. Qualitative and quantitative analysis of nucleoside components in Cordyceps cicadae by LC-MS and HPLC. Nat. Prod. Res. Dev. 2019, 31, 1857–1863+927. [Google Scholar]
- Grignon, C.; Dupuis, A.; Albouy-Llaty, M.; Condylis, M.; Barrier, L.; Carato, P.; Brunet, B.; Migeot, V.; Venisse, N. Validation of a probe for assessing deconjugation of glucuronide and sulfate phase II metabolites assayed through LC–MS/MS in biological matrices. J. Chromatogr. B 2017, 1061–1062, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Aljawarneh, R.Y.A.; Zain, M.S.C.; Zakaria, F. Macroporous polymeric resin for the purification of flavonoids from medicinal plants: A review. J. Sep. Sci. 2024, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.C.; Gulliya, B. Chemistry and Pharmacology of Flavonoids—A Review. Indian J. Pharm. Educ. Res. 2019, 53, 8–20. [Google Scholar] [CrossRef]
- Rahaman, S.T.; Mondal, S. Flavonoids: A vital resource in healthcare and medicine. Pharm. Pharmacol. Int. J. 2020, 8, 91–104. [Google Scholar] [CrossRef]
- Sebiyo, C. Pharmacological properties of rutin and its potential uses for Alzheimer’s disease. J. Exp. Stroke Transl. Med. 2021, 13, 1–12. [Google Scholar]
- Ganeshpurkar, A.; Saluja, A. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2016, 25, 149–164. [Google Scholar] [CrossRef]
- Mahmood, M.A. Pharmacological Action of Taxifolin: A Review. Open Access J. Pharm. Res. 2023, 7, 1–6. [Google Scholar] [CrossRef]
- Silva Dos Santos, J.; Gonçalves Cirino, J.P.; de Oliveira Carvalho, P.; Ortega, M.M. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front. Pharmacol. 2021, 11, 565700. [Google Scholar] [CrossRef]
- Khairnar, S.J.; Jadhav, G.B. Neuroprotective Action of Polyphenols and Phenolic Compounds: An Overview. Biosci. Biotechnol. Res. Asia 2023, 20, 793–816. [Google Scholar] [CrossRef]
- Neto-Neves, E.M.; Filho, C.d.S.M.B.; Dejani, N.N.; de Sousa, D.P. Ferulic Acid and Cardiovascular Health: Therapeutic and Preventive Potential. Mini-Rev. Med. Chem. 2021, 21, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.-H.; Zhang, S.-D.; Wang, L.-T.; Yu, L.; Zhao, X.-L.; Ni, H.-Y.; Wang, Y.-Q.; Wang, J.-D.; Shan, C.-H.; Fu, Y.-J. Anti-Inflammatory Effects of Neochlorogenic Acid Extract from Mulberry Leaf (Morus alba L.) Against LPS-Stimulated Inflammatory Response through Mediating the AMPK/Nrf2 Signaling Pathway in A549 Cells. Molecules 2020, 25, 1385. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; de Souza, G.E.P. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 2006, 29, 2236–2240. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Okyere, S.K.; Hu, L.; Wen, J.; Ren, Z.; Deng, J.; Hu, Y. Anti-Inflammatory Activity and Mechanism of Cryptochlorogenic Acid from Ageratina adenophora. Nutrients 2022, 14, 439. [Google Scholar] [CrossRef]
- Bedewi, B.K.; Jasim, G.A.; Abbas, I.S.; Al-Sudani, B. Cytotoxicity of Cryptochlorogenic acid against Breast cancer cell line (MCF7) isolated from Moringa oleifera Leaves Cultivated in Iraq. Al Mustansiriyah J. Pharm. Sci. 2022, 22, 35–43. [Google Scholar] [CrossRef]
- Lin, Y.; Yi, O.; Hu, M.; Hu, S.; Su, Z.; Liao, J.; Wang, W.; Wang, S.; Liu, L.; Liu, B.; et al. Multifunctional nanoparticles of sinomenine hydrochloride for treat-to-target therapy of rheumatoid arthritis via modulation of proinflammatory cytokines. J. Control. Release 2022, 348, 42–56. [Google Scholar] [CrossRef]
- Hong, H.; Lu, X.; Lu, Q.; Huang, C.; Cui, Z. Potential therapeutic effects and pharmacological evidence of sinomenine in central nervous system disorders. Front. Pharmacol. 2022, 13, 1015035. [Google Scholar] [CrossRef]
- Bayazeid, O.; Nemutlu, E.; Eylem, C.C.; İlhan, M.; Küpeli-Akkol, E.; Karahan, H.; Kelicen-Uğur, P.; Ersoz, T.; Yalçın, F.N. Neuroactivity of the naturally occurring aporphine alkaloid, roemerine. Nat. Prod. Res. 2020, 35, 6147–6152. [Google Scholar] [CrossRef]
- Ma, C.; Du, F.; Yan, L.; He, G.; He, J.; Wang, C.; Rao, G.; Jiang, Y.; Xu, G. Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms. Molecules 2015, 20, 17913–17928. [Google Scholar] [CrossRef]
- Chakuleska, L.; Michailova, R.; Shkondrov, A.; Manov, V.; Zlateva-Panayotova, N.; Marinov, G.; Petrova, R.; Atanasova, M.; Krasteva, I.; Danchev, N.; et al. Bone protective effects of purified extract from Ruscus aculeatus on ovariectomy-induced osteoporosis in rats. Food Chem. Toxicol. 2019, 132, 110668. [Google Scholar] [CrossRef]
- Sun, B.; Yang, D.; Yin, Y.-Z.; Xiao, J. Estrogenic and anti-inflammatory effects of pseudoprotodioscin in atherosclerosis-prone mice: Insights into endothelial cells and perivascular adipose tissues. Eur. J. Pharmacol. 2019, 869, 172887. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Ma, J.; Yan, S.; Yang, S.; Fan, L.; Huo, Y.; Gao, B.; Cai, W. Rapid Identification of Constituents in Polygonatum cyrtonema Hua Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2025, 30, 723. https://doi.org/10.3390/molecules30030723
Yang Q, Ma J, Yan S, Yang S, Fan L, Huo Y, Gao B, Cai W. Rapid Identification of Constituents in Polygonatum cyrtonema Hua Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules. 2025; 30(3):723. https://doi.org/10.3390/molecules30030723
Chicago/Turabian StyleYang, Qingrui, Jieyao Ma, Shenlong Yan, Suyu Yang, Lingxuan Fan, Yanghui Huo, Bowen Gao, and Wei Cai. 2025. "Rapid Identification of Constituents in Polygonatum cyrtonema Hua Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry" Molecules 30, no. 3: 723. https://doi.org/10.3390/molecules30030723
APA StyleYang, Q., Ma, J., Yan, S., Yang, S., Fan, L., Huo, Y., Gao, B., & Cai, W. (2025). Rapid Identification of Constituents in Polygonatum cyrtonema Hua Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules, 30(3), 723. https://doi.org/10.3390/molecules30030723