Solvent Fractionation and LC-MS Profiling, Antioxidant Properties, and α-Glucosidase Inhibitory Activity of Bombyx batryticatus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Changes During Silkworm Infection with B. bassiana
2.2. The Antioxidant Activity of B. batryticatus Extract
2.3. The Inhibitory Activities of B. batryticatus Extract on α-Glucosidase and Pancreatic Lipase
2.4. Nontargeted Analysis of Samples by UPLC-TQ-LIT-MS
2.5. The Antioxidant Activity, Total Flavonoid Content, and α-Glucosidase Inhibitory Activity of Several Extracts of B. batryticatus
2.6. Component Profiling of Chloroform Extract Concentrate (F2) by LC-MS
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of B. batryticatus
3.3. Sample Extraction and Preparation
3.4. Total Flavonoid Determination
3.5. Evaluation of Antioxidant Capacity
3.5.1. Total Reducing Power Assay
3.5.2. DPPH Radical Scavenging Activity Assay
3.5.3. Hydroxyl Radical Scavenging Activity Assay
3.5.4. Superoxide Radical Scavenging Activity Assay
3.6. α-Glucosidase Inhibition Assay
3.7. Pancreatic Lipase Inhibition Assay
3.8. UHPLC-TQ-LIT-MS Analysis
3.9. Liquid Chromatography/Mass Spectrometry
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoang, T.N.N.; Nguyen, Q.L.; Le, T.N.N.; Vo, N.H.; Dong, T.A.D.; Le, T.H.A. Comparative Study on the Hypoglycemic Effects of Different Parts of Musa balbisiana. Food Sci. Nutr. 2024, 12, 10347–10356. [Google Scholar] [CrossRef]
- Soory, M. Relevance of nutritional antioxidants in metabolic syndrome, ageing and cancer: Potential for therapeutic targeting. Curr. Drug Targets Infect. Disord. 2009, 9, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Daim, M.M.; El-Tawil, O.S.; Bungau, S.G.; Atanasov, A.G. Applications of antioxidants in metabolic disorders and degenerative diseases: Mechanistic approach. Oxid. Med. Cell. Longev. 2019, 2019, 4179676. [Google Scholar] [CrossRef]
- Abdel-Daim, M.M.; Zakhary, N.I.; Aleya, L.; Bungǎu, S.G.; Bohara, R.A.; Siddiqi, N.J. Aging, metabolic, and degenerative disorders: Biomedical value of antioxidants. Oxid. Med. Cell. Longev. 2018, 1, 2098123. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. Anti-diabetic potential of Sapium ellipticum (Hochst) Pax leaf extract in Streptozotocin (STZ)-induced diabetic Wistar rats. BMC Complement. Altern. Med. 2017, 17, 525. [Google Scholar] [CrossRef] [PubMed]
- Alfarisi, H.; Sa’diah, S.; Wresdiyati, T. Polyphenol Profile, Antioxidant and Hypoglycemic Activity of Acalypha hispida Leaf Extract. Indian J. Pharm. Sci. 2020, 82, 291–299. [Google Scholar] [CrossRef]
- Elbashir, S.M.I.; Devkota, H.P.; Wada, M.; Kishimoto, N.; Moriuchi, M.; Shuto, T.; Misumi, S.; Kai, H.; Watanabe, T. Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen Sudanese medicinal plants. BMC Complement Altern. Med. 2018, 18, 282. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Aktumsek, A.; Karatas, S. Fatty acid composition, total sugar content and anti-diabetic activity of methanol and water extracts of nine different fruit tree leaves collected from Mediterranean region of Turkey. Int. J. Food Prop. 2015, 18, 2268–2276. [Google Scholar] [CrossRef]
- Pares, R.B.; Alves, L.F.A. Controle e prevenção da calcinose branca em Bombyx mori L. (Lepidoptera: Bombycidae). Arq. Do Inst. Biológico 2016, 83, 0992014. [Google Scholar] [CrossRef]
- Rattana, S.; Katisart, T.; Butiman, C.; Sungthong, B. Total flavonoids, total phenolics, 1-deoxynojirimycin content and alpha-glucosidase inhibitory activity of Thai silkworm races (Bombyx mori Linn.). Pak. J. Pharm. Sci. 2019, 32, 2539–2544. [Google Scholar] [CrossRef]
- Ryu, K.-S.; Lee, H.-S.; Kim, K.-Y.; Kim, M.-J.; Sung, G.-B.; Ji, S.-D.; Kang, P.-D. 1-deoxynojirimycin content and blood glucose-lowering effect of silkworm (Bombyx mori) extract powder. Int. J. Indust. Entomol. 2013, 27, 237–242. [Google Scholar] [CrossRef]
- Mahanta, D.K.; Komal, J.; Samal, I.; Bhoi, T.K.; Dubey, V.K.; Pradhan, K.; Nekkanti, A.; Gouda, M.N.R.; Saini, V.; Negi, N.; et al. Nutritional aspects and dietary benefits of “Silkworms”: Current scenario and future outlook. Front. Nutr. 2023, 10, 1121508. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Shen, G.; Li, Q.; Xiao, Y.; Yang, Q.; Xia, Q. Quality formation mechanism of stiff silkworm, Bombyx batryticatus using UPLC-Q-TOF-MS-based metabolomics. Molecules 2019, 24, 3780. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, Y.; Li, Y.; Fu, H.; Hu, J.; Zhou, Y.; Xu, Y.; Xia, G.; Sun, X.; Yang, H.; et al. Identification of signature proteins of processed Bombyx batryticatus by comparative proteomic analysis. Int. J. Biol. Macromol. 2020, 153, 289–296. [Google Scholar] [CrossRef]
- Hu, M.; Yu, Z.; Wang, J.; Fan, W.; Liu, Y.; Li, J.; Xiao, H.; Li, Y.; Peng, W.; Wu, C. Traditional Uses, Origins, Chemistry and Pharmacology of Bombyx batryticatus: A Review. Molecules 2017, 22, 1779. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-S.; Kim, J.-S.; Moon, B.C.; Ryu, S.M.; Lee, J.; Park, G. Batryticatus Bombyx protects dopaminergic neurons against MPTP-induced neurotoxicity by inhibiting oxidative damage. Antioxidants 2019, 8, 574. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Tewari, S.K.; Awasthi, A.K. Surface ultrastructure of Beauveria bassiana infecting silkworm Bombyx mori Linn. Curr. Sci. 1994, 67, 546–548. [Google Scholar]
- Choi, B.H.; Ji, S.D.; Son, J.G.; Nguyen, P.; Kim, K.Y.; Park, Y.H.; Koh, Y.H. Phytochemicals and silk proteins in mature silkworm powders responsible for extended life expectancy and enhanced resistances to Parkinson’s disease. J. Asia. Pac. Entomol. 2017, 20, 1425–1433. [Google Scholar] [CrossRef]
- Wannee, S.; Luchai, B. 1-Deoxynojirimycin and polyphenolic composition and antioxidant activity of different native Thai silkworm (Bombyx mori) larvae. J. King Saud Univ. Sci. 2020, 32, 2762–2766. [Google Scholar] [CrossRef]
- Paul, D.; Dey, S. Essential amino acids, lipid profile and fat-soluble vitamins of the edible silkworm Bombyx mori (Lepidoptera: Bombycidae). Int. J. Trop. Insect Sci. 2014, 34, 239–247. [Google Scholar] [CrossRef]
- Ali, M.F.Z.; Nakahara, S.; Otsu, Y.; Ido, A.; Miura, C.; Miura, T. Effects of functional polysaccharide from silkworm as an immunostimulant on transcriptional profiling and disease resistance in fish. J. Insects Food Feed 2021, 8, 1221–1233. [Google Scholar] [CrossRef]
- Cermeño, M.; Bascón, C.; Amigo-Benavent, M.; Felix, M.; FitzGerald, R.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. J. Funct. Foods 2022, 92, 105052. [Google Scholar] [CrossRef]
- Bae, S.-M.; Jo, Y.-Y.; Lee, K.-G.; Kim, H.-B.; Kweon, H. Antioxidant activity of silkworm powder treated with protease. Int. J. Indust. Entomol. 2016, 33, 78–84. [Google Scholar] [CrossRef]
- Ávila-Hernández, J.G.; Carrillo, M.L.; Cruz, R.D.I.; Wong-Paz, J.E. Beauveria bassiana secondary metabolites: A review inside their production systems, biosynthesis, and bioactivities. Mex. J. Biotechnol. 2020, 5, 1–33. [Google Scholar] [CrossRef]
- Das, U.N. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. J. Adv. Res. 2018, 11, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Khadem, S.; Marles, R.J. Monocyclic phenolic acids; hydroxy-and polyhy-droxybenzoic acids: Occurrence and recent bioactivity studies. Molecules 2010, 15, 7985–8005. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Strugała, P.; Tronina, T.; Huszcza, E.; Gabrielska, J. Bioactivity in vitro of quercetin glycoside obtained in Beauveria bassiana culture and its interaction with liposome membranes. Molecules 2017, 22, 1520. [Google Scholar] [CrossRef] [PubMed]
- Koirala, N.; Thuan, N.H.; Ghimire, G.P.; Van Thang, D.; Sohng, J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb. Technol. 2016, 86, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Daim, M.M.; Abo-EL-Sooud, K.; Aleya, L.; Bungǎu, S.G.; Najda, A.; Saluja, R. Alleviation of drugs and chemicals toxicity: Biomedical value of antioxidants. Oxid. Med. Cell. Longev. 2018, 1, 6276438. [Google Scholar] [CrossRef]
- Ramírez, G.; Zavala, M.; Pérez, J.; Zamilpa, A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evid. Based. Complement. Alternat. Med. 2012, 2012, 701261. [Google Scholar] [CrossRef]
- Hasnat, H.; Shompa, S.A.; Islam, M.M.; Alam, S.; Richi, F.T.; Emon, N.U.; Ashrafi, S.; Ahmed, N.U.; Chowdhury, M.N.R.; Fatema, N.; et al. Flavonoids: A treasure house of prospective pharmacological potentials. Heliyon 2024, 10, 27533. [Google Scholar] [CrossRef]
- Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Liu, Q.; Lei, L.; Sun, S.J.; Li, C.Y.; Huan, Y.; Hou, S.C.; Shen, Z.F. The Chinese patent medicine, Jin-tang-ning, ameliorates hyperglycemia through improving β cell function in pre-diabetic KKAy mice. Chin. J. Nat. Med. 2020, 18, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.S.; Yun, S.M.; Cho, J.M. Silkworm (Bombyx mori) powder supplementation alleviates alcoholic fatty liver disease in rats. J. Funct. Foods 2018, 43, 29–36. [Google Scholar] [CrossRef]
- Amobonye, A.; Bhagwat, P.; Pandey, A.; Singh, S.; Pillai, S. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit. Rev. Biotechnol. 2020, 40, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Patocka, J. Bioactive metabolites of entomopathogenic fungi Beauveria bassiana. Mil. Med. Sci. Lett. 2016, 85, 80–88. [Google Scholar] [CrossRef]
- Vesa, C.M.; Bungau, S.G. Novel molecules in diabetes mellitus, dyslipidemia and cardiovascular disease. Int. J. Mol. Sci. 2023, 24, 4029. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhang, M.; Li, F.; Su, J.; Wang, R.; Li, G.; Yang, X. 10-hydroxy-2-decenoic acid alleviates lipopolysaccharide-induced intestinal mucosal injury through anti-inflammatory, antioxidant, and gut microbiota modulation activities in chickens. Front. Microbiol. 2023, 14, 1285299. [Google Scholar] [CrossRef]
- Gaspar, A.; Martins, M.; Silva, P.; Garrido, E.M.; Garrido, J.; Firuzi, O.; Miri, R.; Saso, L.; Borges, F. Dietary phenolic acids and derivatives. Evaluation of the antioxidant activity of sinapic acid and its alkyl esters. J. Agric. Food Chem. 2010, 58, 11273–11280. [Google Scholar] [CrossRef] [PubMed]
- Sepand, M.R.; Razavi-Azarkhiavi, K.; Omidi, A.; Zirak, M.R.; Sabzevari, S.; Kazemi, A.R.; Sabzevari, O. Effect of acetyl-L-carnitine on antioxidant status, lipid peroxidation, and oxidative damage of arsenic in rat. Biol. Trace Elem. Res. 2016, 171, 107–115. [Google Scholar] [CrossRef]
- Mani, K.; Vitenberg, T.; Khatib, S.; Opatovsky, I. Effect of entomopathogenic fungus Beauveria bassiana on the growth characteristics and metabolism of black soldier fly larvae. Pestic. Biochem. Physiol. 2023, 197, 105684. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Su, C.H.; Hsu, C.H.; Ng, L.T. Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. Biofactors 2013, 39, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Malki, F.; Touati, A.; Hamza, K.; Moulay, S.; Baltas, M. Antioxidant activity of a series of amides. J. Mater. Environ. Sci. 2016, 7, 936–941. [Google Scholar]
- Fowler, C.J.; Jonsson, K.O.; Tiger, G. Fatty acid amide hydrolase: Biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem. Pharmacol. 2001, 62, 517–526. [Google Scholar] [CrossRef]
- Tanvir, R.; Javeed, A.; Rehman, Y. Fatty acids and their amide derivatives from endophytes: New therapeutic possibilities from a hidden source. FEMS Microbiol. Lett. 2018, 365, fny114. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Luo, F.; Gao, Q.; Shang, Y.; Wang, C. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal. Bioanal. Chem. 2015, 407, 4815–4821. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Cheng, T.; Xu, P.; Cheng, D.; Fang, T.; Xia, Q. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS ONE 2009, 4, 8098. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, D.; Zhu, Y.; Wang, Y.; He, S.; Zhang, T. Enhancing the in vitro Antioxidant Capacities via the interaction of amino acids. Emir. J. Food Agric. 2018, 30, 224–231. [Google Scholar] [CrossRef]
- Ko, Y.-C.; Choi, H.S.; Kim, J.-H.; Kim, S.-L.; Yun, B.-S.; Lee, D.-S. Coriolic Acid (13-(S)-Hydroxy-9Z, 11E-octadecadienoic Acid) from Glasswort (Salicornia herbacea L.) Suppresses Breast Cancer Stem Cell through the Regulation of c-Myc. Molecules 2020, 25, 4950. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Shruti, P.S.; Singh, S.; Singh, T.; Kaur, P.; Jodha, B.; Srivastava, Y.; Munshi, A.; Singh, S. Trehalose and its diverse biological potential. Curr. Protein Pept. Sci. 2023, 24, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Olomola, T.O.; Mphahlele, M.J.; Gildenhuys, S. Benzofuran-selenadiazole hybrids as novel α-glucosidase and cyclooxygenase-2 inhibitors with antioxidant and cytotoxic properties. Bioorg. Chem. 2020, 100, 103945. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Barakat, A.; Al-Majid, A.M.; Al-Ghulikah, H.A. Spiroindolone analogues as potential hypoglycemic with dual inhibitory activity on α-amylase and α-glucosidase. Molecules 2019, 24, 2342. [Google Scholar] [CrossRef] [PubMed]
- Tafesse, T.B.; Bule, M.H.; Khoobi, M.; Faramarzi, M.A.; Abdollahi, M.; Amini, M. Coumarin-based scaffold as α-glucosidase inhibitory activity: Implication for the development of potent antidiabetic agents. Mini Rev. Med. Chem. 2020, 20, 134–151. [Google Scholar] [CrossRef] [PubMed]
- Dehnavi, F.; Alizadeh, S.R.; Ebrahimzadeh, M.A. Pyrrolopyrazine derivatives: Synthetic approaches and biological activities. Med. Chem. Res. 2021, 30, 1981–2006. [Google Scholar] [CrossRef]
- Mingoia, F.; Di Sano, C.; D’Anna, C.; Fazzari, M.; Minafra, L.; Bono, A.; Monica, G.L.; Martorana, A.; Almerico, A.; Lauria, A. Synthesis of new antiproliferative 1, 3, 4-substituted-pyrrolo [3, 2-c] quinoline derivatives, biological and in silico insights. Eur. J. Med. Chem. 2023, 258, 115537. [Google Scholar] [CrossRef] [PubMed]
- Laddha, A.P.; Kulkarni, Y.A. Nitrogenous Compounds from Plant Origin in Management of Diabetes Mellitus. In Structure and Health Effects of Natural Products on Diabetes Mellitus; Chen, H., Zhang, M., Eds.; Springer Nature: Singapore, 2021; pp. 235–249. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Xia, X.; Zhang, R.; Wang, W.; Xiang, X. Chemical profile of phenolic extracts from rapeseed meal and inhibitory effects on α-glucosidase: UPLC-MS/MS analysis, multispectral approaches, molecular simulation and ADMET analysis. Food Res. Int. 2023, 174, 113517. [Google Scholar] [CrossRef] [PubMed]
- Malunga, L.N.; Joseph Thandapilly, S.; Ames, N. Cereal-derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship. J. Food Biochem. 2018, 42, 12635. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Y.; Yin, H.; Du, L.; Chen, C. Senkyunolide I: A review of its phytochemistry, pharmacology, pharmacokinetics, and drug-likeness. Molecules 2023, 28, 3636. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, J.; Jian, J.; Wen, Y.; Li, J.; Tian, H.; Crommen, J.; Jiang, Z.; Bi, W.; Zhang, T.; et al. High-throughput discovery of highly selective reversible hMAO-B inhibitors based on at-line nanofractionation. Acta Pharm. Sin. B 2024, 14, 1772–1786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, Y.X.; Li, S.Y.; Wang, Y.L.; Yang, F.Q.; Chen, H.; Xia, Z.N. An ultrafiltration and high performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterizing thrombin inhibitors from Rhizoma Chuanxiong. J. Chromatogr. B 2017, 1061, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Keivani, N.; Piccolo, V.; Marzocchi, A.; Maisto, M.; Tenore, G.C.; Summa, V. Optimization and validation of procyanidins extraction and phytochemical profiling of seven herbal matrices of nutraceutical interest. Antioxidants 2024, 13, 586. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, W.; Yuan, R.; Shu, Y.; Liu, G.; Zheng, B.; Tu, J. Fortification of yogurt with mulberry leaf extract: Effects on physicochemical, antioxidant, microbiological and sensory properties during 21-days of storage. Heliyon 2024, 10, 37601. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zheng, S.; Yuan, C.; Gao, Q.; Xiang, C.; Tian, S.; Zhao, Y. Study on extraction technology and antioxidant activity of total alkaloids from Hemsleya chinensis based on orthogonal design and BP neural network. Heliyon 2023, 9, 20680. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Liu, G.; Jin, Y.; Tang, C.; Yao, T.; Zhuo, J.; Li, Q.; Liu, L.; Wang, J. Enrichment of γ-aminobutyric acid in mulberry leaves and the inhibitory effects of the water extract on ACE and α-glucosidase activity. Ind. Crops Prod. 2022, 177, 114485. [Google Scholar] [CrossRef]
- Aloo, S.O.; Ofosu, F.K.; Muchiri, M.N.; Vijayalakshmi, S.; Pyo, C.-G.; Oh, D.-H. In Vitro Bioactivities of Commonly Consumed Cereal, Vegetable, and Legume Seeds as Related to Their Bioactive Components: An Untargeted Metabolomics Approach Using UHPLC–QTOF-MS2. Antioxidants 2023, 12, 1501. [Google Scholar] [CrossRef]
NO | RT (min) | Proposed Compound | Molecular Formula | Mass Error (ppm) | Theoretical Exact Mass (m/z) | Assigned Adduct | p-Values | Log2 (FC) | VIP Score |
---|---|---|---|---|---|---|---|---|---|
1 | 0.7 | Ornithine | C5H12N2O2 | 0.11 | 132.08989 | [M + H]+ | 5.19 × 10−5 | −1.27 | 0.26 |
2 | 0.78 | Carnitine | C7H15NO3 | −0.01 | 161.10519 | [M + H]+ | 1.30 × 10−4 | 1.95 | 0.88 |
3 | 0.78 | α,α-Trehalose | C12H22O11 | −4.06 | 342.11482 | [M − H]− | 3.71 × 10−4 | −2.42 | 0.50 |
4 | 0.79 | Methionine sulfoxide | C5H11NO3S | 0.21 | 165.04600 | [M + H]+ | 5.50 × 10−6 | −5.53 | 0.36 |
5 | 0.79 | 2-Hydroxymethylpiperidine-3,4,5-triol | C6H13NO4 | −0.53 | 163.08437 | [M − H]− | 5.21 × 10−4 | 4.28 | 0.58 |
6 | 0.79 | Trigonelline | C7H7NO2 | −0.01 | 137.04768 | [M + H]+ | 1.08 × 10−4 | 2.19 | 0.43 |
7 | 0.81 | Serine | C3H7NO3 | 0.23 | 105.04262 | [M + CAN + H]+ | 1.77 × 10−2 | −1.75 | 0.44 |
8 | 0.85 | 4-Nitrobenzoic acid | C7H5NO4 | −2.55 | 167.02143 | [M − H]− | 1.24 × 10−3 | 5.14 | 0.65 |
9 | 0.88 | Nicotinic acid | C6H5NO2 | −0.23 | 123.03200 | [M + H]+ | 9.98 × 10−4 | −2.15 | 0.50 |
10 | 0.9 | Arginine | C6H14N4O2 | 0.21 | 174.11171 | [M + H]+ | 3.22 × 10−02 | −2.63 | 0.48 |
11 | 1.11 | 7-Methylguanine | C6H7N5O | 0.91 | 165.06521 | [M + H]+ | 6.99 × 10−4 | 3.02 | 0.35 |
12 | 1.11 | Acetyl-carnitine | C9H17NO4 | 0.38 | 203.11584 | [M + H]+ | 1.05 × 10−4 | 3.03 | 0.58 |
13 | 1.17 | Prolylleucine | C11H20N2O3 | 0.34 | 228.14747 | [M + H]+ | 6.18×10−4 | 1.79 | 0.45 |
14 | 1.19 | 3-Methyladenine | C6H7N5 | 0.01 | 149.07015 | [M + H]+ | 3.39 × 10−4 | 4.06 | 0.33 |
15 | 1.2 | Acrylic acid | C3H4O2 | −3.00 | 72.02091 | [M − H]− | 6.63 × 10−6 | 1.73 | 0.52 |
16 | 1.27 | 3-Butene-1,2,3-tricarboxylic acid | C7H8O6 | −2.26 | 188.03166 | [M − H]− | 1.59 × 10−6 | 3.24 | 1.22 |
17 | 1.29 | Proline | C5H9NO2 | −0.93 | 115.06322 | [M + H]+ | 5.07 × 10−4 | 1.56 | 0.50 |
18 | 1.33 | 2′-Deoxyadenosine | C10H13N5O3 | 0.14 | 251.10187 | [M + H]+ | 2.93 × 10−4 | −3.22 | 0.38 |
19 | 1.42 | 3-Carboxy-4-hydroxyphenyl-β-D-glucopyranoside | C13H16O9 | −1.51 | 316.07895 | [M − H]− | 4.65 × 10−3 | −4.47 | 0.59 |
20 | 1.45 | Isoleucine | C6H13NO2 | −0.67 | 131.09454 | [M + H]+ | 9.85 × 10−4 | −2.52 | 4.57 |
21 | 1.51 | Gallic acid | C7H6O5 | −2.65 | 170.02107 | [M − H]− | 1.48 × 10−4 | 3.57 | 0.84 |
22 | 1.58 | Citric acid | C6H8O7 | −2.28 | 192.02656 | [M − H]− | 1.24 × 10−2 | 1.39 | 2.23 |
23 | 1.84 | Propionylcarnitine | C10H19NO4 | 0.01 | 217.13141 | [M + H]+ | 1.96 × 10−5 | 3.34 | 0.37 |
24 | 2 | Glutaric acid | C5H8O4 | −1.44 | 132.04207 | [M + H − H2O]+ | 3.02 × 10−5 | −1.77 | 0.28 |
25 | 2.08 | 3-Hydroxy-3-(methoxycarbonyl) pentanedioic acid | C7H10O7 | −2.35 | 206.04217 | [M − H]− | 9.86 × 10−3 | 2.71 | 0.43 |
26 | 2.39 | N6-Me-Adenosine | C11H15N5O4 | 0.51 | 281.11255 | [M + H]+ | 1.06 × 10−4 | −2.19 | 0.16 |
27 | 2.4 | Kynurenine | C10H12N2O3 | 0.88 | 208.08498 | [M + H]+ | 6.57 × 10−4 | −4.28 | 0.51 |
28 | 2.44 | Unknown 1 | C18H26O11 | −2.07 | 418.14665 | [M + FA − H]− | 5.47 × 10−4 | −1.68 | 0.42 |
29 | 2.45 | Methylimidazoleacetic acid | C6H8N2O2 | 0.13 | 140.05860 | [M + H]+ | 2.99 × 10−2 | 4.23 | 0.34 |
30 | 2.52 | Methylsuccinic acid | C5H8O4 | −2.01 | 132.04199 | [M − H]− | 4.54 × 10−2 | 1.12 | 0.80 |
31 | 2.65 | Unknown 2 | C11H15N5O3S | −0.35 | 297.08946 | [M + H]+ | 1.34 × 10−6 | 3.58 | 0.50 |
32 | 2.66 | Adipic acid | C6H10O4 | −1.69 | 146.05766 | [M − H]− | 8.98 × 10−6 | 1.75 | 0.75 |
33 | 2.69 | Unknown 3 | C17H34N4O4 | −0.26 | 358.25791 | [M + 2H]+ | 1.57 × 10−4 | 4.4 | 0.22 |
34 | 2.79 | Unknown 4 | C18H36N4O4 | −0.32 | 372.27354 | [M + 2H]+ | 1.70 × 10−6 | 3.93 | 0.31 |
35 | 2.8 | Sorbic acid | C6H8O2 | −0.88 | 112.05233 | [M + H]+ | 1.60 × 10−4 | 2.59 | 0.29 |
36 | 2.83 | 3-Hydroxybenzoic acid | C7H6O3 | −1.95 | 138.03142 | [M − H]− | 5.32 × 10−3 | −2.58 | 1.10 |
37 | 2.85 | 2-Naphthylamine | C10H9N | −1.62 | 143.07327 | [M + H]+ | 1.06 × 10−3 | −2.81 | 0.15 |
38 | 2.86 | 7-hydroxy-6-methoxy-2H-chromen-2-one | C10H8O4 | −0.04 | 192.04225 | [M + H]+ | 1.48 × 10−6 | 4.45 | 0.21 |
39 | 2.87 | 3-(2,5-Dihydroxyphenyl)-2-propenoic acid | C9H8O4 | −2.21 | 180.04186 | [M − H]− | 5.10 × 10−4 | −2.76 | 1.10 |
40 | 2.88 | 3-Hydroxy-3,5,5-trimethyl-4-(3-oxo-1-buten-1-ylidene) cyclohexyl β-D-glucopyranoside | C19H30O8 | −0.17 | 386.19400 | [M + H]+ | 2.93 × 10−5 | −4.91 | 0.30 |
41 | 2.92 | Unknown 5 | C15H22O5 | −1.87 | 282.14620 | [M − H]− | 7.21 × 10−3 | 1.25 | 0.28 |
42 | 2.97 | Tryptophan | C11H12N2O2 | −2.06 | 204.08946 | [M − H]− | 4.44 × 10−4 | 2.28 | 0.32 |
43 | 3 | 4-Acetyl-4-phenylpiperidine | C13H17NO | 0.29 | 203.13107 | [M + H]+ | 1.35 × 10−4 | 4.33 | 1.11 |
44 | 3.01 | N-Acetyl-leucine | C8H15NO3 | −1.62 | 173.10491 | [M − H]− | 4.77 × 10−3 | −1.82 | 0.57 |
45 | 3.02 | 7,7-dimethyl-3-spiro (4,4,-dimethyl-2,6-dioxocyclohexyl)-1,2,3,4,5,6,7,8-octahydro-5-quinolinone | C18H25NO3 | 0.25 | 303.18352 | [M + H]+ | 4.22 × 10−4 | 3.13 | 0.19 |
46 | 3.02 | Unknown 6 | C18H30O10 | −2.88 | 406.18273 | [M − H]− | 1.02 × 10−7 | −2.50 | 0.53 |
47 | 3.04 | Trifolin | C21H20O11 | −1.75 | 448.09978 | [M − H]− | 6.33 × 10−8 | −1.06 | 0.69 |
48 | 3.05 | 4-Hydroxybenzaldehyde | C7H6O2 | −1.89 | 122.03655 | [M − H]− | 3.83 × 10−4 | −1.44 | 0.64 |
49 | 3.06 | 4-[4-(4-Hydroxy-3-methoxyphenyl) tetrahydro-1H,3H-furo [3,4-c] furan-1-yl]-2-methoxyphenyl hexopyranoside | C26H32O11 | −1.78 | 520.19353 | [M + FA − H]− | 1.34 × 10−3 | −5.27 | 0.85 |
50 | 3.06 | Suberic acid | C8H14O4 | −2.34 | 174.08880 | [M − H]− | 2.77 × 10−6 | −2.46 | 1.60 |
51 | 3.1 | 2-(acetylamino)-3-(1H-indol-3-yl) propanoic acid | C13H14N2O3 | −1.78 | 246.10000 | [M − H]− | 3.65 × 10−4 | 3.69 | 0.34 |
52 | 3.1 | Phenylalanine | C9H11NO2 | −0.33 | 165.07892 | [M + H]+ | 3.58 × 10−3 | −3.24 | 0.34 |
53 | 3.25 | 3-amino-2-phenyl-2H-pyrazolo [4,3-c] pyridine-4,6-diol | C12H10N4O2 | 0.16 | 242.08042 | [M + H]+ | 4.78 × 10−6 | 5.55 | 0.68 |
54 | 3.33 | 2-(6-Hydroxyhexyl)-3-methylenesuccinic acid | C11H18O5 | −2 | 230.11496 | [M − H]− | 8.89 × 10−6 | −4.27 | 0.64 |
55 | 3.42 | Indole-3-acetic acid | C10H9NO2 | −0.45 | 175.06325 | [M + H]+ | 1.11 × 10−3 | −1.28 | 0.14 |
56 | 3.5 | 1-(5-chloro-2-methoxyphenyl)-3-phenyl-2,5-dihydro-1H-pyrrole-2,5-dione | C17H12ClNO3 | −0.04 | 313.05056 | [M + NH4]+ | 2.44 × 10−4 | 5.19 | 0.13 |
57 | 3.63 | 7-methoxy-1-methyl-3H,4H,9H-pyrido [3,4-b] indole | C13H14N2O | 0.12 | 214.11064 | [M + H]+ | 9.60 × 10−7 | −6.69 | 0.22 |
58 | 3.63 | 3-Hydroxy-Caprylic acid | C8H16O3 | −2.33 | 160.10957 | [M − H]− | 1.38 × 10−3 | −1.59 | 0.26 |
59 | 3.63 | Phenmetrazine | C11H15NO | −0.4 | 177.11529 | [M + H]+ | 1.70 × 10−4 | 3.44 | 0.39 |
60 | 3.66 | 5-[4-(3-hydroxy-4-methoxyphenyl)-hexahydrofuro [3,4-c] furan-1-yl]-2-methoxyphenol | C20H22O6 | −0.2 | 358.14157 | [M + H − H2O]+ | 3.52 × 10−4 | 3.27 | 0.16 |
61 | 3.84 | Corchorifatty acid F | C18H32O5 | −1.89 | 328.22435 | [M − H]− | 1.36 × 10−6 | −1.09 | 3.20 |
62 | 3.92 | 6-(7-methyloctyl)-1H,3H,4H,6H-furo [3,4-c] furan-1-one | C15H24O3 | −0.04 | 252.17254 | [M + H − H2O]+ | 1.42 × 10−4 | −1.24 | 0.19 |
63 | 4.63 | 6,8-Dihydroxy-9,12-octadecadienoic acid | C18H32O4 | −1.58 | 312.22957 | [M − H]− | 2.29 × 10−4 | −1.26 | 0.61 |
64 | 5 | Unknown 7 | C13H20O3 | 0.21 | 224.14129 | [M + H]+ | 3.48 × 10−6 | −2.29 | 0.18 |
65 | 5.79 | 13-Hydroxy-9,11-octadecadienoic acid | C18H30O3 | −2.25 | 294.21883 | [M − H]− | 8.12 × 10−8 | −1.74 | 2.20 |
66 | 5.79 | 1-Linoleoyl glycerol | C21H38O4 | −1.13 | 354.27661 | [M + H − H2O]+ | 3.60 × 10−3 | 3.23 | 0.19 |
67 | 6.23 | Docosapentaenoic acid | C22H34O2 | 0.19 | 330.25594 | [M + H]+ | 8.59 × 10−4 | −4.37 | 0.16 |
68 | 6.39 | Sphingosine (d18:1) | C18H37NO2 | −0.1 | 299.28240 | [M + H]+ | 1.19 × 10−3 | 4.57 | 0.23 |
69 | 6.41 | 10-Hydroxy-2-decenoic acid | C10H18O3 | −3.37 | 186.12497 | [M − H]− | 1.79 × 10−4 | 5.57 | 0.63 |
70 | 6.42 | 17α-Methyl-androstan-3-hydroxyimine-17β-ol | C20H33NO2 | −4.67 | 319.24964 | [M + H]+ | 1.01 × 10−2 | 3.12 | 0.33 |
71 | 6.66 | 12(13)-DiHOME | C18H34O4 | −1 | 314.24540 | [M − H]− | 1.80 × 10−5 | −1.86 | 0.56 |
72 | 6.73 | Arachidonic acid | C20H32O2 | 0.38 | 304.24035 | [M + H]+ | 3.03 × 10−4 | −5.26 | 0.22 |
73 | 6.86 | Ergothioneine | C9H15N3O2S | −0.02 | 229.08849 | [M + H]+ | 3.51 × 10−4 | 5.77 | 0.25 |
74 | 6.92 | 3-Hydroxy myristic acid | C14H28O3 | −2.67 | 244.20319 | [M − H]− | 4.99 × 10−4 | 3.14 | 1.34 |
75 | 6.99 | 5-[-5-(Hydroxymethyl)-1,2,4a-trimethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenyl]-3-methylpentanoic acid | C20H34O3 | −2.24 | 322.25007 | [M − H]− | 1.87 × 10−3 | −1.48 | 0.59 |
76 | 7.19 | 6-Hydroxy-4-Octadecenoic Acid | C18H34O3 | −2.5 | 298.25005 | [M − H]− | 7.17 × 10−3 | −1.34 | 3.21 |
77 | 7.32 | 9,11-Conjugated linoleic acid | C18H32O2 | −2.44 | 280.23955 | [M − H]− | 9.30 × 10−6 | 1.47 | 0.54 |
78 | 7.39 | 2-Hydroxymyristic acid | C14H28O3 | −2.45 | 244.20325 | [M − H]− | 5.00 × 10−3 | 5.96 | 0.86 |
79 | 7.46 | Labdanolic acid | C20H36O3 | −2.04 | 324.26578 | [M − H]− | 5.17 × 10−4 | −2.78 | 0.83 |
80 | 7.53 | Ethyl palmitoleate | C18H34O2 | −0.63 | 282.25570 | [M + H]+ | 2.21 × 10−3 | 6.84 | 2.98 |
81 | 7.53 | Oleoyl ethanolamide | C20H39NO2 | −0.05 | 325.29806 | [M + H]+ | 2.77 × 10−3 | −4.39 | 0.67 |
82 | 8.03 | Dihomo-γ-Linolenoyl Ethanolamide | C22H39NO2 | 0.02 | 349.29809 | [M + H]+ | 6.48 × 10−4 | −4.51 | 0.51 |
83 | 8.09 | Unknown 8 | C20H35NO | −0.27 | 305.27178 | [M + H]+ | 1.25 × 10−3 | −6.69 | 1.01 |
84 | 8.19 | Eicosapentaenoic acid | C20H30O2 | −2.19 | 302.22392 | [M − H]− | 4.53 × 10−4 | −2.55 | 1.62 |
85 | 8.19 | Linolenic acid ethyl ester | C20H34O2 | −0.51 | 306.25573 | [M + H]+ | 1.55 × 10−4 | 3.66 | 0.19 |
86 | 8.22 | Palmitoyl ethanolamide | C18H37NO2 | −0.57 | 299.28226 | [M + H]+ | 6.96 × 10−4 | −3.32 | 3.17 |
87 | 8.25 | 9-Hydroxy-10,11-octadecadienoic acid | C18H32O3 | −2.8 | 296.23432 | [M − H]− | 4.96 × 10−5 | −1.47 | 0.87 |
88 | 8.54 | Tomatidine | C27H45NO2 | −0.47 | 415.34483 | [M + H]+ | 3.21 × 10−3 | 4.82 | 0.27 |
89 | 8.85 | Palmitoleic acid | C16H30O2 | −2.54 | 254.22393 | [M − H]− | 4.29 × 10−4 | −2.02 | 0.35 |
90 | 8.88 | Oleamide | C18H35NO | −0.21 | 281.27181 | [M + H]+ | 8.79 × 10−7 | 1.05 | 5.08 |
91 | 8.92 | Octadecenoic acid methyl ester | C19H36O2 | 0.06 | 296.27155 | [M + H]+ | 3.04 × 10−3 | 4.83 | 0.67 |
92 | 9.25 | Stearoyl ethanolamide | C20H41NO2 | −0.41 | 327.31359 | [M + H]+ | 4.00 × 10−4 | −5.13 | 2.51 |
93 | 9.5 | 12-Oxo phytodienoic acid | C18H28O3 | −0.41 | 292.20372 | [M + H]+ | 7.96 × 10−6 | −1.2 | 0.20 |
94 | 10.02 | Cholecalciferol | C27H44O | 0 | 384.33922 | [M + H − H2O]+ | 1.46 × 10−5 | −2.07 | 0.36 |
95 | 10.05 | 10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylic acid | C30H46O4 | −4.03 | 470.33771 | [M + H]+ | 1.92 × 10−5 | 3.81 | 0.18 |
96 | 10.19 | Unknown 9 | C30H48O2 | −0.37 | 440.36527 | [M + H]+ | 2.77 × 10−3 | −2.29 | 0.17 |
97 | 10.41 | Maslinic acid | C30H48O4 | −0.3 | 472.35512 | [M + NH4]+ | 2.08 × 10−4 | 4.73 | 0.22 |
98 | 10.46 | Methanandamide | C23H39NO2 | −0.09 | 361.29805 | [M + H]+ | 1.06 × 10−3 | −3.28 | 0.14 |
99 | 12.13 | 17-Hydroxykauran-19-oic acid | C20H32O3 | −0.18 | 320.23509 | [M + H]+ | 1.20 × 10−3 | 3.59 | 0.42 |
100 | 12.43 | Octadecatrienoic acid methyl ester | C19H32O2 | −0.08 | 292.24021 | [M + H]+ | 8.35 × 10−3 | 1.69 | 0.09 |
101 | 12.56 | Cholest-4-en-3-one | C27H44O | −0.51 | 384.33902 | [M + H]+ | 7.52 × 10−5 | −2.02 | 0.94 |
Classification | UHPLC-MS | |||
---|---|---|---|---|
Compound Name | RT (min) | m/z | Mode +/− | |
Amino acids, amino acid analogs and amino acid derivatives | Proline (F2-1) | 1.06 | 116.07 | + |
Threo-3-Phenylserine (F2-2) | 8.27 | 182.08 | + | |
Fatty acids and fatty acid esters | Chorifatty acid F (F2-3) | 9.10 | 327.22 | − |
9,12,13-Trihydroxy-15-octadecenoic acid (F2-4) | 9.54 | 329.23 | − | |
9,10-Dihydroxy-12-octadecenoic acid (F2-5) | 12.15 | 313.24 | − | |
HOTrE (F2-6) | 12.78 | 293.21 | − | |
HpODE (F2-7) | 13.32 | 311.22 | − | |
1,2-dihydroxyheptadec-16-yn-4-yl acetate (F2-8) | 14.28 | 349.23 | − | |
Phenolic and flavonoid compounds | Salicylic acid (F2-9) | 2.53 | 137.02 | − |
α-Cyano-3-hydroxycinnamic acid (F2-10) | 7.8 0 | 188.04 | − | |
Quercetin (F2-11) | 9.55 | 301.04 | − | |
Amide compounds | Stearamide (F2-12) | 14.19 | 284.29 | + |
Oleamide (F2-13) | 15.50 | 282.28 | + | |
Ketone compounds | 3-(1-Hydroxyethyl)-2,3,6,7,8,8a-hexahydropyrrolo [1,2-a] pyrazine-1,4-dione (F2-14) | 4.34 | 199.11 | + |
7-Hydroxy-6-methoxy-2H-chromen-2-one (F2-15) | 6.74 | 193.05 | + | |
4-Hydroxy-6-[2-(2-methyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl) ethyl] oxan-2-one (F2-16) | 13.21 | 275.20 | + | |
1-(2,3-dihydro-2,3-dimethyl-1H-pyrrolo [3,4-b] quinolin-1-yl)-3,5-dimethyl-2,6-dimethoxyphenyl)-3-(2,4-dimethoxyphenyl) propan-1-one (F2-17) | 13.92 | 611.29 | + | |
1′-Ethylspiro [6,7-dihydro-2H-furo [2,3-f] indole-3,4′-piperidine]-5-yl)-[4-[2-methyl-4-(5-methyl-1,3,4-oxadiazol-2-yl) phenyl] phenyl] methanone (F2-18) | 14.54 | 535.27 | + | |
Other compounds | Senkyunolide H (F2-19) | 9.34 | 247.09 | + |
Unknown (C18H32O4) (F2-20) | 12.27 | 335.22 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Tang, J.; Tu, J.; Guo, X. Solvent Fractionation and LC-MS Profiling, Antioxidant Properties, and α-Glucosidase Inhibitory Activity of Bombyx batryticatus. Molecules 2025, 30, 1021. https://doi.org/10.3390/molecules30051021
Liu G, Tang J, Tu J, Guo X. Solvent Fractionation and LC-MS Profiling, Antioxidant Properties, and α-Glucosidase Inhibitory Activity of Bombyx batryticatus. Molecules. 2025; 30(5):1021. https://doi.org/10.3390/molecules30051021
Chicago/Turabian StyleLiu, Guanhui, Jingni Tang, Jie Tu, and Xijie Guo. 2025. "Solvent Fractionation and LC-MS Profiling, Antioxidant Properties, and α-Glucosidase Inhibitory Activity of Bombyx batryticatus" Molecules 30, no. 5: 1021. https://doi.org/10.3390/molecules30051021
APA StyleLiu, G., Tang, J., Tu, J., & Guo, X. (2025). Solvent Fractionation and LC-MS Profiling, Antioxidant Properties, and α-Glucosidase Inhibitory Activity of Bombyx batryticatus. Molecules, 30(5), 1021. https://doi.org/10.3390/molecules30051021