Design, Synthesis, and Cytotoxicity Evaluation of Novel Indolin-2-One Based Molecules on Hepatocellular Carcinoma HepG2 Cells as Protein Kinase Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis of the Target Compounds
2.2. Biological Screening
2.2.1. In Vitro Cancer Cell Growth Inhibition
2.2.2. DNA-Flow Cytometry
2.2.3. Annexin-V-FITC/PI Assay
2.2.4. Kinase Enzyme Inhibitory Assays
2.3. ELISA Immunoassay
2.4. Molecular Docking Investigations
2.4.1. Molecular Docking with the CDK-2 Binding Site
2.4.2. Molecular Docking with the Active Site of VEGFR-2
3. Experimental
3.1. Materials and Instrumentation
3.1.1. Chemical Synthesis of Compounds 7–13 and 18–24
3.1.2. General Procedure for the Synthesis of 6-(5-Substituted-2-oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-ones (7–13)
6-(2-Oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-one (7)
6-(5-Flouro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-one (8)
6-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-one (9)
6-(5-Bromo-2-oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-one (10)
6-(5-Nitro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-one (11)
6-(5-Methyl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-one (12)
6-(5-Methoxy-2-oxo-1,2-dihydro-indol-3-ylideneamino)-3H-quinazolin-4-one (13)
3.1.3. Synthesis of the Intermediates 2-(4-Nitro-phenyl)-3H-quinazolin-4-one (16) and 2-(4-Aminophenyl)quinazolin-4(3H)-one (17)
3.1.4. General Procedure for the Synthesis of 2-[4-(5-Substituted-2-oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (18–24)
2-[4-(2-Oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (18)
2-[4-(5-Flouro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (19)
2-[4-(5-Chloro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (20)
2-[4-(5-Bromo-2-oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (21)
2-[4-(5-Nitro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (22)
2-[4-(5-Methyl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (23)
2-[4-(5-Methoxy-2-oxo-1,2-dihydro-indol-3-ylideneamino)-phenyl]-3H-quinazolin-4-one (24)
3.2. Biological Evaluation
3.2.1. In Vitro Cancer Cell Growth Inhibition
Materials
Methodology
3.2.2. Kinase Enzyme Inhibitory Assays
Materials
Methodology
3.2.3. DNA Flow Cytometry Analysis
3.2.4. Annexin Staining Apoptosis Analysis
3.2.5. ELISA Assays for Cell Death Modulators and Apoptotic Biomarkers
3.3. Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular Carcinoma (HCC): Epidemiology, Etiology and Molecular Classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Tomuleasa, C.; Tigu, A.-B.; Munteanu, R.; Moldovan, C.-S.; Kegyes, D.; Onaciu, A.; Gulei, D.; Ghiaur, G.; Einsele, H.; Croce, C.M. Therapeutic Advances of Targeting Receptor Tyrosine Kinases in Cancer. Signal Transduct. Target. Ther. 2024, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Wang, L.; Bernards, R. Rational Combinations of Targeted Cancer Therapies: Background, Advances and Challenges. Nat. Rev. Drug Discov. 2023, 22, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Wei, C.; Wang, J.; Xu, Y.; Bai, G.; Yao, Q.; Zhang, L.; Chen, Y. Anticancer Potential of Indirubins in Medicinal Chemistry: Biological Activity, Structural Modification, and Structure-Activity Relationship. Eur. J. Med. Chem. 2021, 223, 113652. [Google Scholar] [CrossRef]
- Kwon, H.J.; Lee, J.H.; Yoo, J.M.; Nguyen, H.; An, H.; Chang, S.E.; Song, Y. Semaxanib, a VEGF Inhibitor, Suppresses Melanogenesis by Modulating CRTC3 Independently of VEGF Signaling. J. Dermatol. Sci. 2024, 115, 121–129. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Hayallah, A.M.; Bukhari, S.N.A.; Musa, A.; Elmowafy, M.; Abdel-Rahman, H.M.; Abd El-Gaber, M.K. Design, Synthesis, Molecular Modeling, and Anticancer Evaluation of New VEGFR-2 Inhibitors Based on the Indolin-2-One Scaffold. Pharmaceuticals 2022, 15, 1416. [Google Scholar] [CrossRef]
- Lane, M.E.; Yu, B.; Rice, A.; Lipson, K.E.; Liang, C.; Sun, L.; Tang, C.; McMahon, G.; Pestell, R.G.; Wadler, S. A Novel Cdk2-Selective Inhibitor, SU9516, Induces Apoptosis in Colon Carcinoma Cells1. Cancer Res. 2001, 61, 6170–6177. [Google Scholar]
- Abdelmalak, M.; Singh, R.; Anwer, M.; Ivanchenko, P.; Randhawa, A.; Ahmed, M.; Ashton, A.W.; Du, Y.; Jiao, X.; Pestell, R. The Renaissance of CDK Inhibitors in Breast Cancer Therapy: An Update on Clinical Trials and Therapy Resistance. Cancers 2022, 14, 5388. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Huang, W.; Rao, X.; Lai, Y. Pharmacological Properties of Indirubin and Its Derivatives. Biomed. Pharmacother. 2022, 151, 113112. [Google Scholar] [CrossRef]
- Xie, Y.-H.; Chen, Y.-X.; Fang, J.-Y. Comprehensive Review of Targeted Therapy for Colorectal Cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef]
- Elkaeed, E.B.; Taghour, M.S.; Mahdy, H.A.; Eldehna, W.M.; El-Deeb, N.M.; Kenawy, A.M.; Alsfouk, B.A.; Dahab, M.A.; Metwaly, A.M.; Eissa, I.H.; et al. New Quinoline and Isatin Derivatives as Apoptotic VEGFR-2 Inhibitors: Design, Synthesis, Anti-Proliferative Activity, Docking, ADMET, Toxicity, and MD Simulation Studies. J. Enzyme Inhib. Med. Chem. 2022, 37, 2191–2205. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Inukai, T.; Fang, L.; Golkowski, M.; Maly, D.J. Targeting Dynamic ATP-Binding Site Features Allows Discrimination between Highly Homologous Protein Kinases. ACS Chem. Biol. 2019, 14, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Shaldam, M.A.; Almahli, H.; Angeli, A.; Badi, R.M.; Khaleel, E.F.; Zain-Alabdeen, A.I.; Elsayed, Z.M.; Elkaeed, E.B.; Salem, R.; Supuran, C.T.; et al. Discovery of Sulfonamide-Tethered Isatin Derivatives as Novel Anticancer Agents and VEGFR-2 Inhibitors. J. Enzyme Inhib. Med. Chem. 2023, 38, 2203389. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.A.; Ali, A.M.; El-Sayed, W.M.; Quayed, W.S.; Farag, H.H.A.; Aboul-Fadl, T. Design and Synthesis of Novel Isatin-Based Derivatives Targeting Cell Cycle Checkpoint Pathways as Potential Anticancer Agents. Bioorg. Chem. 2020, 105, 104366. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Zhou, M.; Zeng, C. Recent Advances in Isatin Hybrids as Potential Anticancer Agents. Arch. Der Pharm. 2020, 353, 1900367. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021, 11, 894. [Google Scholar] [CrossRef]
- Kumar, D.; Maruthi Kumar, N.; Ghosh, S.; Shah, K. Novel Bis(Indolyl)Hydrazide–Hydrazones as Potent Cytotoxic Agents. Bioorg. Med. Chem. Lett. 2012, 22, 212–215. [Google Scholar] [CrossRef]
- Ghoneim, M.M.; Abdelgawad, M.A.; Elkanzi, N.A.A.; Parambi, D.G.T.; Alsalahat, I.; Farouk, A.; Bakr, R.B. A Literature Review on Pharmacological Aspects, Docking Studies, and Synthetic Approaches of Quinazoline and Quinazolinone Derivatives. Arch. Der Pharm. 2024, 357, 2400057. [Google Scholar] [CrossRef]
- Shao, J.; Xu, Z.; Peng, X.; Chen, M.; Zhu, Y.; Xu, L.; Zhu, H.; Yang, B.; Luo, P.; He, Q. Gefitinib Synergizes with Irinotecan to Suppress Hepatocellular Carcinoma via Antagonizing Rad51-Mediated DNA-Repair. PLoS ONE 2016, 11, e0146968. [Google Scholar] [CrossRef]
- McGill, M.R.; Kaufmann, Y.; LoBianco, F.V.; Schleiff, M.A.; Aykin-Burns, N.; Miller, G.P. The Role of Cytochrome P450 3A4-Mediated Metabolism in Sorafenib and Lapatinib Hepatotoxicity. Livers 2023, 3, 310–321. [Google Scholar] [CrossRef]
- Aoki, K.; Koseki, J.; Takeda, S.; Aburada, M.; Miyamoto, K. Convenient Synthetic Method for 3-(3-Substituted Indol-2-Yl)Quinoxalin-2-Ones as VEGF Inhibitor. Chem. Pharm. Bull. 2007, 55, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-C.; Kim, J.; Ban, S.-H.; Jeong, S.-Y.; Choi, S.-J.; Lee, J. Indirubin-3′-Oxime Derivatives as Potent Cyclin Dependent Kinase Inhibitors. U.S. Patent No. 8,859,783, 14 October 2014. [Google Scholar]
- Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and Anticancer Activities of Isatin and Its Derivatives: A Comprehensive Review from 2000-2008. Anti-Cancer Agents Med. Chem. 2009, 9, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Nigg, E.A. Cyclin-dependent Protein Kinases: Key Regulators of the Eukaryotic Cell Cycle. BioEssays 1995, 17, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Husdal, A.; Bukholm, G.; Bukholm, I.R.K. The Prognostic Value and Overexpression of Cyclin A Is Correlated with Gene Amplification of Both Cyclin A and Cyclin E in Breast Cancer Patient. Cell Oncol. 2006, 28, 107–116. [Google Scholar] [CrossRef]
- Bisteau, X.; Caldez, M.J.; Kaldis, P. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations. Cancers 2014, 6, 79–111. [Google Scholar] [CrossRef]
- Hu, W.; Kavanagh, J.J. Anticancer Therapy Targeting the Apoptotic Pathway. Lancet Oncol. 2003, 4, 721–729. [Google Scholar] [CrossRef]
- Juvale, K.; Gallus, J.; Wiese, M. Investigation of Quinazolines as Inhibitors of Breast Cancer Resistance Protein (ABCG2). Bioorg. Med. Chem. 2013, 21, 7858–7873. [Google Scholar] [CrossRef]
- He, X.; Xiang, H.; Zong, X.; Yan, X.; Yu, Y.; Liu, G.; Zou, D.; Yang, H. CDK2-AP1 inhibits growth of breast cancer cells by regulating cell cycle and increasing docetaxel sensitivity in vivo and in vitro. Cancer Cell Int. 2014, 14, 130. [Google Scholar] [CrossRef]
- Marques, C.S.; Brandão, P.; Burke, A.J. Targeting Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2): Latest Insights on Synthetic Strategies. Molecules 2024, 29, 5341. [Google Scholar] [CrossRef]
- Cui, H.; Bashar, M.A.E.; Rady, I.; El-Naggar, H.A.; Abd El-Maoula, L.M.; Mehany, A.B.M. Antiproliferative Activity, Proapoptotic Effect, and Cell Cycle Arrest in Human Cancer Cells of Some Marine Natural Product Extract. Oxidative Med. Cell. Longev. 2020, 2020, 7948705. [Google Scholar] [CrossRef]
- Comsa, S.; Cimpean, A.N.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and Extrinsic Pathways of Apoptosis: Role in Cancer Development and Prognosis. Adv. Protein Chem. Struct. Biol. 2021, 125, 73–120. [Google Scholar] [CrossRef] [PubMed]
- Molecular Operating Environment (MOE); 2024.0601; Chemical Computing Group ULC: Montreal, QC, Canada, 2024.
- Davies, T.G.; Tunnah, P.; Meijer, L.; Marko, D.; Eisenbrand, G.; Endicott, J.A.; Noble, M.E. Inhibitor Binding to Active and Inactive CDK2: The Crystal Structure of CDK2-Cyclin A/Indirubin-5-Sulphonate. Structure 2001, 9, 389–397. [Google Scholar] [CrossRef] [PubMed]
- McTigue, M.; Murray, B.W.; Chen, J.H.; Deng, Y.-L.; Solowiej, J.; Kania, R.S. Molecular Conformations, Interactions, and Properties Associated with Drug Efficiency and Clinical Performance among VEGFR TK Inhibitors. Proc. Natl. Acad. Sci. USA 2012, 109, 18281–18289. [Google Scholar] [CrossRef]
- Ihmaid, S.K.; Alraqa, S.Y.; Aouad, M.R.; Aljuhani, A.; Elbadawy, H.M.; Salama, S.A.; Rezki, N.; Ahmed, H.E.A. Design of Molecular Hybrids of Phthalimide-Triazole Agents with Potent Selective MCF-7/HepG2 Cytotoxicity: Synthesis, EGFR Inhibitory Effect, and Metabolic Stability. Bioorg. Chem. 2021, 111, 104835. [Google Scholar] [CrossRef]
- Al-Salem, H.S.; Arifuzzaman, M.; Issa, I.S.; Rahman, A.F.M.M. Isatin-Hydrazones with Multiple Receptor Tyrosine Kinases (RTKs) Inhibitory Activity and In-Silico Binding Mechanism. Appl. Sci. 2021, 11, 3746. [Google Scholar] [CrossRef]
- Badroon, N.A.; Abdul Majid, N.; Alshawsh, M.A. Antiproliferative and Apoptotic Effects of Cardamonin against Hepatocellular Carcinoma HepG2 Cells. Nutrients 2020, 12, 1757. [Google Scholar] [CrossRef]
- Fayed, E.A.; Gohar, N.A.; Farrag, A.M.; Ammar, Y.A. Upregulation of BAX and Caspase-3, as Well as Downregulation of Bcl-2 during Treatment with Indeno[1,2-b]Quinoxalin Derivatives, Mediated Apoptosis in Human Cancer Cells. Arch. Der Pharm. 2022, 355, e2100454. [Google Scholar] [CrossRef]
Comp No. | X | IC50 (µM) a | IC50 (nM) a | ||||
---|---|---|---|---|---|---|---|
HepG2 b | MCF-7 c | VEGFR-2 d | EGFR e | CDK-2 f | CDK-4 g | ||
7 | -H | 10.75 ± 0.92 | 21.86 ± 1.83 | ND | ND | ND | ND |
8 | -F | 7.54 ± 0.53 | 52.83 ± 3.21 | ND | ND | ND | ND |
9 | -Cl | 2.53 ± 0.11 | 7.54 ± 0.71 | 56.74 ± 4.3 | 87.48 ± 6.71 | 9.39 ± 0.51 | 36.39 ± 4.52 |
10 | -Br | 28.11 ± 2.08 | >100 | ND | ND | ND | ND |
11 | -NO2 | 20.87 ± 1.54 | 72.39 ± 6.51 | ND | ND | ND | ND |
12 | -CH3 | 31.89 ± 2.12 | 46.17 ± 2.47 | ND | ND | ND | ND |
13 | -OCH3 | 18.86 ± 1.05 | >100 | ND | ND | ND | ND |
18 | -H | 82.42 ± 7.17 | >100 | ND | ND | ND | ND |
19 | -F | 28.37 ± 1.26 | 40.83 ± 3.24 | ND | ND | ND | ND |
20 | -Cl | 3.08 ± 0.35 | 5.28 ± 0.22 | 14.31 ± 2.70 | 32.65 ± 1.61 | 225.32 ± 12.56 | 244.32 ± 12.21 |
21 | -Br | 23.71 ± 0.74 | 33.56 ± 2.33 | ND | ND | ND | ND |
22 | -NO2 | 35.82 ± 2.0 | 14.94 ± 0.66 | ND | ND | ND | ND |
23 | -CH3 | 38.43 ± 2.71 | 15.35± 0.23 | ND | ND | ND | ND |
24 | -OCH3 | 32.71 ± 2.93 | 18.53 ± 0.96 | ND | ND | ND | ND |
Ind | -H | 6.92 ± 0.65 | 6.12 ± 0.35 | 126.42 ± 20 | 175.46 ± 18.33 | 45.60 ± 2.24 | 23.64 ± 2.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandeel, M.M.; AbdElhameid, M.K.; Adel, M.; Al-Shorbagy, M.Y.; Negmeldin, A.T. Design, Synthesis, and Cytotoxicity Evaluation of Novel Indolin-2-One Based Molecules on Hepatocellular Carcinoma HepG2 Cells as Protein Kinase Inhibitors. Molecules 2025, 30, 1105. https://doi.org/10.3390/molecules30051105
Kandeel MM, AbdElhameid MK, Adel M, Al-Shorbagy MY, Negmeldin AT. Design, Synthesis, and Cytotoxicity Evaluation of Novel Indolin-2-One Based Molecules on Hepatocellular Carcinoma HepG2 Cells as Protein Kinase Inhibitors. Molecules. 2025; 30(5):1105. https://doi.org/10.3390/molecules30051105
Chicago/Turabian StyleKandeel, Manal M., Mohamed Kamal AbdElhameid, Mohamed Adel, Muhammad Y. Al-Shorbagy, and Ahmed T. Negmeldin. 2025. "Design, Synthesis, and Cytotoxicity Evaluation of Novel Indolin-2-One Based Molecules on Hepatocellular Carcinoma HepG2 Cells as Protein Kinase Inhibitors" Molecules 30, no. 5: 1105. https://doi.org/10.3390/molecules30051105
APA StyleKandeel, M. M., AbdElhameid, M. K., Adel, M., Al-Shorbagy, M. Y., & Negmeldin, A. T. (2025). Design, Synthesis, and Cytotoxicity Evaluation of Novel Indolin-2-One Based Molecules on Hepatocellular Carcinoma HepG2 Cells as Protein Kinase Inhibitors. Molecules, 30(5), 1105. https://doi.org/10.3390/molecules30051105