Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedure for Analysis
3.2. Evaluation of Performance of Temperature Sensitive Sensors
3.3. Measurement of LCST Value of Solution with Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Li, Y.; Cao, J.; Sun, G.; Shao, H.; Fu, X.; Meng, Y.; Meng, C.; Li, Y. A direct written strain-insensitive temperature sensor based on a multi-polygonal structure for human temperature monitoring. Nano Energy 2024, 131, 110199. [Google Scholar] [CrossRef]
- Repasky, E.A.; Evans, S.S.; Dewhirst, M.W. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol. Res. Immunol. Res. 2013, 1, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fang, Z.; Wei, D.; Liu, Y. Flexible pressure, humidity, and temperature sensors for human health monitoring. Adv. Healthc. Mater. 2024, 13, 2401532. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Xu, J.; Wang, H.; Wang, Z.; Yang, N.; Yang, F.; Shen, Q.; Xu, S. Non-Interventional and High-Precision temperature measurement biochips for Long-Term monitoring the temperature fluctuations of individual cells. Biosensors 2021, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, W.; Yin, J.; Fan, W.; Wang, Z.; Hu, K.; Mai, Y.; Luan, A.; Xu, B.; Jin, Q. A high-precision thermometry microfluidic chip for real-time monitoring of the physiological process of live tumour cells. Talanta 2021, 226, 122101. [Google Scholar] [CrossRef] [PubMed]
- Papagiannopoulos, A.; Pippa, N.; Demetzos, C.; Pispas, S.; Radulescu, A. Lamellarity and size distributions in mixed DPPC/amphiphilic poly(2-oxazoline) gradient copolymer vesicles and their temperature response. Chem. Phys. Lipids 2021, 234, 105008. [Google Scholar] [CrossRef]
- Liu, X.; Hou, J.; Ou, J.; Yan, M. Novel single emissive component Tridurylboron-TPU solid polymer ratiometric fluorescence thermometers. Small 2024, 20, 2308398. [Google Scholar] [CrossRef]
- Xue, K.; Huang, S.; Wu, K.; Sun, Z.; Fu, H.; Wang, C.; Wang, C.; Zhu, C. Ultrasensitive ratiometric fluorescent nanothermometer with reverse signal changes for intracellular temperature mapping. Anal. Chem. 2024, 96, 11026–11035. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; Wang, C.; Wang, J.; Lv, S.; Hao, B.; Zhu, C.; Tang, B.Z. A sensitive and reliable organic fluorescent nanothermometer for noninvasive temperature sensing. J. Am. Chem. Soc. 2021, 143, 14147–14157. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Zhou, H.; Yan, M.; Liu, C.; Guo, X.; Xie, J.; Li, S.; Yang, G. Ratiometric dual fluorescence tridurylboron thermometers with tunable measurement ranges and colors. Talanta 2020, 210, 120630. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Yang, X.; Qin, A.; Tang, B.Z. AIE polymers in sensing, imaging and theranostic applications. Mater. Chem. Front. 2021, 5, 4073–4088. [Google Scholar] [CrossRef]
- Odeh, F.; Adaileh, F.; Alshaer, W.; Nsairat, H.; Alqudah, D.A.; Jaber, A.M.; Al Bawab, A. Synthesis of Mono-Amino substituted γ-CD: Host–guest complexation and in vitro cytotoxicity investigation. Molecules 2022, 27, 1683. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Zhang, H.; Yao, C.; Cui, Q.; Luo, Y.; Li, L. U-Shaped conjugated Oligomer-Based micelles as a ratiometric fluorescent nanothermometer for diverse cellular applications. Adv. Opt. Mater. 2023, 11, 2300222. [Google Scholar] [CrossRef]
- Ajantha, J.; Yuvaraj, P.; Karuppusamy, M.; Easwaramoorthi, S. Single-Molecule White-Light-Emitting starburst Donor-Acceptor triphenylamine derivatives and their application as ratiometric luminescent molecular thermometers. Chem. A Eur. J. 2021, 27, 11319–11325. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Gong, Z.; Shao, J.; Zhong, Y. A Star-Shaped solvatofluorochromic Pyrene-Triarylamine derivative as a fluorescent thermometer over a wide temperature range. Chin. J. Chem. 2020, 38, 1515–1520. [Google Scholar] [CrossRef]
- Diaz-Rodriguez, R.M.; Gálico, D.A.; Chartrand, D.; Suturina, E.A.; Murugesu, M. Toward Opto-Structural correlation to investigate luminescence thermometry in an organometallic Eu(II) complex. J. Am. Chem. Soc. 2022, 144, 912–921. [Google Scholar] [CrossRef]
- Tcelykh, L.O.; Kozhevnikova, V.Y.; Goloveshkin, A.S.; Latipov, E.V.; Gordeeva, E.O.; Utochnikova, V.V. Sensing temperature with Tb-Eu-based luminescent thermometer: A novel approach to increase the sensitivity. Sens. Actuators A Phys. 2022, 345, 113787. [Google Scholar] [CrossRef]
- Sun, R.; Li, J.; Chen, J.; Xie, Y.; Sun, L. Energy migration layer modulated lanthanide luminescent nanoparticles toward multimode ratio fluorescence thermometers. Adv. Opt. Mater. 2024, 12, 2302880. [Google Scholar] [CrossRef]
- Duda, M.; Joshi, P.; Borodziuk, A.; Sobczak, K.; Sikora-Dobrowolska, B.; Maćkowski, S.; Dennis, A.M.; Kłopotowski, Ł. Multimodal temperature readout boosts the performance of CuInS2/ZnS quantum dot nanothermometers. ACS Appl. Mater. Inter. 2024, 16, 60008–60017. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.F.; Maria De Oliveira, J.; Silva, W.F.; Costa Soares, A.C.; Rocha, U.; Oliveira Dantas, N.; Alves Da Silva Filho, E.; Duzzioni, M.; Helmut Rulf Cofré, A.; Wagner De Castro, O.; et al. Supersensitive nanothermometer based on CdSe/CdSxSe1-x magic-sized quantum dots with in vivo low toxicity. Chem. Eng. Sci. 2022, 264, 118153. [Google Scholar] [CrossRef]
- Gong, M.; Li, Z.; Wang, Q.; Xiang, W.; Xia, T.; Zhao, D. Encapsulating Rhodamine B in the NbO-type metal-organic framework to construct dual-emitting ratiometric thermometer. J. Solid State Chem. 2022, 311, 123147. [Google Scholar] [CrossRef]
- Xia, T.; Cui, Y.; Yang, Y.; Qian, G. A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF. J. Mater. Chem. C 2017, 5, 5044–5047. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Liang, S.; Mei, M.; She, G.; Shi, W.; Mu, L. Single nanowire-based fluorescence lifetime thermometer for simultaneous measurement of intra- and extra-cellular temperatures. Chem. Commun. 2023, 59, 4483–4486. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Kawamoto, K.; Inada, N.; Uchiyama, S. Cationic Fluorescent Nanogel Thermometers based on Thermoresponsive Poly(N-isopropylacrylamide) and Environment-Sensitive Benzofurazan. Polymers 2019, 11, 1305. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, H.; Umezawa, M.; Okubo, K.; Soga, K. Pixel screening in Lifetime-Based temperature mapping using β-NaYF4:nd3+,yb3+ by Time-Gated Near-Infrared fluorescence imaging on deep tissue in live mice. ACS Appl. Bio Mater. 2024, 7, 3821–3827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zeng, M.; Zhang, Y.; Zhang, C.; Gao, Z.; He, F.; Xue, X.; Li, H.; Li, P.; Xie, G.; et al. Multicolor hyperafterglow from isolated fluorescence chromophores. Nat. Commun. 2023, 14, 475. [Google Scholar] [CrossRef]
- Zhou, J.; Del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Liu, B.; Zhu, K.; Luo, Z.; Huang, Y.; Pan, C.; Wang, L. Organic fluorescent thermometers: Highlights from 2013 to 2017. TrAC Trends Anal. Chem. 2018, 102, 259–271. [Google Scholar] [CrossRef]
- Peng, M.; Kaczmarek, A.M.; Van Hecke, K. Ratiometric thermometers based on rhodamine b and fluorescein Dye-Incorporated (Nano) cyclodextrin metal–organic frameworks. ACS Appl. Mater. Inter. 2022, 14, 14367–14379. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Li, Y.; Mao, J.; Fan, J.; Song, B. Near-infrared fluorescence probes based on disassembly-induced emission pyrene derivatives. J. Mater. Chem. C 2024, 12, 3506–3514. [Google Scholar] [CrossRef]
- Chen, F.; Lu, G.; Yuan, H.; Li, R.; Nie, J.; Zhao, Y.; Shu, X.; Zhu, X. Mechanism and regulation of LCST behavior in poly(hydroxypropyl acrylate)-based temperature-sensitive hydrogels. J. Mater. Chem. A 2022, 10, 18235–18247. [Google Scholar] [CrossRef]
- Estabrook, D.A.; Chapman, J.O.; Yen, S.; Lin, H.H.; Ng, E.T.; Zhu, L.; van de Wouw, H.L.; Campàs, O.; Sletten, E.M. Macromolecular crowding as an intracellular stimulus for responsive nanomaterials. J. Am. Chem. Soc. 2022, 144, 16792–16798. [Google Scholar] [CrossRef]
- Zhao, T.; Asawa, K.; Masuda, T.; Honda, A.; Kushiro, K.; Cabral, H.; Takai, M. Fluorescent polymeric nanoparticle for ratiometric temperature sensing allows real-time monitoring in influenza virus-infected cells. J. Colloid Interf. Sci. 2021, 601, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, R.; Liu, Y.; Varanaraja, Z.; Godzina, M.; Yilmaz, G.; van Hest, J.C.M.; Becer, C.R. Poly(2-oxazoline)-Based thermoresponsive stomatocytes. Biomacromolecules 2024, 25, 6050–6059. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, H.; Hakobyan, K.; Jiang, Z.; Liang, K.; Xu, J. Robust hydrogel actuators functioning in Multi-Environments enabled by Thermo-Responsive polymer nanoparticle coatings on hydrogel surfaces. Small 2024, 20, 2400534. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Ou, B.; Ma, L. Adjustment of temperature sensitivity using hydrophilic materials to develop superabsorbent polymers based on poly(N-isopropyl acrylamide) as a temperature-sensitive material. J. Appl. Polym. Sci. 2025, 142, e56341. [Google Scholar] [CrossRef]
- Van Guyse, J.F.R.; Abbasi, S.; Toh, K.; Nagorna, Z.; Li, J.; Dirisala, A.; Quader, S.; Uchida, S.; Kataoka, K. Facile generation of heterotelechelic Poly(2-Oxazoline)s towards accelerated exploration of Poly(2-Oxazoline)-Based nanomedicine. Angew. Chem. Int. Ed. 2024, 63, e202404972. [Google Scholar] [CrossRef] [PubMed]
- Hayes, G.; Drain, B.; Becer, C.R. Multiarm core Cross-Linked Star-Shaped poly(2-oxazoline)s using a bisfunctional 2-Oxazoline monomer. Macromolecules 2022, 55, 146–155. [Google Scholar] [CrossRef]
- Chen, C.; Xiang, Y.; Yang, K. Discovery of environment-sensitive fluorescent probes for detecting and inhibiting metallo-β-lactamase. Bioorg. Chem. 2022, 128, 106048. [Google Scholar] [CrossRef]
- Uchiyama, S.; Gota, C.; Tsuji, T.; Inada, N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem. Commun. 2017, 53, 10976–10992. [Google Scholar] [CrossRef]
- Kalaparthi, V.; Peng, B.; Peerzade, S.A.M.A.; Palantavida, S.; Maloy, B.; Dokukin, M.E.; Sokolov, I. Ultrabright fluorescent nanothermometers. Nanoscale Adv. 2021, 3, 5090–5101. [Google Scholar] [CrossRef]
- Halperin, A.; Kröger, M.; Winnik, F.M. Shear-Induced Stack Orientation and Breakup in Cluster Glasses of Ring Polymers. ACS Appl. Polym. Mater. 2024, 21, 13202–13209. [Google Scholar]
- Guan, W.; Zhou, W.; Lu, C.; Tang, B.Z. Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets. Angew. Chem. Int. Ed. 2015, 54, 15160–15164. [Google Scholar] [CrossRef]
- Chen, Q.; Bian, N.; Cao, C.; Qiu, X.-L.; Qi, A.-D.; Han, B.-H. Thiophenol detection using an AIE fluorescent probe through self-assembly with TPE-based glycoclusters. Org. Biomol. Chem. 2019, 17, 9251–9256. [Google Scholar]
- Meyer, M.; Schlaad, H. Crystallization vs Metal Chelation: Solution Self-Assembly of Dual Responsive Block Copolymers. Macromolecules 2020, 53, 5056–5067. [Google Scholar]
- Kim, J.-H.; Jung, Y.; Lee, D.; Jang, W.-D. Thermoresponsive Polymer and Fluorescent Dye Hybrids for Tunable Multicolor Emission. Adv. Mater. 2016, 28, 3499–3503. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Yim, D.; Jang, W.-D. Thermo-responsive poly(2-isopropyl-2-oxazoline) and tetraphenylethene hybrids for stimuli-responsive photoluminescence control. Chem. Commun. 2016, 52, 4152–4155. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, L.; Sun, S.; Pei, Z.P.Y.; Pang, Y. Switchable and selective detection of Zn2+ or Cd2+ in living cells based on 3′-O-substituted arrangement of benzoxazole-derived fluorescent probes. Chem. Commun. 2014, 50, 7514. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yu, H.; Li, H.; Sun, S.; Yu, R.; Xu, Y. Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response. Molecules 2025, 30, 1121. https://doi.org/10.3390/molecules30051121
Li Y, Yu H, Li H, Sun S, Yu R, Xu Y. Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response. Molecules. 2025; 30(5):1121. https://doi.org/10.3390/molecules30051121
Chicago/Turabian StyleLi, Yan, Han Yu, Hongjuan Li, Shiguo Sun, Ruijin Yu, and Yongqian Xu. 2025. "Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response" Molecules 30, no. 5: 1121. https://doi.org/10.3390/molecules30051121
APA StyleLi, Y., Yu, H., Li, H., Sun, S., Yu, R., & Xu, Y. (2025). Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response. Molecules, 30(5), 1121. https://doi.org/10.3390/molecules30051121