Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides
Abstract
:1. Introduction
2. Results
2.1. Spectroscopic Characterization of Citrus Flavanone Diglycosides and Aglycones
2.2. Microplate Spectroscopic Method for Rapid Evaluation of Substrate Selectivity of Mesophilic α-L-Rhamnosidases on Citrus Flavanone Diglycosides
2.3. Substrate Selectivity of α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Diglycosides by HPLC
2.4. Structral Basis for Substrtae Selectivity of α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Reagents
4.2. UV-Visible Spectra of Citrus Flavanones
4.3. Preparation of Standard Curves of Citrus Flavanone by UV-Visible Spectroscopy Using Microplate
4.4. Over-Expression and Purification of α-L-Rhamnosidases and β-D-Glucosidase
4.5. Activity Assay of α-L-Rhamnosidases by UV-Visible Spectroscopy Using Microplate
4.6. Activity Assay of α-L-Rhamnosidases by HPLC
4.7. Enzyme Kinetics of α-L-Rhamnosidases by HPLC
4.8. High Performance Liquid Chromatography (HPLC)
4.9. Molecular Docking of α-L-Rhamnosidases with Flavonoid Glycosides and Structural Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, V.; Yadav, P.K.; Yada, S.; Yadav, K.D.S. α-L-Rhamnosidase: A review. Process Biochem. 2010, 45, 1226–1235. [Google Scholar] [CrossRef]
- Cui, Z.; Maruyama, Y.; Mikami, B.; Hashimoto, W.; Murata, K. Crystal structure of glycoside hydrolase family 78 alpha-L-rhamnosidase from Bacillus sp. GL1. J. Mol. Biol. 2007, 374, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, J.B.; Almo, S.C.; Bresnick, A. New York-Structural GenomiX Research Consortium (NYSGXRC): A large scale center for the protein structure initiative. J. Struct. Funct. Genom. 2005, 6, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Guillotin, L.; Kim, H.; Traore, Y.; Moreau, P.; Lafite, P.; Coquoin, V.; Nuccio, S.; de Vaumas, R.; Daniellou, R. Biochemical characterization of the α-L-rhamnosidase DtRha from Dictyoglomus thermophilum: Application to the selective derhamnosylation of natural flavonoids. ACS Omega 2019, 4, 1916–1922. [Google Scholar] [CrossRef]
- O’Neill, E.C.; Stevenson, C.E.; Paterson, M.J. Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound. Proteins 2015, 83, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Z.; Jackson, A.; Michikawa, M. The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J. Biol. Chem. 2013, 288, 12376–12385. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Makabe, K.; Ishida, N.; Kanezaki, N.; Shiono, Y.; Koseki, T. Aspergillus oryzae α-L-rhamnosidase: Crystal structure and insight into the substrate specificity. Proteins 2024, 92, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Pachl, P.; Škerlová, J.; Šimčíková, D. Crystal structure of native α-L-rhamnosidase from Aspergillus terreus. Acta Crystallogr. D Struct. Biol. 2018, 74, 1078–1084. [Google Scholar] [CrossRef]
- Li, L.J.; Peng, C.; Gong, J.Y.; Liu, X.Q.; Li, W.J.; Zhu, Y.B.; Ni, H.; Li, Q.B. Improving alkaline stability of α-L-rhamnosidase from Aspergillus niger through computational strategy combines with folding free energy and binding free energy. Biochem. Eng. J. 2023, 200, 109075. [Google Scholar] [CrossRef]
- Li, L.J.; Liu, X.Q.; Du, X.P.; Wu, L.; Jiang, Z.D.; Ni, H.; Li, Q.B.; Chen, F. Preparation of isoquercitrin by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC purification. Prep. Biochem. Biotechnol. 2020, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Céliz, G.; Rodriguez, J.; Soria, F.; Daz, M. Synthesis of hesperetin 7-O-glucoside from flavonoids extracted from citrus waste using both free and immobilized α-L-rhamnosidases. Biocatal. Agric. Biotechnol. 2015, 4, 335–341. [Google Scholar] [CrossRef]
- Luo, C.M.; Ke, L.F.; Huang, X.Y.; Zhuang, X.Y.; Xiao, A.F.; Zhang, Y.H. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzyme Microb. Technol. 2024, 175, 110410. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Wu, Z.Y.; Yu, Y.; Zhang, L.J.; Zhu, Y.B.; Ni, H.; Chen, F. Development and characterization of an α-L-rhamnosidase mutant with improved thermostability and a higher efficiency for debittering orange juice. Food Chem. 2018, 245, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Spagma, G.; Barbagallo, R.N.; Martino, A.; Pifferi, P.G. A simple method of purifying glycosidase: α-L-rhamnopyranosidases from Aspergillus niger to increase the aroma of Moscato wine. Enzyme Microb. Technol. 2000, 27, 522–530. [Google Scholar] [CrossRef]
- Ni, H.; Xiao, A.F.; Wang, Y.Q.; Chen, F.; Cai, H.N.; Su, W.J. Development and evaluation of an HPLC method for accurate determinations of enzyme activities of naringinase complex. J. Agric. Food Chem. 2013, 61, 10026–10032. [Google Scholar] [CrossRef]
- Monti, D.; Pisvejcová, A.; Kren, V.; Lama, M.; Riva, S. Generation of an α-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol. Bioeng. 2004, 87, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.C.; Zhao, J.; Zhang, N.; Xu, H.; Yang, J.; Ye, J.; Jiang, J.C. Efficient production of isoquercitin, icariin and icariside II by a novel thermostable α-L-rhamnosidase PodoRha from Paenibacillus odorifer with high α-1, 6-/α-1, 2-glycoside specificity. Enzym. Microb. Technol. 2022, 158, 110039. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; Guardia, L.M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2006, 104, 466–479. [Google Scholar] [CrossRef]
- Ciftci, O.; Ozcan, C.; Kamisli, O.; Cetin, A.; Basak, N.; Aytac, B. Hesperidin, a citrus flavonoid, Has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochem. Res. 2015, 40, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Lei, H.H.; Chen, G.; Chen, C.; Song, Y.; Cao, Z.; Zhang, C.; Zhang, C.; Zhou, J.; Lu, Y.; et al. In vitro and in vivo studies reveal that hesperetin-7-O-glucoside, a naturally occurring monoglucoside, exhibits strong anti-inflammatory capacity. J. Agri. Food Chem. 2021, 69, 12753–12762. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I.S.; Doble, M. Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. Eur. J. Med. Chem. 2016, 124, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr. Res. 2021, 92, 21–31. [Google Scholar] [CrossRef]
- Tutunchi, H.; Naeini, F.; Ostadrahimi, A.; Hosseinzadeh-Attar, M.J. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytother. Res. 2020, 34, 3137–3147. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.T.; Li, H.B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.Y. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients 2020, 12, 2907. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, K.; Boda, A.K.; Dogra, S.; Bose, I.; Yadav, P.N.; Aidhen, I.S. Discovery of an isocoumarin analogue that modulates neuronal functions via neurotrophin receptor TrkB. Bioorg. Med. Chem. Lett. 2019, 29, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid. Med. Cell Longev. 2019, 10, 5484138. [Google Scholar] [CrossRef] [PubMed]
- Slámová, K.; Kapešová, J.; Valentová, K. “Sweet flavonoids”: Glycosidase-catalyzed modifications. Int. J. Mol. Sci. 2018, 19, 2126. [Google Scholar] [CrossRef]
- Chang, H.Y.; Lee, Y.B.; Bae, H.A.; Huh, J.Y.; Nam, S.H.; Sohn, S.H.; Lee, H.J.; Lee, S.B. Purification and characterisation of Aspergillus sojae naringinase: The production of prunin exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chem. 2011, 124, 234–241. [Google Scholar] [CrossRef]
- Lee, Y.S.; Huh, J.Y.; Nam, S.H.; Moon, S.K.; Lee, S.B. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: Enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Food Chem. 2012, 135, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Choi, H.D.; Eom, H.; Choi, I. Enzymatic modification enhances the protective activity of citrus flavonoids against alcohol-induced liver disease. Food Chem. 2013, 139, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Huang, B.; Lei, L.; Lu, Y.J.; Zhou, J.L.; Wong, W.L. Production of high antioxidant activity flavonoid monoglucosides from citrus flavanone with immobilised α-L-rhamnosidase in one step. Int. J. Food Sci. Technol. 2019, 54, 2854–2862. [Google Scholar] [CrossRef]
- Hashimoto, W.; Miyake, O.; Nankai, H.; Murata, K. Molecular identification of an α-L-rhamnosidase from Bacillus sp. strain GL1 as an enzyme involved in complete metabolism of gellan. Arch. Biochem. Biophys. 2003, 415, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, B.L.; Xie, T.; Li, G.C.; Tuo, Y.; Xiang, Y.T. Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnol. Lett. 2015, 37, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.H.; Hyun, Y.J.; Shim, J.; Hong, S.W.; Kim, D.H. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. J. Microbiol. Biotechnol. 2015, 25, 18–25. [Google Scholar] [CrossRef]
- Zverlov, V.V.; Hertel, C.; Bronnenmeier, K.; Hroch, A.; Kellermann, J.; Schwarz, W.H. The thermostable α-L-rhamnosidase RamA of Clostridium stercorarium: Biochemical characterization and primary structure of a bacterial α-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol. Microbiol. 2000, 35, 173–179. [Google Scholar] [CrossRef]
- Ávila, M.; Jaquet, M.; Moine, D.; Requena, T.; Peláez, C.; Arigoni, F.; Jankovic, I. Physiological and biochemical characterization of the two α-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology 2009, 155, 2739–2749. [Google Scholar] [CrossRef]
- Beekwilder, J.; Marcozzi, D.; Vecchi, S.; de Vos, R.; Janssen, P.; Francke, C.; van Hylckama Vlieg, J.; Hall, R.D. Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl. Environ. Microbiol. 2009, 75, 3447–3454. [Google Scholar] [CrossRef]
- Michlmayr, H.; Brandes, W.; Eder, R.; Schümann, C.; del Hierro, A.M.; Kulbe, K.D. Characterization of two distinct glycosyl hydrolase family 78 α-L-rhamnosidases from Pediococcus acidilactici. Appl. Environ. Microbiol. 2011, 77, 6524–6530. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, H.; Fujimoto, Z.; Kaneko, S. Characterization of an α-L-rhamnosidase from Streptomyces avermitilis. Biosci. Biotechnol. Biochem. 2013, 77, 213–216. [Google Scholar] [CrossRef]
- Hákon, B.; Gudmundur, O.H.; Olafur, H.F.; Andrew, M.; Jakob, K.K.; Bo, M. Two new thermostable α-L-rhamnosidases from a novel thermophilic bacterium. Enzym. Microb. Technol. 2004, 34, 561–571. [Google Scholar]
- Rabausch, U.; Ilmberger, N.; Streit, W.R. The metagenome-derived enzyme RhaB opens a new subclass of bacterial B type α-L-rhamnosidases. J. Biotechnol. 2014, 191, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Weiz, G.; Breccia, J.D.; Mazzaferro, L.S. Screening and quantification of the enzymatic deglycosylation of the plant flavonoid rutin by UV-visible spectrometry. Food Chem. 2017, 229, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Pozzo, T.; Megyeri, M.; Lindahl, S.; Sundin, A.; Turner, C.; Karlsson, E.N. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC Biochem. 2011, 12, 11. [Google Scholar] [CrossRef]
- Mazzaferro, L.S.; Breccia, J.D. Quantification of hesperidin in citrus-based foods using a fungal diglycosidase. Food Chem. 2012, 134, 2338–2344. [Google Scholar] [CrossRef] [PubMed]
- Li, B.C.; Peng, B.; Zhang, T.; Li, Y.Q.; Ding, G.B. A spectrophotometric method for high-throughput screening of α-L-rhamnosidase activity on rutin coupled with a β-D-glucosidase assay. 3 Biotech 2019, 9, 227. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.Q.; Ding, G.B. Target discovery of novel α-L-rhamnosidases from human fecal netagenome and application for biotransformation of natural flavonoid glycosides. Appl. Biochem. Biotechnol. 2019, 189, 1245–1261. [Google Scholar]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 3.0; Schrödinger, LLC.: New York, NY, USA, 2024.
Enzymes | Organism | GenBank Accession | Selectivity on Natural Flavonoid Glycosides | Ref. |
---|---|---|---|---|
RhaB | Bacillus sp. GL1 | BAB62315 | Might catalyzed naringin | [34] |
BbRha | Bifidobacterium breve 689b | CP006715 | Might hydrolyzed hesperidin, naringin and rutin | [35] |
BdRham | Bifidobacterium dentium K-13 | AGS77942 | Might biotransformed naringin and rutin Could not hydrolyze quercitrin | [36] |
RamA | Clostridium stercorarium | AJ238748 | Might hydrolyzed hesperidin and naringin | [37] |
DtRha | Dictyoglomus thermophilum | ACI19983 | High activities on naringin, neodiosimin and neohesperidin Low activities on narirutin, diosimin and hesperidin | [4] |
KoRha | Klebsiella oxytoca | YP_005019950 | Might catalyzed rutin | [5] |
RhaB2 | Lactobacillus plantarum NCC245 | ACR19005 | Might hydrolyzed hesperidin and rutin Could not catalyze naringin and quercitrin | [38] |
RhaB1 | Lactobacillus plantarum NCC245 | ACR19007 | Might hydrolyzed hesperidin and rutin Could not catalyze naringin and quercitrin | [38] |
Ram1 | Lactobacillus plantarum WCFS1 | CAD65558 | Might hydrolyzed narirutin and rutin Low bioconversion rate on naringin | [39] |
Ram2 | Pediococcus acidilactici | WP_004165637 | Might hydrolyzed hesperidin and rutin | [40] |
Ram | Pediococcus acidilactici | EFL96112 | Might biotransformed rutin Low bioconversion rate on hesperidin | [40] |
SaRha78A | Streptomyces avermitilis MA-4680 | BAC68538 | Might biotransformed naringin and rutin Low bioconversion rate on hesperidin | [41] |
RhmB | Thermomicrobia bacterium PRI-1686 | AAR96047 | Might hydrolyzed hesperidin and naringin Could not hydrolyze rutin | [42] |
RhmA | Thermomicrobia bacterium PRI-1686 | AAR96046 | Might hydrolyzed hesperidin and naringin Slightly hydrolyzed rutin | [42] |
RhaB1 | Elephant feces metagenome | ZP01961192 | Low bioconversion rates on naringin and rutin | [43] |
Substrates | Glycosidic Bonds | Specific Activity (U g−1) | |||
---|---|---|---|---|---|
BtRha78A | HFM-RhaA | HFM-RhaC | HFM-Rha78 | ||
Rutin | α-1,6 | 84.6 ± 2.0 | 1313.1 ± 44.9 | 188.6 ± 6.6 | 13.9 ± 0.2 |
Troxerutin | α-1,6 | 13.9 ± 1.5 | 312.5 ± 9.2 | 62.9 ± 4.6 | 13.2 ± 0.3 |
Quercitrin | α-1 | NA | NA | NA | NA |
Myricetrin | α-1 | NA | NA | NA | NA |
Icariin | α-1 | NA | NA | NA | NA |
Diosmin | α-1,6 | 2050.7 ± 14.1 | NA | 1886.3 ± 3.0 | NA |
Rhoifolin | α-1,2 | NA | 1184.0 ± 19.3 | 43.1 ± 3.5 | 415.0 ± 15.7 |
Hesperidin | α-1,6 | 1399.0 ± 38.4 | 14.3 ± 0.6 | 2228.9 ± 34.8 | NA |
Neohesperidin | α-1,2 | NA | 1699.6 ± 54.2 | 259.5 ± 6.5 | 88.5 ± 1.0 |
Methy hesperidin | α-1,6 | 1205.1 ± 20.0 | 7.9 ± 0.6 | 1590.1 ± 3.4 | NA |
Naringin | α-1,2 | NA | 1925.4 ± 44.7 | 203.8 ± 1.3 | 129.4 ± 1.6 |
Narirutin | α-1,6 | 2034.1 ± 43.4 | 26.1 ± 0.8 | 2361.5 ± 56.4 | NA |
Neohesperidin dihydrochalcone | α-1,2 | NA | 1464.6 ± 5.4 | 86.6 ± 0.4 | 24.7 ± 0.7 |
Naringin dihydrochalcone | α-1,2 | NA | 1258.6 ± 26.6 | 60.5 ± 1.5 | 25.3 ± 2.0 |
BtRha78A | HFM-RhaA | HFM-RhaC | HFM-Rha78 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrates | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) | kcat (s−1) | KM (mM) | kcat/KM (s−1 M−1) |
Rutin | 0.47 | 2.38 | 199.5 | 5.62 | 1.24 | 4546.6 | 2.31 | 5.05 | 457.9 | ND | ND | ND |
Hesperidin | 8.73 | 2.78 | 3138.8 | ND | ND | ND | 58.38 | 2.16 | 27,025.0 | ND | ND | ND |
Neohesperidin | ND | ND | ND | 5.39 | 0.53 | 10,154.0 | 3.33 | 3.25 | 1025.8 | 0.56 | 3.97 | 140.0 |
Naringin | ND | ND | ND | 25.91 | 1.92 | 13,512.0 | 1.50 | 2.29 | 654.2 | 1.44 | 5.97 | 240.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.-C.; Wu, B.; Hou, X.; Ding, G.-B. Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides. Molecules 2025, 30, 980. https://doi.org/10.3390/molecules30050980
Li B-C, Wu B, Hou X, Ding G-B. Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides. Molecules. 2025; 30(5):980. https://doi.org/10.3390/molecules30050980
Chicago/Turabian StyleLi, Bin-Chun, Bingbing Wu, Xueting Hou, and Guo-Bin Ding. 2025. "Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides" Molecules 30, no. 5: 980. https://doi.org/10.3390/molecules30050980
APA StyleLi, B.-C., Wu, B., Hou, X., & Ding, G.-B. (2025). Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides. Molecules, 30(5), 980. https://doi.org/10.3390/molecules30050980