Green Fabrication of Zinc-Based Metal–Organic Frameworks@Bacterial Cellulose Aerogels via In Situ Mineralization for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Fabrication of ZIF-8@BC-X
2.2.2. Adsorption Experiment
2.3. Characterization
3. Results and Discussion
3.1. Characterizations
3.2. Adsorption Experiment
3.2.1. Impact of pH Value
3.2.2. Impact of Coexisting Ions on Adsorption
3.2.3. Reusability Test
3.2.4. Adsorption Isotherms
3.2.5. Adsorption Kinetics
3.3. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rastegari, F.; Asghari, S.; Mohammadpoor-Baltork, I.; Sabzyan, H.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V. A pH-dependent and charge selective covalent organic framework for removal of dyes from aqueous solutions. J. Hazard. Mater. 2024, 476, 135075. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.Y.; Show, P.-L.; Lau, B.F.; Chang, J.-S.; Ling, T.C. New prospects for modified algae in heavy metal adsorption. Trends Biotechnol. 2019, 37, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, H.; Li, Z.; Han, R. Magnetic bio-composite based on zirconium and chitosan modified activated carbon from peanut husk with enhanced antibacterial and adsorptive potential for alizarin red and congo red in wastewater. Int. J. Biol. Macromol. 2024, 273, 132995. [Google Scholar] [CrossRef]
- Jiang, H.; Wu, S.; Zhou, J. Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review. Int. J. Biol. Macromol. 2023, 236, 123916. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Xue, P.; Qi, Y.; Lv, Z.; Wang, R.; Wang, Y.; Sun, S. Construction of a multi-layer protection of CS polymer brush grafted DA@CNTs coating on PVDF membrane for effective removal of dye effluent. J. Hazard. Mater. 2023, 460, 132435. [Google Scholar] [CrossRef]
- Fan, T.; Deng, W.; Feng, X.; Pan, F.; Li, Y. An integrated electrocoagulation—Electrocatalysis water treatment process using stainless steel cathodes coated with ultrathin TiO2 nanofilms. Chemosphere 2020, 254, 126776. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Pal, D.B.; Mohammad, A.; Alhazmi, A.; Haque, S.; Yoon, T.; Srivastava, N.; Gupta, V.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 2022, 343, 126154. [Google Scholar] [CrossRef]
- Raj, S.; Singh, H.; Bhattacharya, J. Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: Process studies in an industrial ecology concept. Sci. Total Environ. 2023, 857, 159464. [Google Scholar] [CrossRef]
- Yazidi, A.; Sellaoui, L.; Dotto, G.L.; Bonilla-Petriciolet, A.; Fröhlich, A.C.; Lamine, A.B. Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models. J. Mol. Liq. 2019, 283, 276–286. [Google Scholar] [CrossRef]
- Sun, X.; Yin, S.; Zhao, L.; Yang, W.; You, Y. Adsorption properties of methylene blue and Cu(II) on magnetically oxidized tannic acid cross-linked carboxymethyl chitosan gels. Int. J. Biol. Macromol. 2024, 278, 134709. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, L.; Qin, L.; Lai, C.; Wang, Z.; Zhou, M.; Xiao, L.; Liu, S.; Zhang, M. Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. Chemosphere 2021, 285, 131432. [Google Scholar] [CrossRef]
- Khamkeaw, A.; Phisalaphong, M.; Jongsomjit, B.; Lin, K.-Y.A.; Yip, A.C.K. Synthesis of mesoporous MFI zeolite via bacterial cellulose-derived carbon templating for fast adsorption of formaldehyde. J. Hazard. Mater. 2020, 384, 121161. [Google Scholar] [CrossRef]
- Azam, K.; Shezad, N.; Shafiq, I.; Akhter, P.; Akhtar, F.; Jamil, F.; Shafique, S.; Park, Y.-K.; Hussain, M. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. Chemosphere 2022, 306, 135566. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B Biointerfaces 2012, 90, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef] [PubMed]
- López-Rosales, L.; López-García, P.; Benyachou, M.A.; Molina-Miras, A.; Gallardo-Rodríguez, J.J.; Cerón-García, M.C.; Mirón, A.S.; García-Camacho, F. Treatment of secondary urban wastewater with a low ammonium-tolerant marine microalga using zeolite-based adsorption. Bioresour. Technol. 2022, 359, 127490. [Google Scholar] [CrossRef] [PubMed]
- Thamer, A.A.; Mustafa, A.; Bashar, H.Q.; Van, B.; Le, P.-C.; Jakab, M.; Rashed, T.R.; Kułacz, K.; Hathal, M.; Somogyi, V.; et al. Activated carbon and their nanocomposites derived from vegetable and fruit residues for water treatment. J. Environ. Manag. 2024, 359, 121058. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xu, W.; Wang, P.; Ding, Y.; Zhou, S. Adsorption of Cu (II) and Zn (II) in aqueous solution by modified bamboo charcoal. Environ. Geochem. Health 2024, 46, 182. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Amendola, E.; Lavorgna, M.; Li, Z.; Feng, H.; Wu, Y.; Fei, G.; Wang, Z.; Xia, H. Robust and recyclable graphene/chitosan composite aerogel microspheres for adsorption of oil pollutants from water. Carbohydr. Polym. 2022, 290, 119416. [Google Scholar] [CrossRef]
- Adil, S.; Kim, J.-O. The effectiveness and adsorption mechanism of iron-carbon nanotube composites for removing phosphate from aqueous environments. Chemosphere 2023, 313, 137629. [Google Scholar] [CrossRef] [PubMed]
- Troyano, J.; Carné-Sánchez, A.; Avci, C.; Imaz, I.; Maspoch, D. Colloidal metal-organic framework particles: The pioneering case of ZIF-8. Chem. Soc. Rev. 2019, 48, 5534–5546. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.S.; Vaidya, L.; Maurya, S.; Rathod, V.K. Polysaccharide based metal organic frameworks (polysaccharide-MOF): A review. Coord. Chem. Rev. 2019, 396, 1–21. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mathew, A.P. Cellulose-metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord. Chem. Rev. 2022, 451, 214263. [Google Scholar] [CrossRef]
- Peng, H.; Xiong, W.; Yang, Z.; Xu, Z.; Cao, J.; Jia, M.; Xiang, Y. Advanced MOFs@aerogel composites: Construction and application towards environmental remediation. J. Hazard. Mater. 2022, 432, 128684. [Google Scholar] [CrossRef] [PubMed]
- Prilepskii, A.; Nikolaev, V.; Klaving, A. Conductive bacterial cellulose: From drug delivery to flexible electronics. Carbohydr. Polym. 2023, 313, 120850. [Google Scholar] [CrossRef] [PubMed]
- Mbituyimana, B.; Liu, L.; Ye, W.; Boni, B.O.O.; Zhang, K.; Chen, J.; Thomas, S.; Vasilievich, R.V.; Shi, Z.; Yang, G. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr. Polym. 2021, 273, 118565. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Yi, W.; Liu, X.; Ru, Y.; Tan, L.; Liu, T. Synthesis of highly porous ferric hydroxide-bacterial cellulose nanocomposites via in-situ mineralization for efficient glyphosate removal. Cellulose 2024, 31, 8041–8053. [Google Scholar] [CrossRef]
- Ma, B.; Huang, Y.; Zhu, C.; Chen, C.; Chen, X.; Fan, M.; Sun, D. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 656–661. [Google Scholar] [CrossRef]
- Lai, C.; Zhang, S.J.; Wang, L.Q.; Sheng, L.Y.; Zhou, Q.Z.; Xi, T.F. The relationship between microstructure and in vivo degradation of modified bacterial cellulose sponges. J. Mater. Chem. B 2015, 3, 9001–9010. [Google Scholar] [CrossRef]
- Troncoso, O.P.; Torres, F.G. Bacterial cellulose-graphene based nanocomposites. Int. J. Mol. Sci. 2020, 21, 6532. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, P.; Nezamzadeh-Ejhieh, A.; Vakili, M.H. A comparison of adsorption capacity of several synthesis methods of cellulose-based absorbent towards Pb(II) removal: Optimization with response surface methodology. Int. J. Biol. Macromol. 2023, 253, 127115. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Li, N.; Wang, W.; Nan, J.; Zhao, Z.; Cui, F. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous FeO-MnO: Adsorption behavior and process study. Chem. Eng. J. 2016, 304, 737–746. [Google Scholar] [CrossRef]
- Wahid, F.; Huang, L.-H.; Zhao, X.-Q.; Li, W.-C.; Wang, Y.-Y.; Jia, S.-R.; Zhong, C. Bacterial cellulose and its potential for biomedical applications. Biotechnol. Adv. 2021, 53, 107856. [Google Scholar] [CrossRef] [PubMed]
- Cacicedo, M.L.; Castro, M.C.; Servetas, I.; Bosnea, L.; Boura, K.; Tsafrakidou, P.; Dima, A.; Terpou, A.; Koutinas, A.; Castro, G.R. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour. Technol. 2016, 213, 172–180. [Google Scholar] [CrossRef]
- Thunberg, J.; Zacharias, S.C.; Hasani, M.; Oyetunji, O.A.; Noa, F.M.A.; Westman, G.; Öhrström, L. Hybrid metal-organic framework-cellulose materials retaining high porosity: ZIF-8@Cellulose nanofibrils. Inorganics 2021, 9, 84–91. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, W.; Zhu, X.; Ru, Y.; Yi, W.; Pang, B.; Liu, T. Porous fibrous bacterial cellulose/La(OH) membrane for superior phosphate removal from water. Carbohydr. Polym. 2022, 298, 120135. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.; Puértolas, B.; Adobes-Vidal, M.; Wang, Y.; Sun, J.; Traber, J.; Burgert, I.; Pérez-Ramírez, J.; Keplinger, T. Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties. Adv. Sci. 2020, 7, 1902897. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Hu, T.; Pudukudy, M.; Su, H.; Jiang, L.; Shan, S.; Jia, Q. Influence of microwave-assisted synthesis on the structural and textural properties of mesoporous MIL-101(Fe) and NH2-MIL-101(Fe) for enhanced tetracycline adsorption. Mater. Chem. Phys. 2020, 251, 123060. [Google Scholar] [CrossRef]
- Wang, Z.G.; He, Q.; Liu, Y.; Yu, C.S.; Zhang, X.F.; Kong, X.J. Amino functionalized zeolitic imidazolate framework-8 coated cellulose aerogel for enhanced air purification. Sep. Purif. Technol. 2025, 355, 129741. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Wang, G.; Yang, W.; Yang, J.; Liu, Y. Bioinspired zeolitic imidazolate framework (ZIF-8) magnetic micromotors for highly efficient removal of organic pollutants from water. J. Colloid Interface Sci. 2019, 555, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, H.N.; Sultan, S.; Mathew, A.P. 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-8) for adsorption of carbon dioxide (CO2) and heavy metal ions. Dalton Trans. 2023, 52, 2988–2998. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Yao, J.; Zhan, S.; Li, H.; Zhang, J.; Qiu, Z. Synthesis of polyethyleneimine modified CoFe2O4-loaded porous biochar for selective adsorption properties towards dyes and exploration of interaction mechanisms. Sep. Purif. Technol. 2021, 277, 119474. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Lu, Y.; Liang, S.; Zhang, Y.; Zhang, J.; Shi, R.; Yin, W. Fabrication of a corn stalk derived cellulose-based bio-adsorbent to remove Congo red from wastewater: Investigation on its ultra-high adsorption performance and mechanism. Int. J. Biol. Macromol. 2023, 241, 124545. [Google Scholar] [CrossRef]
- Sarwar, B.; Khan, A.U.; Aslam, M.; Bokhari, A.; Mubashir, M.; Alothman, A.A.; Ouladsmane, M.; Aldossari, S.A.; Chai, W.S.; Khoo, K.S. Comparative study of ZIF-8-materials for removal of hazardous compounds using physio-chemical remediation techniques. Environ. Res. 2023, 220, 115168. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, H.; Xiong, Z.; Zhao, R.; Liu, Y.; Zhao, C.; Zheng, C. Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions. Chem. Eng. J. 2020, 392, 123706. [Google Scholar] [CrossRef]
- Dai, J.; Chen, T.; Chen, Q.; Ma, H.; Xu, X.; Yuan, W.; Wang, L. Facile synthesis of ZIF-8-lignosulfonate microspheres with ultra-high adsorption capacity for Congo red and tetracycline removal from water. Int. J. Biol. Macromol. 2023, 242, 124672. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Tian, Y.; Zuo, W.; Zhang, J.; Li, H.; Pan, X. Static adsorptive fouling of extracellular polymeric substances with different membrane materials. Water Res. 2014, 50, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, H.; Kan, X.; Dong, L.; Yan, H.; Jiang, Z.; Yang, H.; Li, A.; Cheng, R. Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresour. Technol. 2012, 117, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gou, M.; Yue, X.; Tian, Q.; Yang, D.; Qiu, F.; Zhang, T. Facile fabrication of bifunctional ZIF-8/cellulose composite membrane for efficient removal of tellurium and antibacterial effects. J. Hazard. Mater. 2021, 416, 125888. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, M.; Shi, Y.; Sun, L.; Zheng, H.; Wu, M.; Gao, G.; Ma, T.; Li, G. Multifunctional bacterial cellulose-bentonite@polyethylenimine composite membranes for enhanced water treatment: Sustainable dyes and metal ions adsorption and antibacterial properties. J. Hazard. Mater. 2024, 477, 135267. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Bai, X.; Li, X.; Zhang, G.; Zou, J.; Fei, P.; Lai, W. Double network self-healing hydrogels based on carboxyethyl chitosan/oxidized sodium alginate/Ca2+: Preparation, characterization and application in dye absorption. Int. J. Biol. Macromol. 2024, 264, 130564. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, H.-B.; Kwon, D.; Tsang, Y.F.; Nam, I.-H.; Kwon, E.E. Establishment of circular economy by utilising textile industry waste as an adsorbent for textile dye removal. Environ. Res. 2024, 262, 119987. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.W.; An, L.; Chen, J.; Bae, J.H.; Kim, Y.S. Preparation of amine-functionalized lignins for the selective adsorption of Methylene blue and Congo red. Chemosphere 2022, 295, 133815. [Google Scholar] [CrossRef] [PubMed]
- Abukhadra, M.R.; Adlii, A.; Bakry, B.M. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. Int. J. Biol. Macromol. 2019, 126, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Deng, T.; Qiu, W.; Hu, T.; Zheng, X.; Peng, K.; Zhang, Y.; Zhao, Y.; Xu, Z.; Lei, H.; et al. One stone, two birds: An eco-friendly aerogel based on waste pomelo peel cellulose for the efficient adsorption of dyes and heavy metal ions. Int. J. Biol. Macromol. 2024, 273, 132875. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L.; Liu, S.; Liu, X. Enhanced adsorption of copper ions from aqueous solution by two-step DTPA-modified magnetic cellulose hydrogel beads. Int. J. Biol. Macromol. 2022, 211, 689–699. [Google Scholar] [CrossRef]
- Sun, H.; Ji, Z.; He, Y.; Wang, L.; Zhan, J.; Chen, L.; Zhao, Y. Preparation of PAMAM modified PVDF membrane and its adsorption performance for copper ions. Environ. Res. 2022, 204, 111943. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, S.; Hossain, M.T.; Saha, P.K.; Rayhan, U.; Islam, A.; Choudhury, T.R.; Awual, M.R. Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater. J. Environ. Manag. 2021, 300, 113782. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, R.; Patel, A.K.; Nguyen, T.-B.; Singhania, R.R.; Chen, C.-W.; Dong, C.-D. Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour. Technol. 2021, 328, 124829. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Hu, X. Metal selectivity and effects of co-existing ions on the removal of Cd, Cu, Ni, and Cr by ZIF-8-EGCG nanoparticles. J. Colloid Interface Sci. 2021, 589, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Kang, H.; Liu, W.; Tian, D. Adsorption behavior of copper ions using crown ether-modified konjac glucomannan. Int. J. Biol. Macromol. 2021, 177, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhuo, S.-P.; Xing, W.; Cui, H.-Y.; Dai, X.-D.; Liu, X.-M.; Yan, Z.-F. Aqueous dye adsorption on ordered mesoporous carbons. J. Colloid Interface Sci. 2007, 310, 83–89. [Google Scholar] [CrossRef]
- Peng, H.; Cao, J.; Xiong, W.; Yang, Z.; Jia, M.; Sun, S.; Xu, Z.; Zhang, Y.; Cai, H. Two-dimension N-doped nanoporous carbon from KCl thermal exfoliation of Zn-ZIF-8: Efficient adsorption for tetracycline and optimizing of response surface model. J. Hazard. Mater. 2021, 402, 123498. [Google Scholar] [CrossRef] [PubMed]
- Valadi, F.M.; Ekramipooya, A.; Gholami, M.R. Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF: Experimental and DFT study. J. Mol. Liq. 2020, 318, 114051. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, S.; Meng, L.; Lou, Y.; Xi, J.; Xiao, H.; Wu, W. Self-supporting and hierarchical porous membrane of bacterial nanocellulose@metal-organic framework for ultra-high adsorption of Congo red. Int. J. Biol. Macromol. 2024, 277, 134277. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, H.; Li, X.; Zhang, Q.; Fei, J.; Li, S.; Chen, S. Using recycled coffee grounds for the synthesis of ZIF-8@BC to remove Congo red in water. Ecotoxicol. Environ. Saf. 2022, 236, 113450. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, J.; Xiong, Y.; Dong, F.; Xiong, Y. A novel ZIF-8@IL-MXene/poly (N-isopropylacrylamide) nanocomposite hydrogel toward multifunctional adsorption. Environ. Res. 2024, 242, 117568. [Google Scholar] [CrossRef]
- Xiong, Z.; Zheng, H.; Hu, Y.; Hu, X.; Ding, W.; Ma, J.; Li, Y. Selective adsorption of Congo red and Cu(II) from complex wastewater by core-shell structured magnetic carbon@zeolitic imidazolate frameworks-8 nanocomposites. Sep. Purif. Technol. 2021, 277, 119053. [Google Scholar] [CrossRef]
Langmuir | Freundlich | PFO | PSO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Qm (mg/g) | KL (L/mg) | R2 | kF (L/g) | n | R2 | Qe (mg/g) | k1 (min−1) | R2 | Qe (mg/g) | k2 (g/mg·min) | R2 | |
CR | 397.55 | 0.0082 | 0.9798 | 26.24 | 3.3378 | 0.9030 | 325.95 | 0.0166 | 0.9890 | 352.11 | 0.00008 | 0.9912 |
Cu2+ | 424.80 | 0.0609 | 0.9120 | 132.91 | 5.5463 | 0.8516 | 442.34 | 0.0584 | 0.8930 | 465.12 | 0.0002 | 0.99996 |
Pollutants | Adsorbents | Equilibrium Time (min) | qmax (mg g−1) | Specific Surface Area (m2 g−1) | Average Pore Diameter (nm) | Pore Volume (cm3 g−1) | Ref. |
---|---|---|---|---|---|---|---|
CR | BCB@PEI | 240 | 393.37 | 19.744 | 38.532 | 0.1416 | [51] |
CEC/OSA/2%Ca2+ | 1500 | 185.43 | — | — | — | [52] | |
SEB-700 | 90 | 185.32 | 5.98 | 9.51 | 0.03 | [53] | |
PASL | 20 | 293.26 | 8.81 | 21.30 | 46.89 × 103 | [54] | |
SASL | 20 | 257.07 | 11.43 | 21.28 | 60.79 × 103 | ||
TASL | 20 | 165.56 | 15.39 | 17.29 | 67.76 × 103 | ||
BE/CH@Co | 480 | 303 | 100.5 | — | — | [55] | |
ZIF-8@BC-4 | 150 | 397.55 | 544.48 | — | — | This work | |
Cu2+ | PCC/SA | 120 | 287.55 | 1.18 | 10.17 | — | [56] |
DPMC | 120 | 298.62 | — | — | — | [57] | |
PVDF-g-G3 PAMAM | 200 | 153.8 | — | — | [58] | ||
BC-LDH | 30 | 85.47 | — | — | — | [59] | |
SW-700 | 350 | 227.273 | 19.815 | — | 0.021 | [60] | |
ZIF-8-EGCG | 300 | 232.97 | 113.02 | 7.12 | — | [61] | |
KGM + DB18C6 | 60 | 194 | — | — | — | [62] | |
ZIF-8@BC-4 | 100 | 424.80 | 544.48 | — | — | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Gu, J.; Cao, Y.; Tan, L.; Liu, T. Green Fabrication of Zinc-Based Metal–Organic Frameworks@Bacterial Cellulose Aerogels via In Situ Mineralization for Wastewater Treatment. Molecules 2025, 30, 982. https://doi.org/10.3390/molecules30050982
Liu X, Gu J, Cao Y, Tan L, Liu T. Green Fabrication of Zinc-Based Metal–Organic Frameworks@Bacterial Cellulose Aerogels via In Situ Mineralization for Wastewater Treatment. Molecules. 2025; 30(5):982. https://doi.org/10.3390/molecules30050982
Chicago/Turabian StyleLiu, Xinru, Jie Gu, Yongqi Cao, Liping Tan, and Tongjun Liu. 2025. "Green Fabrication of Zinc-Based Metal–Organic Frameworks@Bacterial Cellulose Aerogels via In Situ Mineralization for Wastewater Treatment" Molecules 30, no. 5: 982. https://doi.org/10.3390/molecules30050982
APA StyleLiu, X., Gu, J., Cao, Y., Tan, L., & Liu, T. (2025). Green Fabrication of Zinc-Based Metal–Organic Frameworks@Bacterial Cellulose Aerogels via In Situ Mineralization for Wastewater Treatment. Molecules, 30(5), 982. https://doi.org/10.3390/molecules30050982