Adsorption of Acetic Acid Vapors by Inorganic–Organic Nano Materials: Implications for the Inhibition of the “Vinegar Syndrome” in 20th Century Motion Picture Films
Abstract
:1. Introduction
2. Results
2.1. Acetic Acid Adsorption–Desorption Tests on Nanoparticles
2.1.1. Gravimetric Analysis
2.1.2. XRD Analysis
2.1.3. TGA Analysis
2.1.4. SEM Micrographs
2.2. Acetic Acid Adsorption–Desorption Tests on WP-ZnO and PVF-ZnO
2.2.1. Gravimetric Analysis
2.2.2. FTIR-ATR Analysis
2.2.3. TGA
2.2.4. SEM Micrographs
2.3. The Evaluation of the Performance of ZnO Pure Nanoparticles, WP-Zno and PVF-Zno Xerogels on Artificially Degraded Real Motion Picture Films
2.3.1. Free Acidity
2.3.2. Acetyl Content
2.3.3. FTIR-ATR Spectroscopy
2.3.4. Tensile Tests
3. Discussion
3.1. Acetic Acid Adsorption–Desorption Tests on Nanoparticles and Composed Organic–Inorganic Systems
3.2. Evaluation of the Performance of Composite Organic–Inorganic Systems in the Inhibition of the “Vinegar Syndrome”
4. Materials and Methods
4.1. Chemicals and Materials
4.2. PVF Xerogels Synthesis
4.3. PVF-ZnO Composed Xerogels Synthesis
4.4. WP-ZnO Synthesis
4.5. Acetic Acid Adsorption–Desorption Tests on Nanoparticles
4.6. Artificial Induction and Evolution of the “Vinegar Syndrome” on Motion Picture Films and Their Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Read, P.; Meyer, M.P. Restoration of Motion Picture Film, 1st ed.; Buttherworth-Heinemann: Oxford, UK, 2000; ISBN 2013206534. [Google Scholar]
- Valverde, M. Photographic Negatives: Nature and Evolution of Processes; Advanced Residency Program in Photograph Preservation: Pennsylvania State University, USA, 2005; pp. 9–18. Available online: https://primo.getty.edu/primo-explore/fulldisplay/GETTY_ALMA21121935850001551/GRI (accessed on 11 March 2025).
- McGath, M.; Jordan-Mowery, S.; Pollei, M.; Heslip, S.; Baty, J. Cellulose Acetate Lamination: A Literature Review and Survey of Paper-Based Collections in the United States. Restaurator 2015, 36, 333–365. [Google Scholar] [CrossRef]
- Krause, P.; Reilly, J.M. IPI Storage Guide for Acetate Film. J. Am. Inst. Conserv. 1994, 33, 321. [Google Scholar] [CrossRef]
- Ram, A.T. Archival Preservation of Photographic Films-A Perspective. Polym. Degrad. Stab. 1990, 29, 3–29. [Google Scholar] [CrossRef]
- Shashoua, Y. Conservation of Plastics: Materials Science, Degradation and Preservation; Elsevier Ltd.: Oxford, UK, 2008; ISBN 2013206534. [Google Scholar]
- Lavédrine, B. A Guide to the Preventive Conservation of Photograph Collections, 1st ed.; Getty Publications: Los Angeles, CA, USA, 2003; ISBN 9788527729833. [Google Scholar]
- Nishimura, D. Strategies for the Storage of Cellulose Acetate Film. AIC News 2015, 40, 6–7. [Google Scholar]
- Bigourdan, J.L.; Adelstein, P.Z.; Reilly, J.M. Use of Microenvironments for the Preservation of Cellulose Triacetate Photographic Film. J. Imaging Sci. Technol. 1998, 42, 155–162. [Google Scholar] [CrossRef]
- Bigourdan, J.L.; Adelstein, P.Z.; Reilly, J.M. Effect of Paper Alkaline Reserve on the Chemical Stability of Acetate Base Sheet Film. Top. Photogr. Preserv. 2000, 7, 43–54. [Google Scholar]
- Yamamoto, D.; Ishii, T.; Hashimoto, A.; Matsui, K. Use of Sodium Carbonate and Sodium Polyacrylate for the Prevention of Vinegar Syndrome. Imaging Sci. J. 2019, 67, 171–178. [Google Scholar] [CrossRef]
- Dedecker, K.; Pillai, R.S.; Nouar, F.; Steunou, N.; Dumas, E.; Maurin, G.; Serre, C.; Pinto, L. Metal-Organic Frameworks for Cultural Heritage Preservation: The Case of Acetic Acid Removal. ACS Appl. Mater. Interfaces 2018, 10, 13886–13894. [Google Scholar] [CrossRef]
- Mohtar, A.A.; Severino, M.I.; Tignol, P.; Ranza, L.; Neves, A.; Nouar, F.; Pimenta, V.; Lopes, J.; Ramos, A.M.; Rodrigo, J.I.L.; et al. Iron(III) Based Metal-Organic Frameworks in Cellulose Acetate Film Preservation: Fundamental Aspects and First Application. J. Cult. Herit. 2024, 66, 236–243. [Google Scholar] [CrossRef]
- Al Mohtar, A.; Pinto, M.L.; Neves, A.; Nunes, S.; Zappi, D.; Varani, G.; Ramos, A.M.; Melo, M.J.; Wallaszkovits, N.; Lahoz Rodrigo, J.I.; et al. Decision Making Based on Hybrid Modeling Approach Applied to Cellulose Acetate Based Historical Films Conservation. Sci. Rep. 2021, 11, 16074. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D. Nanoscience for the Conservation of Works of Art; RSC Publishing: London, UK, 2013. [Google Scholar]
- Giorgi, R.; Dei, L.; Ceccato, M.; Schettino, C.; Baglioni, P. Nanotechnologies for Conservation of Cultural Heritage: Paper and Canvas Deacidification. Langmuir 2002, 18, 8198–8203. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Fratini, E.; Langer, S.; Niklasson, A.; Rådemar, M.; Svensson, J.E.; Baglioni, P. Nanoparticles of Calcium Hydroxide for Wood Deacidification: Decreasing the Emissions of Organic Acid Vapors in Church Organ Environments. J. Cult. Herit. 2009, 10, 206–213. [Google Scholar] [CrossRef]
- Zuliani, A.; Bandelli, D.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Environmentally Friendly ZnO/Castor Oil Polyurethane Composites for the Gas-Phase Adsorption of Acetic Acid. J. Colloid. Interface Sci. 2022, 614, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, A.; Chelazzi, D.; Mastrangelo, R.; Giorgi, R.; Baglioni, P. Adsorption Kinetics of Acetic Acid into ZnO/Castor Oil-Derived Polyurethanes. J. Colloid. Interface Sci. 2023, 632, 74–86. [Google Scholar] [CrossRef]
- Porpora, F.; Dei, L.; Maiano, A.M.; Carretti, E. Artificial Induction of the “Vinegar Syndrome” in Cellulose Acetate Motion Picture Film and Multi-Analytical Protocol for Its Monitoring. J. Cult. Herit. 2025, 71, 184–196. [Google Scholar] [CrossRef]
- Laoutid, F.; Lorgouilloux, M.; Bonnaud, L.; Lesueur, D.; Dubois, P. Fire Retardant Behaviour of Halogen-Free Calcium-Based Hydrated Minerals. Polym. Degrad. Stab. 2017, 136, 89–97. [Google Scholar] [CrossRef]
- Pemberton, A.T.; Brandon, D.; King, D.A. Integrated TGA, FTIR, and Computational Laboratory Experiment. J. Chem. Educ. 2018, 96, 132–136. [Google Scholar] [CrossRef]
- Niu, S.; Han, K.; Lu, C.; Sun, R. Thermogravimetric Analysis of the Relationship among Calcium Magnesium Acetate, Calcium Acetate and Magnesium Acetate. Appl. Energy 2010, 87, 2237–2242. [Google Scholar] [CrossRef]
- Bilton, M.; Brown, A.P.; Milne, S.J. Investigating the Optimum Conditions for the Formation of Calcium Oxide, Used for CO2 Sequestration, by Thermal Decomposition of Calcium Acetate. J. Phys. Conf. Ser. 2012, 371, 12075. [Google Scholar] [CrossRef]
- Horzum, N.; Hilal, M.E.; Isik, T. Enhanced Bactericidal and Photocatalytic Activities of ZnO Nanostructures by Changing the Cooling Route. New J. Chem. 2018, 42, 11831–11838. [Google Scholar] [CrossRef]
- Ghule, A.V.; Ghule, K.; Chen, C.-Y.; Chen, W.-Y.; Tzing, S.-H.; Chang, H.; Ling, Y.-C. In Situ Thermo-TOF-SIMS Study of Thermal Decomposition of Zinc Acetate Dihydrate. J. Mass. Spectrom. 2004, 39, 1202–1208. [Google Scholar] [CrossRef]
- Lin, C.C.; Li, Y.Y. Synthesis of ZnO Nanowires by Thermal Decomposition of Zinc Acetate Dihydrate. Mater. Chem. Phys. 2009, 113, 334–337. [Google Scholar] [CrossRef]
- Ambrosi, M.; Dei, L.; Giorgi, R.; Neto, C.; Baglioni, P. Colloidal Particles of Ca(OH)2: Properties and Applications to Restoration of Frescoes. Langmuir 2001, 17, 4251–4255. [Google Scholar] [CrossRef]
- Bette, S.; Eggert, G.; Emmerling, S.; Etter, M.; Schleid, T.; Dinnebier, R.E. Crystal Structure, Polymorphism, and Anisotropic Thermal Expansion of α-Ca(CH3COO)2. Cryst. Growth Des. 2020, 20, 5346–5355. [Google Scholar] [CrossRef]
- Yin, H.; Casey, P.S. ZnO Nanorod Composite with Quenched Photoactivity for UV Protection Application. Mater. Lett. 2014, 121, 8–11. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T. Celluloses and Polyoses/Hemicelluloses. Polym. Sci. A Compr. Ref. 2012, 10, 83–152. [Google Scholar] [CrossRef]
- Fei, P.; Liao, L.; Cheng, B.; Song, J. Quantitative Analysis of Cellulose Acetate with a High Degree of Substitution by FTIR and Its Application. Anal. Methods 2017, 9, 6194–6201. [Google Scholar] [CrossRef]
- Chavez Lozano, M.V.; Elsässer, C.; Angelin, E.M.; Pamplona, M. Shedding Light on Degradation Gradients in Celluloid: An ATR-FTIR Study of Artificially and Naturally Aged Specimens. Polymers 2023, 15, 522. [Google Scholar] [CrossRef]
- Al Mohtar, A.; Nunes, S.; Silva, J.; Ramos, A.M.; Lopes, J.; Pinto, M.L. First-Principles Model to Evaluate Quantitatively the Long-Life Behavior of Cellulose Acetate Polymers. ACS Omega 2021, 6, 8028–8037. [Google Scholar] [CrossRef]
- Nunes, S.; Ramacciotti, F.; Neves, A.; Angelin, E.M.; Ramos, A.M.; Roldão, É.; Wallaszkovits, N.; Armijo, A.A.; Melo, M.J. A Diagnostic Tool for Assessing the Conservation Condition of Cellulose Nitrate and Acetate in Heritage Collections: Quantifying the Degree of Substitution by Infrared Spectroscopy. Herit. Sci. 2020, 8, 1–14. [Google Scholar] [CrossRef]
- Bigourdan, J.-L.; Adelstein, P.Z.; Reilly, J.M. Acetic Acid and Paper Alkaline Reserve, Assessment of a Pratical Situation in Film Preservation. In Proceedings of the ICOM Committee for Conservation 11th Triennial Meeting, Edinburgh, UK, 1–6 September 1996; pp. 573–579. [Google Scholar]
- Fischer, M.C.; Robb, A. Guidelines for Care & Identification of Film-Base Photographic Materials. Top. Photogr. Preserv. 1993, 5, 117–122. [Google Scholar]
- Hammon, H.G. United States Patent Office: Method of Making a Sponge Material and the Product Resulting Therefrom. U.S. Patent 2,668,153, 28 April 1951. [Google Scholar]
- Wilson, C.L. United States Patent Office: Method of Making Expanded Polyvinil Alcohol-Formaldehyde Reaction Product and Product Resulting Therefrom. U.S. Patent 2,609,347, 27 May 1948. [Google Scholar]
- Minju, N.; Ananthakumar, S.; Savithri, S. Superswelling Hybrid Sponge from Water Glass for Selective Absorption of Crude Oil and Organic Solvents. ACS Omega 2019, 4, 17990–18001. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, W.; Peng, C.; Shi, K.; Luo, Y.; Ji, X. Novel Hydrophobic Polyvinyl Alcohol-Formaldehyde Foams for Organic Solvents Absorption and Effective Separation. RSC Adv. 2014, 4, 660–669. [Google Scholar] [CrossRef]
- Pan, Y.; Shi, K.; Liu, Z.; Wang, W.; Peng, C.; Ji, X. Synthesis of a New Kind of Macroporous Polyvinyl-Alcohol Formaldehyde Based Sponge and Its Water Superabsorption Performance. RSC Adv. 2015, 5, 78780–78789. [Google Scholar] [CrossRef]
- Li, Y.; Deng, J.; Zhang, J. Porous Poly(Vinyl Formal) Foam Prepared Using Poly(Vinyl Alcohol) of Low Degree of Polymerization. Polym. Int. 2018, 67, 1438–1444. [Google Scholar] [CrossRef]
- Thongkam, M.; Saelim, J.; Boonchom, B.; Seesanong, S.; Chaiseeda, K.; Laohavisuti, N.; Bunya-Atichart, K.; Boonmee, W.; Taemchuay, D. Simple and Rapid Synthesis of Calcium Acetate from Scallop Shells to Reduce Environmental Issues. Adsorpt. Sci. Technol. 2021, 2021, 6450289. [Google Scholar] [CrossRef]
- Pang, S.F.; Wu, C.Q.; Zhang, Q.N.; Zhang, Y.H. The Structural Evolution of Magnesium Acetate Complex in erosols by FTIR-ATR Spectra. J. Mol. Struct. 2015, 1087, 46–50. [Google Scholar] [CrossRef]
Scheme | AcOHad% * | AcOHconvert.% ° | AcOHresid.% § | AcOHT% @ |
---|---|---|---|---|
Ca(OH)2 | 113 ± 1 | 111 ± 4 | 2 ± 3 | 113 |
CaCO3/Ca(OH)2 | 64 ± 2 | 62 ± 5 | 2 ± 5 | /** |
ZnO | 121 ± 3 | 120 ± 6 | 1 ± 2 | 125 |
CaCO3 micro | 10 ± 1 | 9 ± 1 | 1 ± 2 | 58 |
Sample | AcOHad% * | AcOHconvert.% ° | AcOHresid.% § |
---|---|---|---|
PVF + ZnO | 27 ± 2 | 20 ± 2 | 7 ± 2 |
PVF | 17 ± 1 | 6 ± 1 | 11 ± 1 |
WP + ZnO | 17 ± 1 | 14 ± 1 | 3 ± 1 |
WP | 6.7 ± 0.7 | 3.5 ± 0.4 | 3.2 ± 0.5 |
ZnO nps | 121 ± 3 | 120 ± 3 | 1 ± 3 |
Sample | Duration of the First Degradation Step (days) | Duration of the Second Degradation Step (days) | Duration of the Third Degradation Step (days) | Treatment |
---|---|---|---|---|
P9_HCl5M | 9 | 1 | / | / |
P12_ATM2.9_NT | 9 | 1 | 12 | / |
P24_ATM2.9_NT | 9 | 1 | 24 | / |
P36_ATM2.9_NT | 9 | 1 | 36 | / |
P48_ATM2.9_NT | 9 | 1 | 48 | / |
P12_ATM2.9_WP | 9 | 1 | 12 | Pure WP (total weight 0.45 g) |
P24_ATM2.9_WP | 9 | 1 | 24 | |
P36_ATM2.9_WP | 9 | 1 | 36 | |
P48_ATM2.9_WP | 9 | 1 | 48 | |
P12_ATM2.9_WPZnO | 9 | 1 | 12 | WP uploaded with ZnO nps (total weight: 0.5 g) |
P24_ATM2.9_WPZnO | 9 | 1 | 24 | |
P36_ATM2.9_WPZnO | 9 | 1 | 36 | |
P48_ATM2.9_WPZnO | 9 | 1 | 48 | |
P12_ATM2.9_PVF | 9 | 1 | 12 | PVF sponge at the bottom of the jar (0.3 g) |
P24_ATM2.9_PVF | 9 | 1 | 24 | |
P36_ATM2.9_PVF | 9 | 1 | 36 | |
P48_ATM2.9_PVF | 9 | 1 | 48 | |
P12_ATM2.9_PVF+nps | 9 | 1 | 12 | PVF sponge uploaded with ZnO nps at the bottom of the jar (0.3 g) |
P24_ATM2.9_PVF+nps | 9 | 1 | 24 | |
P36_ATM2.9_PVF+nps | 9 | 1 | 36 | |
P48_ATM2.9_PVF+nps | 9 | 1 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porpora, F.; Lisi, L.; Carretti, E.; D’Aleo, C.; De Sanctis, M.; Baldini, S.; Dei, L. Adsorption of Acetic Acid Vapors by Inorganic–Organic Nano Materials: Implications for the Inhibition of the “Vinegar Syndrome” in 20th Century Motion Picture Films. Molecules 2025, 30, 1348. https://doi.org/10.3390/molecules30061348
Porpora F, Lisi L, Carretti E, D’Aleo C, De Sanctis M, Baldini S, Dei L. Adsorption of Acetic Acid Vapors by Inorganic–Organic Nano Materials: Implications for the Inhibition of the “Vinegar Syndrome” in 20th Century Motion Picture Films. Molecules. 2025; 30(6):1348. https://doi.org/10.3390/molecules30061348
Chicago/Turabian StylePorpora, Francesca, Lorenzo Lisi, Emiliano Carretti, Carlotta D’Aleo, Marianna De Sanctis, Samuele Baldini, and Luigi Dei. 2025. "Adsorption of Acetic Acid Vapors by Inorganic–Organic Nano Materials: Implications for the Inhibition of the “Vinegar Syndrome” in 20th Century Motion Picture Films" Molecules 30, no. 6: 1348. https://doi.org/10.3390/molecules30061348
APA StylePorpora, F., Lisi, L., Carretti, E., D’Aleo, C., De Sanctis, M., Baldini, S., & Dei, L. (2025). Adsorption of Acetic Acid Vapors by Inorganic–Organic Nano Materials: Implications for the Inhibition of the “Vinegar Syndrome” in 20th Century Motion Picture Films. Molecules, 30(6), 1348. https://doi.org/10.3390/molecules30061348