Advanced Materials for Energy Applications: From Fuels to Batteries and Beyond
Conflicts of Interest
List of Contributions
- Liu, Z.; Xu, Y.; Kan, X.; Chen, M.; Dai, J.; Zhang, Y.; Pang, P.; Ma, W.; Zhang, J. An Electrochemical Sensor for Detection of Lead (II) Ions Using Biochar of Spent Coffee Grounds Modified by TiO2 Nanoparticles. Molecules 2024, 29, 5704.
- Xu, Y.; Li, Y.; Ding, Z. Network–Polymer–Modified Superparamagnetic Magnetic Silica Nanoparticles for the Adsorption and Regeneration of Heavy Metal Ions. Molecules 2023, 28, 7385.
- Wang, Z.; Zhou, Z.; Gao, X.; Liu, Q.; Man, J.; Du, F.; Xiong, F. Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries. Molecules 2024, 29, 4813.
- Abdisattar, A.; Yerdauletov, M.; Yeleuov, M.; Napolskiy, F.; Merkulov, A.; Rudnykh, A.; Nazarov, K.; Kenessarin, M.; Zhomartova, A.; Krivchenko, V. The Impact of Biowaste Composition and Activated Carbon Structure on the Electrochemical Performance of Supercapacitors. Molecules 2024, 29, 5029.
- Wang, L.; Chen, H.; Zhang, Y.; Liu, J.; Peng, L. Research Progress in Strategies for Enhancing the Conductivity and Conductive Mechanism of LiFePO4 Cathode Materials. Molecules 2024, 29, 5250.
- Wang, Z.; Deng, R.; Wang, Y.; Pan, F. Comparison of Construction Strategies of Solid Electrolyte Interface (SEI) in Li Battery and Mg Battery—A Review. Molecules 2024, 29, 4761.
- Liu, J.; Wang, L.; Wu, G. Sintering Behavior of Molybdenite Concentrate During Oxidation Roasting Process in Air Atmosphere: Influences of Roasting Temperature and K Content. Molecules 2024, 29, 5183.
- Zhu, L.; Wu, D.; Yang, S.; Xie, K.; Wei, K.; Ma, W. Silicon extraction from diamond wire saw silicon slurry with flotation and the flotation interface behavior. Molecules 2024, 29, 5916.
- Xu, Y.; Zhou, Y.; Li, Y.; Zheng, Y. Bridging Materials and Analytics: A Comprehensive Review of Characterization Approaches in Metal-Based Solid-State Hydrogen Storage. Molecules 2024, 29, 5014.
- Zhou, Y.; Lv, H.; Chen, T.; Tong, S.; Zhang, Y.; Wang, B.; Tan, J.; Chen, X.; Pan, F. Probing the Effect of Alloying Elements on the Interfacial Segregation Behavior and Electronic Properties of Mg/Ti Interface via First-Principles Calculations. Molecules 2024, 29, 4138.
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [PubMed]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Abdin, Z. Shaping the stationary energy storage landscape with reversible fuel cells. J. Energy Storage 2024, 86, 111354. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Y.; Yang, H.; Lu, Y.; Tan, J.; Li, J.; Li, Q.; Chen, Y.; Shaw, L.L.; Pan, F. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J. Magnes. Alloys 2022, 10, 2946–2967. [Google Scholar] [CrossRef]
- Centi, G.; Quadrelli, E.A.; Perathoner, S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731. [Google Scholar]
- Dubey, R.; Gunasekaran, A.; Ali, S.S. Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain. Int. J. Prod. Econ. 2015, 160, 120–132. [Google Scholar] [CrossRef]
- Garcia-Navarro, J.; Isaacs, M.A.; Favaro, M.; Ren, D.; Ong, W.; Grätzel, M.; Jiménez-Calvo, P. Updates on hydrogen value chain: A strategic roadmap. Glob. Chall. 2024, 8, 2300073. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Sharma, P.; Bora, B.J.; Tran, V.D.; Truong, T.H.; Le, H.C.; Nguyen, P.Q.P. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2024, 54, 791–816. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Gao, L.; Yang, S. Advanced Materials for Energy Applications: From Fuels to Batteries and Beyond. Molecules 2025, 30, 1405. https://doi.org/10.3390/molecules30071405
Ding Z, Gao L, Yang S. Advanced Materials for Energy Applications: From Fuels to Batteries and Beyond. Molecules. 2025; 30(7):1405. https://doi.org/10.3390/molecules30071405
Chicago/Turabian StyleDing, Zhao, Liangjuan Gao, and Shicong Yang. 2025. "Advanced Materials for Energy Applications: From Fuels to Batteries and Beyond" Molecules 30, no. 7: 1405. https://doi.org/10.3390/molecules30071405
APA StyleDing, Z., Gao, L., & Yang, S. (2025). Advanced Materials for Energy Applications: From Fuels to Batteries and Beyond. Molecules, 30(7), 1405. https://doi.org/10.3390/molecules30071405