Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection †
Abstract
:1. Introduction
2. Applications
2.1. Battery Electrode Coatings
2.1.1. Aqueous Batteries
2.1.2. Nonaqueous Lithium-Ion Batteries
- Negative electrode materials
- Positive electrode materials
2.1.3. Auxiliary Materials
2.1.4. Other Metal-Ion Batteries
- Other battery electrode materials
2.2. Supercapacitor Electrode Coatings
2.3. Coatings in Fuel Cells
2.4. Further Applications
3. Conclusions
- Protection of the active mass against dissolution and/or corrosion;
- Increased electronic conductance;
- Mitigation of volume change effects;
- Inhibition of pulverization and agglomeration.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; E, J.; Wu, G.; Deng, Y.; Han, D.; Zhang, B.; Zhang, Z. A review of studies using graphenes in energy conversion, energy storage and heat transfer development. Energy Conv. Managem. 2019, 184, 581–599. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, M.; Li, J. Graphene-wrapped Cr2O3 hollow nanospheres with enhanced electrochemical performances for lithium-ion batteries. Int. J. Electrochem. Sci. 2015, 10, 7361–7370. [Google Scholar] [CrossRef]
- Ul Hoque, M.I.; Donne, S.W.; Holze, R. Graphene Nanocomposite Materials for Supercapacitor Electrodes. Encyclopedia 2024, 4, 101–116. [Google Scholar] [CrossRef]
- Fang, X.Y.; Yu, X.X.; Zheng, H.M.; Jin, H.B.; Wang, L.; Cao, M.S. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 2015, 379, 2245–2251. [Google Scholar] [CrossRef]
- Hugh, O.P. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications; William Andrew: Norwich, NY, USA, 1993; p. 61. [Google Scholar]
- Lim, S.; Park, H.; Yamamoto, G.; Lee, C.; Suk, J.W. Measurements of the electrical conductivity of monolayer graphene flakes using conductive atomic force microscopy. Nanomaterials 2021, 11, 2575. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Haas, J.; Marchenkov, A.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196. [Google Scholar] [CrossRef]
- Rouhi, N.; Wang, Y.Y.; Burke, P.J. Electrical Conductivity of Graphene Composites with In and In-Ga Alloy. Appl. Phys. Lett. 2012, 101, 263101. [Google Scholar] [CrossRef]
- Sruti, A.N.; Jagannadham, K. Ultrahigh conductivity of large area suspended few layer graphene films. J. Electron. Mater. 2010, 39, 1268–1276. [Google Scholar] [CrossRef]
- Jaafar, E.; Kashif, M.; Sahari, S.K.; Ngaini, Z. Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO). Mater. Sci. Forum 2018, 917, 112–116. [Google Scholar]
- Wu, Y.; Holze, R. Electrochemical Energy Conversion and Storage; VCH-WILEY: Weinheim, Germany, 2022. [Google Scholar]
- Xie, X.; Holze, R. Corrosion in supercapacitors—An Overview. Univ. J. Electrochem. 2023, 1, 1. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Holze, R. Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures. Molecules 2023, 28, 5028. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, Y.; Kushima, A.; Zhang, S.; Zhu, T.; Li, J.; Huang, J.H. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2012, 2, 722–741. [Google Scholar] [CrossRef]
- Mi, H.; Li, F.; Xu, S.; Li, Z.; Chai, X.; He, C.; Li, Y.; Liu, J. A Tremella-Like Nanostructure of Silicon@void@graphene-Like Nanosheets Composite as an Anode for Lithium-Ion Batteries. Nanoscale Res. Lett. 2016, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Wu, X.Y.; Wei, X.; Xu, S.M.; Ma, C.; Shu, M.H.; Wang, K.X.; Chen, J.S. Top-down fabrication of hierarchical nanocubes on nanosheets composite for high-rate lithium storage. Dalton Trans. 2018, 47, 16155–16163. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Wu, J.; Du, K.; Peng, Z.; Jia, M.; Yang, H.; Cao, Y. Surface-fluorinated Li4Ti5O12 nanowires/reduced graphene oxide composite as a high-rate anode material for Lithium ion batteries. Appl. Surf. Sci. 2019, 479, 158–166. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, D.; Geng, H.; Zheng, J.; Cao, X.; Gu, H. Synthesis of porous Mn2O3 embedded in reduced graphene oxide as advanced anode materials for lithium storage. New J. Chem. 2017, 41, 7102–7107. [Google Scholar] [CrossRef]
- Baboo, J.P.; Babar, S.; Kale, D.; Lekakou, C.; Laudone, G.M. Designing a graphene coating-based supercapacitor with lithium ion electrolyte: An experimental and computational study via multiscale modeling. Nanomaterials 2021, 11, 2899. [Google Scholar] [CrossRef]
- Zhou, F.; Zeng, L.; Guo, W.; Yan, Y.; Wu, F.; Pan, M. Enhanced performance of alpha-Fe2O3 nanoparticles with optimized graphene coated layer as anodes for lithium-ion batteries. Int. J. Energy Res. 2019, 43, 7095–7106. [Google Scholar]
- Leng, W.; Cui, L.; Liu, Y.; Gong, Y. MOF-Derived MnV2O4/C Microparticles with Graphene Coating Anchored on Graphite Sheets: Oxygen Defect Engaged High Performance Aqueous Zinc-Ion Battery. Adv. Mater. Interfaces 2022, 9, 2101705. [Google Scholar] [CrossRef]
- Jeon, J.W.; Kwon, S.R.; Lutkenhaus, J.L. Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J. Mater. Chem. A 2015, 3, 3757–3767. [Google Scholar] [CrossRef]
- Zhao, C.; Luo, X.; Chen, C.; Wu, H. Sandwich electrode designed for high performance lithium-ion battery. Nanoscale 2016, 8, 9511–9516. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xie, X.; Chen, X.; Holze, R. Graphene for corrosion protection in electrochemical energy technology. Corros. Mater. Degrad. 2025; submitted for publication. [Google Scholar]
- Ranjan, H.; Ranjan, P.; Sahu, T.K.; Sharma, R.K.; Kumar, P. Reduced graphene oxide electrode-coating as anti-corrosive/anti-oxidative laminate for Al/Cu liquid-phase batteries. J. Mater. Res. 2023, 38, 1792–1802. [Google Scholar] [CrossRef]
- Fu, L.; Qu, Q.; Holze, R.; Kondratiev, V.V.; Wu, Y. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: The best of both worlds? J. Mater. Chem. A 2019, 7, 14937–14970. [Google Scholar] [CrossRef]
- Chen, J.; Bie, L.; Sun, J.; Xu, F. Enhanced electrochemical performances of silicon nanotube bundles anode coated with graphene layers. Mater. Res. Bull. 2016, 73, 394–400. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, J.; Zuin, L.; Sun, D.; Zhao, J.; Bellal, A.; Hou, X. Synthesis of hierarchical graphene coated porous Si anode for lithium-ion batteries. J. Energy Storage 2024, 97, 112789. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.; Huang, Z.; Huang, T.; Chen, W.; Gong, X.; Ye, S.; Li, H.; Huang, S.; Xiong, W.; et al. Hydrogen bond interaction derived homogeneous graphene coating on submicron silicon anode. Battery Energy 2024, 3, 20230068. [Google Scholar] [CrossRef]
- Kim, S.C.; Huang, E.; Zhang, Z.; Wang, J.; Kim, Y.; Jeong, Y.K.; Oyakhire, S.T.; Yang, Y.; Cui, Y. Graphene coating on silicon anodes enabled by thermal surface modification for high-energy lithium-ion batteries. MRS Bull. 2022, 47, 127–133. [Google Scholar] [CrossRef]
- Son, I.H.; Park, J.H.; Kwon, S.; Park, S.; Rümmeli, M.H.; Bachmatiuk, A.; Song, H.J.; Ku, J.; Choi, J.W.; Choi, J.M.; et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 2015, 6, 7393. [Google Scholar] [CrossRef]
- Son, I.H.; Park, J.H.; Kwon, S.; Choi, J.W.; Rümmeli, M.H. Graphene coating of silicon nanoparticles with CO2-enhanced chemical vapor deposition. Small 2016, 12, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xu, B.; Shi, J.; Lei, X.; Ouyang, C. Confined Li ion migration in the silicon-graphene complex system: An ab initio investigation. Appl. Surf. Sci. 2018, 436, 505–510. [Google Scholar] [CrossRef]
- Wang, C.; Luo, F.; Lu, H.; Liu, B.; Chu, G.; Quan, B.; Li, J.; Gu, C.; Li, H.; Chen, L. Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology. Nanoscale 2017, 9, 17241–17247. [Google Scholar] [CrossRef]
- Chang, C.; Li, X.; Xu, Z.; Gao, H. Lithiation-enhanced charge transfer and sliding strength at the silicon-graphene interface: A first-principles study. Acta Mechan. Sol. Sin. 2017, 30, 254–262. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, J.; Zhao, X.; Huang, H.; Fu, C.; Li, Z.; Cheng, Y.; Niu, C.; Zhang, J. A Facile Path to Graphene-Wrapped Polydopamine-Entwined Silicon Nanoparticles with High Electrochemical Performance. ChemPlusChem 2019, 84, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Kumar, R.R.; Cong, J.; Imran, M.; Yang, D.; Yu, X. CVD Graphene on Textured Silicon: An Emerging Technologically Versatile Heterostructure for Energy and Detection Applications. Adv. Mater. Interfaces 2022, 9, 2100977. [Google Scholar] [CrossRef]
- Wasalathilake, K.C.; Hapuarachchi, S.N.S.; Zhao, Y.; Fernando, J.F.S.; Chen, H.; Nerkar, J.Y.; Golberg, D.; Zhang, S.; Yan, C. Unveiling the Working Mechanism of Graphene Bubble Film/Silicon Composite Anodes in Li-Ion Batteries: From Experiment to Modeling. ACS Appl. Energy Mater. 2020, 3, 521–531. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, J.; Han, S.; Park, S.; Lim, J.W.; Yun, D.J.; Kim, D.Y.; Park, K.; Son, I.H. Formation of Stable Solid-Electrolyte Interphase Layer on Few-Layer Graphene-Coated Silicon Nanoparticles for High-Capacity Li-Ion Battery Anodes. J. Phys. Chem. C 2017, 121, 26155–26162. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, X.; Wu, J.; Jang, H.D.; Kung, H.H.; Huang, J. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824–1829. [Google Scholar] [CrossRef]
- Lin, N.; Zhou, J.; Wang, L.; Zhu, Y.; Qian, Y. Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 409–414. [Google Scholar] [CrossRef]
- Jin, Y.; Tan, Y.; Hu, X.; Zhu, B.; Zheng, Q.; Zhang, Z.; Zhu, G.; Yu, Q.; Jin, Z.; Zhu, J. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2017, 9, 15388–15393. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhou, J.; Wang, J.; Pathiranage, S.; Oncel, N.; Robert Ilango, P.; Zhang, X.; Mann, M.; Hou, X. In Situ Synthesis of Graphene-Coated Silicon Monoxide Anodes from Coal-Derived Humic Acid for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2101645. [Google Scholar] [CrossRef]
- Li, Z.; Tao, X.; Yang, Y.; Yao, N.; Yang, Z.; Luo, D.; Wang, J.; Zhao, H. Enhanced cycling performance of SiOx microparticles uniformly coated with graphene sheets. Electrochim. Acta 2022, 421, 140469. [Google Scholar] [CrossRef]
- Dang, G.; Zhang, M.; Min, F.; Zhang, Q.; Lv, T.; Liu, W.; Wang, J.; Zhou, Y.; Xie, J.; Mao, S.S. Unleashing the potential: SiOx@GNs composites for superior lithium-ion battery anodes. J. Materiom. 2025, 11, 100899. [Google Scholar] [CrossRef]
- Gu, H.; Wang, Y.; Zeng, Y.; Yu, M.; Liu, T.; Chen, J.; Wang, K.; Xie, J.; Li, L. Boosting Cyclability and Rate Capability of SiOx via Dopamine Polymerization-Assisted Hybrid Graphene Coating for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 17388–17395. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Li, N.; Cui, H.; Wang, C. Embedded into graphene Ge nanoparticles highly dispersed on vertically aligned graphene with excellent electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 2014, 6, 19397–19404. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yin, Y.X.; Wan, L.J.; Guo, Y.G. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17456–17459. [Google Scholar] [CrossRef]
- Zhou, D.; Li, X.; Fan, L.Z.; Deng, Y. Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. Electrochim. Acta 2017, 230, 212–221. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, J.; Chen, X.; Ding, M.; Liu, H. Three-dimensional elastic ultrathin reduced graphene oxide coating SnS2 hierarchical microsphere as lithium ion batteries anode materials. J. Alloys Compd. 2018, 739, 1015–1024. [Google Scholar] [CrossRef]
- Liu, H.P.; Wen, G.W.; Bi, S.F.; Wang, C.Y.; Hao, J.M.; Gao, P. High rate cycling performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries. Electrochim. Acta 2016, 192, 38–44. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, L.; Suo, L.; Jiao, Y.; Meng, S.; Hu, Y.S.; Wang, Z.; Chen, L. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: A combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2011, 13, 15127–15133. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Gan, Y.; Yao, Q.; Wang, L.P.; Wang, C.; Zhang, Q.; Hou, K.; Zhao, Y.; Guan, L. Boosting the lithium and sodium storage performance of graphene-based composite via pore engineering and surface protection. Nanotechnology 2020, 32, 105402. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Zeng, M.; Xu, H.; Li, J. Synthesis and lithium storage performance of graphene/Co3O4 microrods hybrids. J. Mater. Sci.: Mater. Electron. 2016, 27, 7657–7664. [Google Scholar] [CrossRef]
- Wu, K.; Geng, B.; Zhang, C.; Shen, W.; Yang, D.; Li, Z.; Yang, Z.; Pan, D. Hierarchical porous arrays of mesoporous Co3O4 nanosheets grown on graphene skin for high-rate and high-capacity energy storage. J. Alloys Compd. 2020, 820, 153296. [Google Scholar] [CrossRef]
- Sadeghi Ghazvini, A.A.; Taheri-Nassaj, E.; Raissi, B.; Riahifar, R.; Sahba Yaghmaee, M.; Shaker, M. Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode. Mater. Lett. 2021, 285, 129195. [Google Scholar] [CrossRef]
- Kang, C.; Cha, E.; Lee, S.H.; Choi, W. In situ fabrication of a graphene-coated three-dimensional nickel oxide anode for high-capacity lithium-ion batteries. RSC Adv. 2018, 8, 7414–7421. [Google Scholar] [CrossRef]
- Park, K.Y.; Zhu, Y.; Torres-Castanedo, C.G.; Jung, H.J.; Luu, N.S.; Kahvecioglu, O.; Yoo, Y.; Seo, J.W.T.; Downing, J.R.; Lim, H.D.; et al. Elucidating and Mitigating High-Voltage Degradation Cascades in Cobalt-Free LiNiO2 Lithium-Ion Battery Cathodes. Adv. Mater. 2022, 34, 2106402. [Google Scholar] [CrossRef]
- Chen, K.S.; Xu, R.; Luu, N.S.; Secor, E.B.; Hamamoto, K.; Li, Q.; Kim, S.; Sangwan, V.K.; Balla, I.; Guiney, L.M.; et al. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion. Nano Lett. 2017, 17, 2539–2546. [Google Scholar] [CrossRef]
- Sharifi-Asl, S.; Soto, F.A.; Foroozan, T.; Asadi, M.; Yuan, Y.; Deivanayagam, R.; Rojaee, R.; Song, B.; Bi, X.; Amine, K.; et al. Anti-Oxygen Leaking LiCoO2. Adv. Funct. Mater. 2019, 29, 1901110. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, S.; Meng, C.; Liu, H.; Dong, C.; Shi, X.; Das, P.; Huang, R.; Yu, Y.; Wu, Z.S. A Near-Surface Structure Reconfiguration Strategy to Regulate Mn3+/Mn4+ and O2-/(O2)n- Redox for Stabilizing Lithium-Rich Oxide Cathode. Adv. Funct. Mater. 2023, 33, 2300987. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, R.; Zhong, M.; Guo, S. Effects of the Inherent Tubular Structure and Graphene Coating on the Lithium Ion Storage Performances of Electrospun NiO/Co3O4 Nanotubes. J. Phys. Chem. C 2020, 124, 143–151. [Google Scholar] [CrossRef]
- Tao, J.; Liu, G.; Chen, Y.; Chi, Y.; Hong, L.; Lin, Z.; Lin, Y.; Huang, Z. 3D plum candy-like NiCoMnO4@graphene as anodes for high-performance lithium-ion batteries. RSC Adv. 2018, 8, 42438–42445. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, P.; Li, M.; Wen, Y.; Cao, G.; Qiu, J.; Ming, H.; Zhao, P.; Zhang, S. Bifunctional Sulfonated Graphene-Modified LiNi0.5Mn1.5O4 for Long-Life and High-Energy-Density Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 5963–5972. [Google Scholar] [CrossRef]
- Gong, F.; Xia, D.; Bi, C.; Yang, J.; Zeng, W.; Chen, C.; Ding, Y.; Xu, Z.; Liao, J.; Wu, M. Systematic comparison of hollow and solid Co3V2O8 micropencils as advanced anode materials for lithium ion batteries. Electrochim. Acta 2018, 264, 358–366. [Google Scholar] [CrossRef]
- Gao, M.; Liu, X.; Yang, Y.; Yu, Y. FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries. Sci. China Chem. 2018, 61, 1151–1158. [Google Scholar] [CrossRef]
- Jing, P.; Wang, Q.; Xian, C.; Du, L.; Zhang, Y.; Wang, B.; Wu, H.; Wu, K.; Wang, Q.; Zhang, Y. Ultrafast and durable Li/Na storage by an iron selenide anode using an elastic hierarchical structure. Inorg. Chem. Front. 2021, 8, 3686–3696. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Z.L.; Kim, J.K. In situ grown graphitic carbon/Fe2O3/carbon nanofiber composites for high performance freestanding anodes in Li-ion batteries. RSC Adv. 2014, 4, 12298–12301. [Google Scholar] [CrossRef]
- Li, X.; Zheng, X.; Shao, J.; Gao, T.; Shi, Q.; Qu, Q. Synergistic Ternary Composite (Carbon/Fe3O4@Graphene) with Hollow Microspherical and Robust Structure for Li-Ion Storage. Chem. Eur. J. 2016, 22, 376–381. [Google Scholar] [CrossRef]
- Xu, W.; Xue, W.; Zhang, Y.; Zhang, B.; Wang, Y.; Zhao, R. Graphene coating magnetite/N-doping carbon hybrid composites and its lithium storage performance. Mater. Lett. 2018, 231, 47–50. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, J.; Fang, Z.; Wu, M. Alkali ions pre-intercalation and reduced graphene coating of MnO2 for high-capacity Li-ion battery. E3S Web Conf. 2023, 385, 04031. [Google Scholar] [CrossRef]
- Lyu, D.; Zhang, L.; Wei, H.; Geng, H.; Gu, H. Synthesis of graphene wrapped porous CoMoO4 nanospheres as high-performance anodes for rechargeable lithium-ion batteries. RSC Adv. 2017, 7, 51506–51511. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, F.; Sun, J.; Li, Z.; Zhang, L.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Zhang, L.; Rümmeli, M.H.; et al. Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Stor. Mater. 2018, 12, 110–118. [Google Scholar] [CrossRef]
- Wang, T.; Kong, Z.; Guo, F.; Liu, X.; Fu, A.; Li, Y.; Guo, P.; Guo, Y.G.; Li, H. Graphene-encapsulated ZnO composites as high-performance anode materials for lithium ion batteries. Ionics 2020, 26, 565–577. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Zhang, Y.; Li, J.; Babaa, M.R.; Liu, N.; Bakenov, Z. Synthesis of microflower-like vacancy defective copper sulfide/reduced graphene oxide composites for highly efficient lithium-ion batteries. Nanotechnology 2020, 31, 095405. [Google Scholar] [CrossRef] [PubMed]
- Fedoseeva, Y.V.; Makarova, A.A.; Stolyarova, S.G.; Arkhipov, V.E.; Rühl, E.; Okotrub, A.V.; Bulusheva, L.G. Lithium-induced intralayer rearrangement of molybdenum disulfide: Effect of graphene coating. Appl. Surf. Sci. 2022, 598, 153846. [Google Scholar] [CrossRef]
- Shi, J.; Du, N.; Zheng, W.; Li, X.; Dai, Y.; He, G. Ultrathin Ni-Co double hydroxide nanosheets with conformal graphene coating for highly active oxygen evolution reaction and lithium ion battery anode materials. Chem. Eng. J. 2017, 327, 9–17. [Google Scholar] [CrossRef]
- Xu, T.; Sun, W.; Kong, T.; Zhou, J.; Qian, Y. Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Phys. Chim. Sin. 2024, 40, 2303021. [Google Scholar] [CrossRef]
- Ma, Y.; Qi, P.; Ma, J.; Wei, L.; Zhao, L.; Cheng, J.; Su, Y.; Gu, Y.; Lian, Y.; Peng, Y.; et al. Wax-Transferred Hydrophobic CVD Graphene Enables Water-Resistant and Dendrite-Free Lithium Anode toward Long Cycle Li-Air Battery. Adv. Sci. 2021, 8, 2100488. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ying, D.; Xu, S.; Guo, Q.; Li, Y.; Wang, S.; Zhou, X.; Shao, G.; Liu, Z. Graphene coated lithium foil anode enables long cycle life Li metal pouch cells. Carbon 2023, 215, 118498. [Google Scholar] [CrossRef]
- Bai, M.; Xie, K.; Yuan, K.; Zhang, K.; Li, N.; Shen, C.; Lai, Y.; Vajtai, R.; Ajayan, P.; Wei, B. A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers. Adv. Mater. 2018, 30, 1801213. [Google Scholar] [CrossRef]
- Zhang, R.; Wen, S.; Wang, N.; Qin, K.; Liu, E.; Shi, C.; Zhao, N. N-Doped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes. Adv. Energy Mater. 2018, 8, 1800914. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, D.W.; Jung, H.T.; Choi, J.W. Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive. Chem. Mater. 2015, 27, 2780–2787. [Google Scholar] [CrossRef]
- Ren, F.; Peng, Z.; Wang, M.; Xie, Y.; Li, Z.; Wan, H.; Lin, H.; Wang, D. Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Stor. Mater. 2019, 16, 364–373. [Google Scholar] [CrossRef]
- Tang, S.; Luo, D.; Bai, S.; Wu, M.; Zhang, J.; Liu, W.; Yang, Z. Unravelling the regulating role of graphene coating on improving the electrochemical performance of pyrophosphate cathode material: A first-principles study. Appl. Surf. Sci. 2022, 605, 154814. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, S.; Ye, F.; Yao, S.; Zhou, Z.; Wang, S. Synthesis and characterization of LiFePO4 electrode materials coated by graphene. Appl. Surf. Sci. 2014, 305, 427–432. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Zhang, L.; Hao, W.; Wang, H.; Qu, Q.; Zheng, H. In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. J. Power Sources 2014, 249, 311–319. [Google Scholar] [CrossRef]
- Hang, L.T.; Anh, N.T.M.; Tru, N.N.; Nguyen, H.L.T.; Phung, L.M.L. Modification of nanosized LiFePO4 via nickel doping and graphene coating. Int. J. Nanotechnol. 2018, 15, 914–924. [Google Scholar] [CrossRef]
- Tian, Z.; Zhou, Z.; Liu, S.; Ye, F.; Yao, S. Enhanced properties of olivine LiFePO4/graphene co-doped with Nb5+ and Ti4+ by a sol-gel method. Solid State Ionics 2015, 278, 186–191. [Google Scholar] [CrossRef]
- Zhang, C.; Lou, J.; Li, J.; Song, J.; Qi, Z.; Huo, S.; Lin, Y.; Yang, F.; Liu, L. Graphene coating-modified LiCoO2 films as high-performance cathode material in quasi-solid-state thin-film lithium batteries. Appl. Surf. Sci. 2024, 657, 159769. [Google Scholar] [CrossRef]
- Holze, R. Between the Electrodes of a Supercapacitor: An Update on Electrolytes. Adv. Mater. Sci. Technol. 2024, 6, 0627771. [Google Scholar] [CrossRef]
- Chen, X.; Holze, R. Polymer Electrolytes for Supercapacitors. Polymers 2024, 16, 3164. [Google Scholar] [CrossRef]
- Ding, D.; Maeyoshi, Y.; Kubota, M.; Wakasugi, J.; Kanamura, K.; Abe, H. Highly improved performances of LiMn0.7Fe0.3PO4 cathode with in situ electrochemically reduced graphene oxide. J. Alloys Compd. 2019, 793, 627–634. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Chen, X.; Fang, L.; Bai, Y.; Liu, R.; Wang, Y. Unique synthesis of sandwiched graphene@(Li0.893Fe0.036)Co(PO4) nanoparticles as high-performance cathode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 12320–12327. [Google Scholar] [CrossRef]
- Yang, J.; Kang, X.; He, D.; Zheng, A.; Pan, M.; Mu, S. Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries. J. Mater. Chem. A 2015, 3, 16567–16573. [Google Scholar] [CrossRef]
- Loftager, S.; García-Lastra, J.M.; Vegge, T. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes. Phys. Chem. Chem. Phys. 2017, 19, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Jaber-Ansari, L.; Puntambekar, K.P.; Kim, S.; Aykol, M.; Luo, L.; Wu, J.; Myers, B.D.; Iddir, H.; Russell, J.T.; Saldaña, S.J.; et al. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene. Adv. Energy Mater. 2015, 5, 1500646. [Google Scholar] [CrossRef]
- Gao, C.; Liu, H.; Bi, S.; Fan, S.; Meng, X.; Li, Q.; Luo, C. Insight into the effect of graphene coating on cycling stability of LiNi0.5Mn1.5O4: Integration of structure-stability and surface-stability. J. Materiom. 2020, 6, 712–722. [Google Scholar] [CrossRef]
- Gao, C.; Liu, H.; Bi, S.; Fan, S.; Liu, Q.; Li, H.; Cao, L.; Luo, C. Insight into the High-Temperature Cycling Stability of a Micro-nanostructured LiNi0.5Mn1.5O4/Graphene Composite Cathode for High-Voltage Lithium-Ion Batteries. J. Phys. Chem. C 2020, 124, 18847–18858. [Google Scholar] [CrossRef]
- Xu, H.; Ai, L.; Yan, J.; Yan, G.; Zhang, W. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathodes by cerium doping and graphene coating. Ceram. Int. 2019, 45, 23089–23096. [Google Scholar] [CrossRef]
- Wu, F.; Yan, Y.; Wang, R.; Cai, H.; Tong, W.; Tang, H. Synthesis of LiNi1/3Mn1/3Co1/3O2@graphene for lithium-ion batteries via self-assembled polyelectrolyte layers. Ceram. Int. 2017, 43, 7668–7673. [Google Scholar] [CrossRef]
- Ning, R.; Yuan, K.; Zhang, K.; Shen, C.; Xie, K. A scalable snowballing strategy to construct uniform rGO-wrapped LiNi0.8Co0.1Mn0.1O2 with enhanced processability and electrochemical performance. Appl. Surf. Sci. 2021, 542, 148663. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, S.; Kim, S.; Do, K.; Kim, S.; Jo, H.; Lim, H.D.; Ahn, H. Uniform and Multifunctional PEI-POSS/Carbon Encapsulation for High-Rate Performance and Surface Stabilization of Nickel-Rich Layered Cathodes in Lithium-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2304614. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, Z.; Wu, Y.; Holze, R. On the utilization of supercapacitor electrode materials. Electrochim. Acta 2021, 366, 137390. [Google Scholar] [CrossRef]
- Park, K.Y.; Lim, J.M.; Luu, N.S.; Downing, J.R.; Wallace, S.G.; Chaney, L.E.; Yoo, H.; Hyun, W.J.; Kim, H.U.; Hersam, M.C. Concurrently Approaching Volumetric and Specific Capacity Limits of Lithium Battery Cathodes via Conformal Pickering Emulsion Graphene Coatings. Adv. Energy Mater. 2020, 10, 2001216. [Google Scholar] [CrossRef]
- Xue, B.; Wu, X. High structural stability of graphene coated nickel—Rich cathode material in Li—Ion battery. J. Alloys Compd. 2023, 965, 171413. [Google Scholar] [CrossRef]
- Zhang, J.; He, H.; Wang, X.; Mao, G.; Yu, W.; Ding, Z.; Tian, Q.; Tong, H.; Guo, X. A new modification strategy for improving the electrochemical performance of high-nickel cathode material: V2O5 particles anchored on rGO sheets as a dual coating layer. Appl. Surf. Sci. 2022, 589, 152878. [Google Scholar] [CrossRef]
- Lim, J.M.; Luu, N.S.; Park, K.Y.; Tan, M.T.Z.; Kim, S.; Downing, J.R.; He, K.; Dravid, V.P.; Hersam, M.C. Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization. J. Vac. Sci. Technol. A 2020, 38, 063210. [Google Scholar] [CrossRef]
- Luu, N.S.; Lim, J.M.; Torres-Castanedo, C.G.; Park, K.Y.; Moazzen, E.; He, K.; Meza, P.E.; Li, W.; Downing, J.R.; Hu, X.; et al. Elucidating and Mitigating High-Voltage Interfacial Chemomechanical Degradation of Nickel-Rich Lithium-Ion Battery Cathodes via Conformal Graphene Coating. ACS Appl. Energy Mater. 2021, 4, 11069–11079. [Google Scholar] [CrossRef]
- Ning, F.; Shang, H.; Li, B.; Jiang, N.; Zou, R.; Xia, D. Surface thermodynamic stability of Li-rich Li2MnO3: Effect of defective graphene. Energy Stor. Mater. 2019, 22, 113–119. [Google Scholar] [CrossRef]
- Kim, T.; Song, B.; Lunt, A.J.G.; Cibin, G.; Dent, A.J.; Lu, L.; Korsunsky, A.M. In operando X-ray absorption spectroscopy study of charge rate effects on the atomic environment in graphene-coated Li-rich mixed oxide cathode. Mater. Design 2016, 98, 231–242. [Google Scholar] [CrossRef]
- Kim, T.; Song, B.; Cibin, G.; Dent, A.; Li, L.; Korsunsky, A.M. A comparative spectroscopic study of graphene-coated vs pristine Li(Mn, Ni, Co) oxide materials for lithium-ion battery cathodes. Proc. Int. MultiConf. Eng. Comp. Sci. 2014, II, 2210. [Google Scholar]
- He, Z.; Wang, Z.; Guo, H.; Li, X.; Xianwen, W.; Yue, P.; Wang, J. A simple method of preparing graphene-coated Li[Li0.2Mn 0.54Ni0.13Co0.13]O2 for lithium-ion batteries. Mater. Lett. 2013, 91, 261–264. [Google Scholar] [CrossRef]
- Zhu, J.; Gandi, A.N.; Gu, M. Phosphorene as cathode for metal-ion batteries: Importance of F decoration. Mater. Today Energy 2018, 10, 141–145. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Zhang, J.; Su, Q.; Du, G. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries. Appl. Surf. Sci. 2015, 324, 399–404. [Google Scholar] [CrossRef]
- Wang, H.; Yang, H.; Liang, Y.; Robinson, J.T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yuan, P.; Chen, W.; Hu, J.; Mao, J.; Shao, G. Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium-sulfur batteries. Electrochim. Acta 2015, 178, 564–570. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Q.; Chen, X.; Hu, A.; Deng, W.; Liu, Z. Controllable graphene coated mesoporous carbon/sulfur composite for lithium-sulfur batteries. RSC Adv. 2015, 5, 74138–74143. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, J.; Yang, J.; Zou, Y.; Tang, J.; Wang, S.; Ma, L.; Liao, Q. Improving the performance of lithium-sulfur batteries by graphene coating. J. Power Sources 2013, 243, 993–1000. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Tu, J.P.; Lu, Y.; Cai, J.B.; Zhang, Y.J.; Wang, X.L.; Gu, C.D. Graphene-coated mesoporous carbon/sulfur cathode with enhanced cycling stability. Electrochim. Acta 2013, 113, 256–262. [Google Scholar] [CrossRef]
- Zheng, J.F.; Zheng, M.B.; Li, N.W.; Lu, H.L.; Qiu, L.; Cao, J.M.; Ji, G.B. Preparation of graphene coated carbon nanotube-sulfur composite and its performance for lithium-sulfur battery. Chin. J. Inorg. Chem. 2013, 29, 1355–1360. [Google Scholar]
- Xie, J.; Yang, J.; Zhou, X.; Zou, Y.; Tang, J.; Wang, S.; Chen, F. Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries. J. Power Sources 2014, 253, 55–63. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, H.; Zhang, Y.; Xiang, M.; Zhao, G.; Liu, H.; Zhang, Y. Vesicle-like sulfur/reduced graphene oxide composites for high performance lithium-sulfur batteries. J. Alloys Compd. 2017, 724, 1007–1013. [Google Scholar] [CrossRef]
- Tang, X.N.; Sun, Z.H.; Zhuo, S.P.; Li, F. Nitrogen-doped CMK-3@graphene hybrids as a sulfur host material for use in lithium-sulfur batteries. New Carb. Mater. 2017, 32, 535–541. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, F.; Yang, J.; Ma, L.; Bai, T.; Long, B.; Liao, Q.; Liu, C. Dual protection of sulfur by interconnected porous carbon nanorods and graphene sheets for lithium-sulfur batteries. J. Electroanal. Chem. 2015, 747, 59–67. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, F.; Yang, J. Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium-sulfur batteries. J. Energy Chem. 2015, 24, 448–455. [Google Scholar] [CrossRef]
- Cengiz, E.; Salihoglu, O.; Ozturk, O.; Kocabas, C.; Demir-Cakan, R. Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries. J. Alloys Compd. 2019, 777, 1017–1024. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, H.; Li, X.; Chu, Z.; Zheng, W.; Dai, Y.; Jiang, X.; Wu, X.; He, G. Defective graphene coating-induced exposed interfaces on CoS nanosheets for high redox electrocatalysis in lithium-sulfur batteries. Energy Stor. Mater. 2021, 40, 358–367. [Google Scholar] [CrossRef]
- Yang, J.; Cao, C.; Qiao, W.; Qiao, J.; Tang, C.; Xue, Y. B/N co-doping rGO/BNNSs heterostructure with synergistic adsorption-electrocatalysis function enabling enhanced electrochemical performance of lithium-sulfur batteries. Chem. Eng. J. 2023, 467, 143377. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.B.; Shen, L.; Lei, D.; Ma, J.; Ye, H.; Shi, K.; Li, B.; Kang, F. Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. Nano Energy 2018, 50, 367–375. [Google Scholar] [CrossRef]
- Kim, S.Y.; Song, Y.I.; Wee, J.H.; Kim, C.H.; Ahn, B.W.; Lee, J.W.; Shu, S.J.; Terrones, M.; Kim, Y.A.; Yang, C.M. Few-layer graphene coated current collector for safe and powerful lithium ion battery. Carbon 2019, 153, 495–503. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Wang, J. Composite Graphene-Modified Aluminum Foil Cathode Current Collectors for Lithium-ion Battery with Enhanced Mechanical and Electrochemical Performances. Batteries&Supercaps 2024, 7, e202400028. [Google Scholar]
- Wang, R.; Li, W.; Liu, L.; Qian, Y.; Liu, F.; Chen, M.; Guo, Y.; Liu, L. Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances. J. Electroanal. Chem. 2019, 833, 63–69. [Google Scholar] [CrossRef]
- Jiang, J.; Nie, P.; Ding, B.; Wu, W.; Chang, Z.; Wu, Y.; Dou, H.; Zhang, X. Effect of Graphene Modified Cu Current Collector on the Performance of Li4Ti5O12 Anode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 30926–30932. [Google Scholar] [CrossRef]
- Liu, G.; Xie, J.; Sun, Y.; Zhang, P.; Li, X.; Zheng, L.; Hao, L.; Shanmin, G. Constructing 3D honeycomb-like CoMn2O4 nanoarchitecture on nitrogen-doped graphene coating Ni foam as flexible battery-type electrodes for advanced supercapattery. Int. J. Hydrogen Energy 2021, 46, 36314–36322. [Google Scholar] [CrossRef]
- Sainudeen, S.S.; Joseph, A.; Joseph, M.; Sajith, V. Heat transfer phenomena of copper-graphene nanocomposite coated aluminium heat spreaders: An interferometric study. Appl. Therm. Eng. 2022, 212, 118545. [Google Scholar] [CrossRef]
- Sequino, L.; Sebastianelli, G.; Vaglieco, B.M. Carbon and Graphene Coatings for the Thermal Management of Sustainable LMP Batteries for Automotive Applications. Materials 2022, 15, 7744. [Google Scholar] [CrossRef]
- Wang, J.X.; Mao, Y.; Miljkovic, N. Nano-Enhanced Graphite/Phase Change Material/Graphene Composite for Sustainable and Efficient Passive Thermal Management. Adv. Sci. 2024, 11, 2402190. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Tang, X.; Qiu, R.; Wang, S.; Cao, G.; Zhang, M. Graphene-Encapsulated FeS2 in Carbon Fibers as High Reversible Anodes for Na+/K+ Batteries in a Wide Temperature Range. Small 2019, 15, 1804740. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, W.; Xue, L.; Chen, W.; Xiang, X.; Wan, M.; Huang, Y. Mechanism of capacity fade in sodium storage and the strategies of improvement for FeS2 anode. ACS Appl. Mater. Interfaces 2017, 9, 1536–1541. [Google Scholar] [CrossRef]
- Gong, Y.; Sun, Y.; Li, Y.; Wu, C.; Bai, Y. Rational Design of 3D Hierarchical Fe3S4 for Superior Sodium-Ion Battery Anode Material. Adv. Sustain. Syst. 2024, 8, 2400679. [Google Scholar] [CrossRef]
- Hou, T.; Yue, S.; Sun, X.; Fan, A.; Chen, Y.; Wang, M.; Cai, S.; Zheng, C.; Liao, B.; Zhao, J. Nitrogen-Doped graphene coated FeS2 microsphere composite as high-performance anode materials for sodium-ion batteries enhanced by the chemical and structural synergistic effect. Appl. Surf. Sci. 2020, 505, 144633. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Y.; Li, Z.; Deng, L.; Wu, K.; Wang, Y. Effect of Ti doping on the structure and electrochemical properties of Na3V2(PO4)2F3 as anode material for sodium ion batteries. Ferroelectrics 2023, 602, 166–173. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zheng, R.; Li, W.J.; Ma, Y.J.; Yu, K.H.; Lv, P.; Wei, W. Plasma assisted fabrication of a NaTi2(PO4)3@Gr nanocomposite for high-rate and long cycle-life sodium-ion batteries. Sustain. Energy Fuels 2020, 4, 4581–4588. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yang, H.; Cao, Y. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 2019, 56, 160–168. [Google Scholar] [CrossRef]
- Dutta, P.K.; Sen, U.K.; Mitra, S. Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv. 2014, 4, 43155–43159. [Google Scholar] [CrossRef]
- Qin, J.; Shi, H.; Huang, K.; Lu, P.; Wen, P.; Xing, F.; Yang, B.; Ye, M.; Yu, Y.; Wu, Z.S. Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 2021, 12, 5786. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, K.; Park, M.; Lau, V.W.H.; Wang, H.; Zhang, J.; Zhang, J.; Zhao, R.; Yamauchi, Y.; Kang, Y.M. Highly Reversible and Rapid Sodium Storage in GeP3 with Synergistic Effect from Outside-In Optimization. ACS Nano 2020, 14, 4352–4365. [Google Scholar] [CrossRef]
- Liu, R.; Li, Y.; Wang, C.; Xiao, N.; He, L.; Guo, H.; Wan, P.; Zhou, Y.; Qiu, J. Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Proc. Technol. 2018, 178, 35–40. [Google Scholar] [CrossRef]
- Xiong, T.; Zhang, D.; Yeo, J.Y.; Zhan, Y.; Ong, Y.K.; Alava Limpo, C.M.; Shi, L.; Rao, Y.; Pu, Y.; Lai, W.; et al. Interfacial design towards stable zinc metal-free zinc-ion batteries with high energy density. J. Mater. Chem. A 2024, 12, 5499–5507. [Google Scholar] [CrossRef]
- Xia, K.; Li, L.; Qiu, Y.; Weng, J.; Shen, S.; Chen, M.; Zhuang, Y.; Wen, Y.; Yang, C.; Liu, Z.; et al. Graphene acid-enhanced interfacial layers with high Zn2+ ion selectivity and desolvation capability for corrosion-resistant Zn-metal anodes. J. Mater. Chem. A 2024, 12, 24175–24187. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Yao, H.; Su, F.; Shan, Z.; Shen, H.; Liu, T.; Zhao, J.; Ding, C. Interfacial regulation and protection by conductive graphene coating induces highly reversible zinc behavior for durable aqueous zinc-ion batteries. J. Alloys Compd. 2023, 947, 169678. [Google Scholar] [CrossRef]
- Etesami, M.; Khezri, R.; Motlagh, S.R.; Gopalakrishnan, M.; Mano, P.; Namuangruk, S.; Wannapaiboon, S.; Yonezawa, T.; Somwangthanaroj, A.; Kheawhom, S. Eco-friendly synthesis of bimetallic FeCo nanocatalysts within heteroatom-doped carbon for oxygen reduction and zinc-air battery enhancement. Mater. Today Energy 2024, 44, 101649. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Z.; Li, X.; Yan, R.; Wang, J.; Li, A.; Duan, X.; Wang, J.; Liu, Y.; Wang, J. Three-Dimensional Framework of Graphene Nanomeshes Shell/Co3O4 Synthesized as Superior Bifunctional Electrocatalyst for Zinc-Air Batteries. ACS Appl. Mater. Interfaces 2017, 9, 41273–41283. [Google Scholar] [CrossRef] [PubMed]
- Prabakar, S.J.R.; Park, C.; Ikhe, A.B.; Sohn, K.S.; Pyo, M. Simultaneous Suppression of Metal Corrosion and Electrolyte Decomposition by Graphene Oxide Protective Coating in Magnesium-Ion Batteries: Toward a 4-V-Wide Potential Window. ACS Appl. Mater. Interfaces 2017, 9, 43767–43773. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, H.; Gao, Y.; Zhu, K.; Wu, H.; Cao, D. An organic composite anode with multiple active points for aqueous lithium-ion batteries. Compos. B Eng. 2023, 264, 110932. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Q.; Gan, Y.; Zhang, Q.; Guan, L.; Zhao, Y. Monodispersed SWNTs Assembled Coating Layer as an Alternative to Graphene with Enhanced Alkali-ion Storage Performance. Chin. J. Struct. Chem. 2022, 41, 2201040–2201046. [Google Scholar]
- Grigoras, K.; Ahopelto, J.; Prunnila, M. Porous silicon supercapacitors. In Handbook of Porous Silicon; Canham, L., Ed.; Springer: Cham, Switzerland, 2018; pp. 1517–1529. [Google Scholar]
- Chatterjee, S.; Carter, R.; Oakes, L.; Erwin, W.R.; Bardhan, R.; Pint, C.L. Electrochemical and corrosion stability of nanostructured silicon by graphene coatings: Toward high power porous silicon supercapacitors. J. Phys. Chem. C 2014, 118, 10893–10902. [Google Scholar] [CrossRef]
- Xiang, X.; You, X.; Liu, D.; Liu, X.; Yang, S.; Qiu, Y.; Tang, H.; Xie, Z.; Zheng, H.; Li, J.; et al. A hybrid supercapacitor constructed by graphene wrapped ordered meso-porous Si based electrode. Coll. Surf. A 2019, 576, 15–21. [Google Scholar] [CrossRef]
- Zhong, M.; Wang, X.; Huang, Y.; Li, L.; Gao, S.; Tian, Y.; Shen, W.; Zhang, J.; Guo, S. Anthracite-derived carbon-based electrode materials for high performance lithium ion capacitors. Fuel Proc. Technol. 2022, 228, 107146. [Google Scholar] [CrossRef]
- Liu, T.; Shao, G.; Ji, M. Electrodeposition of Ni(OH)2/Ni/graphene composites under supergravity field for supercapacitor application. Mater. Lett. 2014, 122, 273–276. [Google Scholar] [CrossRef]
- Lv, J.; Liang, T.; Yang, M.; Ken, S.; Hideo, M. Investigation of microstructures of ZnCo2O4 on bare Ni foam and Ni foam coated with graphene and their supercapacitors performance. J. Energy Chem. 2017, 26, 330–335. [Google Scholar] [CrossRef]
- Tong, H.; Gong, D.; Liu, J.; Xiao, J.; Chen, X.; Wu, Y.; Zhou, Y.; Shen, L.; Zhang, X. High-performance 2.5 V supercapacitor with high energy density and long cycling stability based on graphene coated oxygen-vacancy birnessite. J. Alloys Compd. 2022, 901, 163543. [Google Scholar] [CrossRef]
- Ning, J.; Hao, L.; Zhang, X.; Liang, M.; Zhi, L. High-quality graphene grown directly on stainless steel meshes through CVD process for enhanced current collectors of supercapacitors. Sci. China Technol. Sci. 2014, 57, 259–263. [Google Scholar] [CrossRef]
- Zhou, S.; Xie, Q.; Wu, S.; Huang, X.; Zhao, P. Influence of graphene coating on supercapacitive behavior of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous and organic electrolytes. Ionics 2017, 23, 1499–1507. [Google Scholar] [CrossRef]
- Xie, Q.; Zhou, S.; Wu, S.; Zhang, Y.; Zhao, P. Supercapacitive behavior of laminar-structured carbon cloth with alternating graphene and hybrid nanofibers: A synergistic effect of graphene-coating and post-oxidization. Appl. Surf. Sci. 2017, 407, 36–43. [Google Scholar] [CrossRef]
- İyidoğan, D.; Akdemir, Ö.; Eryilmaz, J.; Kaplan, G.; Çavus, M.B.; Haciismailoğlu, B.; Alper, M.; Çobanoğlu, Ö. Projection of sciences onto textile and fashion: Nano-technology and chargeable fabric example—Part II. Tekstil ve Muhendis 2019, 26, 71–78. [Google Scholar] [CrossRef]
- Dericiler, K.; Hezarkhani, M.; Tabrizi, I.E.; Dogan, S.; Berktas, I.; Erdem, E.; Advani, S.G.; Yildiz, M.; Sas, H.S.; Saner Okan, B. Effect of Interleaved Electrolyte Forms on Macro-scaled Structural Hybrid Supercapacitors with Asymmetric Configurations of Graphene-coated Carbon Fabric Electrodes. Appl. Compos. Mater. 2023, 30, 1435–1451. [Google Scholar] [CrossRef]
- Lei, C.; Markoulidis, F.; Wilson, P.; Lekakou, C. Phenolic carbon cloth-based electric double-layer capacitors with conductive interlayers and graphene coating. J. Appl. Electrochem. 2016, 46, 251–258. [Google Scholar] [CrossRef]
- Lee, G.W.; Seol, C.; Kim, K.M.; Lim, S.T.; Shim, G.H.; Kim, S.M.; Ahn, H.S. Thermally annealed self-assembled three-dimensional graphene for direct construction of porous flow distributor in polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2021, 46, 36930–36939. [Google Scholar] [CrossRef]
- Arya, A.K.; Singh Raman, R.K.; Parmar, R.; Amati, M.; Gregoratti, L.; Saxena, S. Graphene-Coated Ni-Cu Alloys for Durable Degradation Resistance of Bi-Polar Plates for Proton Exchange Membrane Fuel Cells: Remarkable Role of Alloy Composition. Small 2024, 20, 2305320. [Google Scholar] [CrossRef]
- Sun, X.W.; Li, X.C.; Zhao, J.X.; Wang, J.H.; Liu, F.; Zhao, P.W.; Dai, Z.Q.; Zheng, L.L. Research Progress on Protective Coatings for Bipolar Plates of Proton Exchange Membrane Fuel Cells. Surf. Technol. 2023, 52, 26–36. [Google Scholar]
- Yu, F.; Wang, K.; Cui, L.; Wang, S.; Hou, M.; Xiong, F.; Zou, R.; Gao, P.; Peng, H.; Liu, Z. Vertical-Graphene-Reinforced Titanium Alloy Bipolar Plates in Fuel Cells. Adv. Mater. 2022, 34, 2110565. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Emori, W.; Uzoma, P.C.; Mansir, I.B.; Radwan, A.B.; Ige, O.O.; Abdullah, A.M. A review of bipolar plates materials and graphene coating degradation mechanism in proton exchange membrane fuel cell. Int. J. Energy Res. 2022, 46, 3766–3781. [Google Scholar] [CrossRef]
- Ren, Y.J.; Anisur, M.R.; Qiu, W.; He, J.J.; Al-Saadi, S.; Singh, R.K. Raman Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study. J. Power Sources 2017, 362, 366–372. [Google Scholar] [CrossRef]
- Nam, H.N.; Phung, Q.M.; Choeichom, P.; Yamauchi, Y.; Saito, N. First-principles studies of enhanced oxygen reduction reactions on graphene- and nitrogen-doped graphene-coated platinum surfaces. Phys. Chem. Chem. Phys. 2024, 26, 10711–10722. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Tsai, H.Y.; Huang, Y.C. Characteristics of Carbon Nanotubes/Graphene Coatings on Stainless Steel Meshes Used as Electrodes for Air-Cathode Microbial Fuel Cells. J. Nanomater. 2017, 2017, 9875301. [Google Scholar] [CrossRef]
- Song, T.S.; Fei, K.; Zhang, H.; Yuan, H.; Yang, Y.; Ouyang, P.; Xie, J. High efficiency microbial electrosynthesis of acetate from carbon dioxide using a novel graphene-nickel foam as cathode. J. Chem. Technol. Biotechnol. 2018, 93, 457–466. [Google Scholar] [CrossRef]
- Holze, R. Kinetics of Fast Redox Systems for Energy Storage. In Springer Handbook of Electrochemical Energy; Breitkopf, C., Swider-Lyons, K., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 591–610. [Google Scholar]
- Wu, Y.; Holze, R. Electrocatalysis at Electrodes for Vanadium Redox Flow Batteries. Batteries 2018, 4, 47. [Google Scholar] [CrossRef]
- Xie, X.; Holze, R. Electrode Kinetic Data: Geometric vs. Real Surface Area. Batteries 2022, 8, 146. [Google Scholar] [CrossRef]
- Pahlevaninezhad, M.; Miller, E.E.; Yang, L.; Prophet, L.S.; Singh, A.; Storwick, T.; Pahlevani, M.; Pope, M.A.; Roberts, E.P.L. Exfoliated Graphene Composite Membrane for the All-Vanadium Redox Flow Battery. ACS Appl. Energy Mater. 2023, 6, 6505–6517. [Google Scholar] [CrossRef]
- Roth, C.; Noack, J.; Skyllas-Kazacos, M. (Eds.) Flow Batteries; WILEY-VCH: Weinheim, Germany, 2023; Volume 1–3. [Google Scholar]
- Lee, D.; Roh, J.S.; Hwang, I.; Jung, Y.; Lee, H.; Ock, I.W.; Kim, S.; Sun, S.; Yang, S.; Park, H.B.; et al. Multilayered Graphene-Coated Metal Current Collectors with High Electrical Conductivity and Corrosion Resistivity for Flow-Electrode Capacitive Mixing. ACS Sustain. Chem. Eng. 2022, 10, 7625–7634. [Google Scholar] [CrossRef]
Material | Electronic Conductivity | References |
---|---|---|
graphite | 3.14·103 S/cm 1 | [4] |
graphite | 2.0·103 to 4.0·103 S/cm | [5] |
graphene | 6000 S/cm to 100 MS/m | various |
graphene | 1.46 ± 0.82·106 S/m. | [6] |
single-layer graphene | 7.14·105 S/cm | [4] |
single-layer graphene | 1.0·106 S/cm | [7,8] |
few-layer graphene | 1.22·105 to 5.26·105 S/cm 1,2 | [4] |
few-layer graphene | 2.94·105 to 8.33·105 S/cm | [9,10] |
graphene nanosheets | 1.05 to 6.03 S/cm 1,2 | [4] |
graphene oxide | 4.57 × 10−8 S/cm | [11] |
reduced graphene oxide | 2.3 ± 1.0 to 14.6 ± 5.5 S/m | [5] |
reduced graphene oxide | 4.21 × 10−5 S/cm | [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Q.; Fu, L.; Liu, L.; Kondratiev, V.; Holze, R. Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection. Molecules 2025, 30, 1436. https://doi.org/10.3390/molecules30071436
Qu Q, Fu L, Liu L, Kondratiev V, Holze R. Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection. Molecules. 2025; 30(7):1436. https://doi.org/10.3390/molecules30071436
Chicago/Turabian StyleQu, Qunting, Lijun Fu, Lili Liu, Veniamin Kondratiev, and Rudolf Holze. 2025. "Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection" Molecules 30, no. 7: 1436. https://doi.org/10.3390/molecules30071436
APA StyleQu, Q., Fu, L., Liu, L., Kondratiev, V., & Holze, R. (2025). Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection. Molecules, 30(7), 1436. https://doi.org/10.3390/molecules30071436