Valorization of Winemaking By-Products: White and Red Grape Seed Oils Improve Glucose Consumption and Uptake In Vitro
Abstract
:1. Introduction
2. Results
2.1. Phytochemistry of RGSO and WGSO
2.1.1. Fatty Acids, Carotenoids, and Chlorophyll
2.1.2. Phenolic Compounds
2.2. In Vitro Glucose-Lowering Activity of RGSO and WGSO
2.3. Effect of RSGO and WSGO on GLUT-2 and -4 Transporters and Associated Regulatory Factors
3. Discussion
4. Materials and Methods
4.1. Oil Extraction and Phytochemical Analyses
4.1.1. Fatty Acids, Carotenoids, and Chlorophyll
4.1.2. Phenolic Compounds
4.2. Cell Culture and Treatments
4.3. Viability Assay
4.4. PAS Staining
4.5. Evaluation of Glucose Consumption and Uptake
4.6. Western Blot
4.7. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.Y.; Nie, Z.L.; Ren, C.; Liu, X.Q.; Zimmer, E.A.; Wen, J. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol. Phylogenet. Evol. 2021, 154, 106948. [Google Scholar] [CrossRef] [PubMed]
- Genisheva, Z.; Soares, M.M.; Oliveira, J.; Carvalho, J. Wine Production Wastes, Valorization, and Perspectives [Internet]. In Advances and Challenges in Hazardous Waste Management; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Bongiorno, D.; Buzzanca, C.; Indelicato, S.; Santini, A.; Lucarini, M.; Fabbrizio, A.; Mauro, M.; Vazzana, M.; Arizza, V.; et al. Fatty Acids and Triacylglycerols Profiles from Sicilian (Cold Pressed vs. Soxhlet) Grape Seed Oils. Sustainability 2021, 13, 13038. [Google Scholar] [CrossRef]
- Ma, Z.F.; Zhang, H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants 2017, 6, 71. [Google Scholar] [CrossRef]
- Kong, F.; Qin, Y.; Su, Z.; Ning, Z.; Yu, S. Optimization of Extraction of Hypoglycemic Ingredients from Grape Seeds and Evaluation of α-Glucosidase and α-Amylase Inhibitory Effects In Vitro. J. Food Sci. 2018, 83, 1422–1429. [Google Scholar] [CrossRef]
- Di Stefano, V.; Buzzanca, C.; Melilli, M.G.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 6702. [Google Scholar] [CrossRef]
- Di Pietro Fernandes, C.; Santana, L.F.; dos Santos, J.R.; Fernandes, D.S.; Hiane, P.A.; Pott, A.; Freitas, K.d.C.; Bogo, D.; do Nascimento, V.A.; Filiú, W.F.d.O.; et al. Nutraceutical Potential of Grape (Vitis vinifera L.) Seed Oil in Oxidative Stress, Inflammation, Obesity and Metabolic Alterations. Molecules 2023, 28, 7811. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Cha, J.Y.; Kim, H.; Kim, K.S.; Hur, M.W.; Ahn, Y. Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene. Cooperative role of hepatocyte nuclear factors 1alpha and 3beta. J. Biol. Chem. 2000, 275, 18358–18365. [Google Scholar] [CrossRef]
- Chadt, A.; Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020, 472, 1273–1298. [Google Scholar] [CrossRef] [PubMed]
- Hah, J.S. GLUT Phosphorylation May be Required to GLUT Translocation Mechanism. Korean J. Physiol. Pharmacol. 2000, 4, 487–496. [Google Scholar]
- Liu, X.J.; Yang, C.; Gupta, N.; Zuo, J.; Chang, Y.S.; Fang, F.D. Protein kinase C-zeta regulation of GLUT4 translocation through actin remodeling in CHO cells. J. Mol. Med. 2007, 85, 851–861. [Google Scholar]
- Chen, B.; Abaydula, Y.; Li, D.; Tan, H.; Ma, X. Taurine ameliorates oxidative stress by regulating PI3K/Akt/GLUT4 pathway in HepG2 cells and diabetic rats. J. Funct. Foods 2021, 85, 104629. [Google Scholar] [CrossRef]
- Gao, S.; Guo, Q.; Qin, C.; Shang, R.; Zhang, Z. Sea Buckthorn Fruit Oil Extract Alleviates Insulin Resistance through the PI3K/Akt Signaling Pathway in Type 2 Diabetes Mellitus Cells and Rats. J. Agric. Food Chem. 2017, 65, 1328–1336. [Google Scholar] [CrossRef]
- Prasad, C.N.; Anjana, T.; Banerji, A.; Gopalakrishnapillai, A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett. 2010, 584, 531–536. [Google Scholar] [CrossRef]
- Jugran, A.K.; Rawat, S.; Devkota, H.P.; Bhatt, I.D.; Rawal, R.S. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother. Res. 2021, 35, 223–245. [Google Scholar] [CrossRef]
- Shiri-Shahsavar, M.R.; Alijani, S.; Parsamanesh, N.; Nazari, S.S.; Moazzen, S.; Majnouni, A.; Sadeghi, N.; Rasouli, A. The effect of grape-seed oil on diabetes-related hyperglycemia, dyslipidemia, and inflammation in streptozotocin-induced diabetic rats. Obes. Med. 2023, 37, 100476. [Google Scholar] [CrossRef]
- Li, X.; Shen, Y.; Zhu, J.; Xiao, J.; Cong, R.; Zhang, H.; Qi, X. Virgin Grape Seed Oil Alleviates Insulin Resistance and Energy Metabolism Disorder in Mice Fed a High-Fat Diet. Eur. J. Lipid Sci. Technol. 2020, 122, 1900158. [Google Scholar] [CrossRef]
- Irandoost, P.; Ebrahimi-Mameghani, M.; Pirouzpanah, S. Does grape seed oil improve inflammation and insulin resistance in overweight or obese women? Int. J. Food Sci. Nutr. 2013, 64, 706–710. [Google Scholar] [CrossRef]
- Párrizas, M.; Maestro, M.A.; Boj, S.F.; Paniagua, A.; Casamitjana, R.; Gomis, R.; Rivera, F.; Ferrer, J. Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol. Cell. Biol. 2001, 21, 3234–3243. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Kang, Y.H.; Kim, K.K.; Kim, T.W.; Park, J.B.; Choe, M. Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells. Nutr. Res. Pract. 2017, 11, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.M.; Ramos, M.J.; Pérez, A.; Rodríguez, J.F. Production of biodiesel from winery waste: Extraction, refining and transesterification of grape seed oil. Bioresour. Technol. 2010, 101, 7030–7035. [Google Scholar] [CrossRef] [PubMed]
- Karimi Alavijeh, M.; Yaghmaei, S. Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Manag. 2016, 52, 375–394. [Google Scholar] [CrossRef]
- Malewska, E.; Kurańska, M.; Tenczyńska, M.; Prociak, A. Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials. Materials 2023, 17, 158. [Google Scholar] [CrossRef]
- David-Silva, A.; Freitas, H.S.; Okamoto, M.M.; Sabino-Silva, R.; Schaan, B.D.; Machado, U.F. Hepatocyte nuclear factors 1α/4α and forkhead box A2 regulate the solute carrier 2A2 (Slc2a2) gene expression in the liver and kidney of diabetic rats. Life Sci. 2013, 93, 805–813. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, L.; Teng, H.; Song, H.; Wu, X.; Xu, M. Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK: Anti-diabetic effect of phenolic compounds in HepG2 cells. J. Funct. Foods 2015, 19 Pt A, 487–494. [Google Scholar]
- Dimić, I.; Teslić, N.; Putnik, P.; Bursać Kovačević, D.; Zeković, Z.; Šojić, B.; Mrkonjić, Ž.; Čolović, D.; Montesano, D.; Pavlić, B. Innovative and Conventional Valorizations of Grape Seeds from Winery By-Products as Sustainable Source of Lipophilic Antioxidants. Antioxidants 2020, 9, 568. [Google Scholar] [CrossRef]
- Laqui-Estaña, J.; Obreque-Slier, E.; García-Nauto, N.; Saldaña, E. Advances in Grape Seed Oil Extraction Techniques and Their Applications in Food Products: A Comprehensive Review and Bibliometric Analysis. Foods 2024, 13, 3561. [Google Scholar] [CrossRef]
- Fernandes, C.D.P.; Pott, A.; Hiane, P.A.; Nascimento, V.A.d.; Filiú, W.F.d.O.; Oliveira, L.C.S.d.; Sanjinez-Argandoña, E.J.; Cavalheiro, L.F.; Nazário, C.E.D.; Caires, A.R.L.; et al. Comparative Analysis of Grape Seed Oil, Linseed Oil, and a Blend: In Vivo Effects of Supplementation. Foods 2024, 13, 2283. [Google Scholar] [CrossRef]
- de Menezes, M.L.; Johann, G.; Diório, A.; Schuelter Boeing, J.; Visentainer, J.V.; Raimundini Aranha, A.C.; Curvelo Pereira, N. Comparison of the Chemical Composition of Grape Seed Oil Extracted by Different Methods and Conditions. J. Chem. Technol. Biotechnol. 2023, 98, 1103–1113. [Google Scholar] [CrossRef]
- Venkatesan, A.; Roy, A.; Kulandaivel, S.; Natesan, V.; Kim, S.J. p-Cumaric Acid Nanoparticles Ameliorate Diabetic Nephropathy via Regulating mRNA Expression of KIM-1 and GLUT-2 in Streptozotocin-Induced Diabetic Rats. Metabolites 2022, 12, 1166. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, Y.; Xu, Y.; Zhang, Z.; Tang, R.; Liu, J.; Jiang, H.; Zhao, R. Procyanidin B1 and p-coumaric acid from whole highland barley ameliorated HFD-induced impaired glucose tolerance via small intestinal barrier and hepatic glucose metabolism. Food Funct. 2024, 15, 9272–9283. [Google Scholar] [CrossRef]
- Singh, S.S.B.; Patil, K.N. trans-ferulic acid attenuates hyperglycemia-induced oxidative stress and modulates glucose metabolism by activating AMPK signaling pathway in vitro. J. Food Biochem. 2022, 46, e14038. [Google Scholar] [CrossRef]
- Singh, S.S.B.; Patil, K.N. SIRT1/AMPK-mediated pathway: Ferulic acid from sugar beet pulp mitigating obesity-induced diabetes-linked complications and improving metabolic health. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159511. [Google Scholar] [CrossRef]
- Li, Y.; Sair, A.T.; Zhao, W.; Li, T.; Liu, R.H. Ferulic Acid Mediates Metabolic Syndrome via the Regulation of Hepatic Glucose and Lipid Metabolisms and the Insulin/IGF-1 Receptor/PI3K/AKT Pathway in Palmitate-Treated HepG2 Cells. J. Agric. Food Chem. 2022, 70, 14706–14717. [Google Scholar] [CrossRef]
- Alkhalidy, H.; Moore, W.; Wang, A.; Luo, J.; McMillan, R.P.; Wang, Y.; Zhen, W.; Hulver, M.W.; Liu, D. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J. Nutr. Biochem. 2018, 58, 90–101. [Google Scholar] [CrossRef]
- Santana-Lima, B.; Belaunde, L.H.Z.; de Souza, K.D.; Rosa, M.E.; de Carvalho, J.E.; Machado-Jr, J.; Alonso-Vale, M.I.C.; Caseli, L.; Rando, D.G.G.; Caperuto, L.C. Acute Kaempferol Stimulation Induces AKT Phosphorylation in HepG2 Cells. Life 2024, 14, 764. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, D.; Kang, J.; Meng, X.; Yang, J.; Yang, L.; Xue, N.; Gao, Q.; Han, S.; Gou, X. Protective effects of rutin on liver injury in type 2 diabetic db/db mice. Biomed. Pharmacother. 2018, 107, 721–728. [Google Scholar] [CrossRef]
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Suresh Kumar, C. Syringic acid (SA)—A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed. Pharmacother. 2018, 108, 547–557. [Google Scholar] [CrossRef]
- Shimsa, S.; Mondal, S.; Mini, S. Syringic Acid: A Promising Phenolic Phytochemical with Extensive Therapeutic Applications. R D Funct. Food Prod. 2024, 1, 1–14. [Google Scholar]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Lavelli, V.; Torri, L.; Zeppa, G.; Fiori, L.; Spigno, G. Recovery of winemaking by-products for innovative food applications. Ital. J. Food Sci. 2016, 28, 542–564. [Google Scholar]
- Baydar, G.N.; Özkan, G.; Çetin, E.S. Characterization of grape seed and pomace oil extracts. Grasas Aceites 2007, 58, 29–33. [Google Scholar] [CrossRef]
- Kapcsándi, V.; Hanczné Lakatos, E.; Sik, B.; Ádám Linka, L.; Székelyhidi, R. Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. OCL 2021, 28, 30. [Google Scholar] [CrossRef]
- Marino, G.; Macaluso, L.; Marra, F.P.; Ferguson, L.; Marchese, A.; Campisi, G.; Volo, P.; Laudicina, V.A.; Caruso, T. Horticultural performance of 23 Sicilian olive genotypes in hedgerow systems: Vegetative growth, productive potential and oil quality. Sci. Hortic. 2017, 217, 217–225. [Google Scholar] [CrossRef]
- Olmo-García, L.; Fernández-Fernández, C.; Hidalgo, A.; Vílchez, P.; Fernández-Gutiérrez, A.; Marchal, R.; Carrasco-Pancorbo, A. Evaluating the reliability of specific and global methods to assess the phenolic content of virgin olive oil: Do they drive to equivalent results? J. Chromatogr. A 2019, 1585, 56–69. [Google Scholar] [CrossRef]
- Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int. J. Mol. Sci. 2021, 22, 13135. [Google Scholar] [CrossRef]
- Luparello, C.; Branni, R.; Abruscato, G.; Lazzara, V.; Drahos, L.; Arizza, V.; Mauro, M.; Di Stefano, V.; Vazzana, M. Cytotoxic capability and the associated proteomic profile of cell-free coelomic fluid extracts from the edible sea cucumber Holothuria tubulosa on HepG2 liver cancer cells. EXCLI J. 2022, 21, 722–743. [Google Scholar]
- Abruscato, G.; Tarantino, R.; Mauro, M.; Chiarelli, R.; Vizzini, A.; Arizza, V.; Vazzana, M.; Luparello, C. Modulation of Glucose Consumption and Uptake in HepG2 Cells by Aqueous Extracts from the Coelomic Fluid of the Edible Holothuria tubulosa Sea Cucumber. Biology 2024, 13, 378. [Google Scholar] [CrossRef]
- Abruscato, G.; Chiarelli, R.; Lazzara, V.; Punginelli, D.; Sugár, S.; Mauro, M.; Librizzi, M.; Di Stefano, V.; Arizza, V.; Vizzini, A.; et al. In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis. Biology 2023, 12, 616. [Google Scholar] [CrossRef]
Fatty Acid | WGSO | RGSO |
---|---|---|
C14:0 | 0.1 | 0.1 |
C16:0 | 8.0 | 7.8 |
C16:1 ω7 cis | 0.04 | 0.03 |
C17:0 | 0.1 | 0.05 |
C18:0 | 4.1 | 4.2 |
C18:1 ω9 cis | 19.9 | 16.8 |
C18:1 ω7 cis | 1.2 | 1.2 |
C18:2 ω6,9 cis, cis | 65.7 | 68.8 |
C20:0 | 0.1 | 0.1 |
C18:3 ω3 + C20:1 ω9 | 0.5 | 0.5 |
C20:2 | nd | 0.03 |
C22:0 | nd | 0.03 |
WGSO | RGSO | |
---|---|---|
Carotenoids | 0.02 | 0.2 |
Chlorophyll | nd | 0.02 |
Polyphenol | WGSO | RGSO |
---|---|---|
Hydroxytyrosol | <LOQ | <LOQ |
Cumaric Acid | <LOQ | 39.5 |
Ferulic Acid | 24.0 | 28.0 |
Olacein | 10.5 | <LOQ |
Oleocanthal | 20.1 | <LOD |
Syringic Acid | 153.2 | 4213.3 |
Trans-OH-Cinnamic | 61.4 | 323.5 |
Rutin | <LOQ | <LOQ |
Kaempferol | 163.1 | 120.9 |
Molecule | Bioactivity | References |
---|---|---|
Cumaric acid | Increase of GLUT-2 expression | [33] |
Activation of PI3K-AKT pathway in vivo | [34] | |
Ferulic acid | AMPK activation and increase of GLUT-2 and GLUT-4 expression | [35,36] |
Activation of PI3K-AKTpathway | [37] | |
Kaempferol | AKT activation in vitro and in vivo | [38,39] |
Rutin | AKT activation in vivo | [40] |
Syringic acid | Increase of glucose utilization by peripheral tissues | [41,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganci, D.; Bellistrì, F.; Mauro, M.; Chiarelli, R.; Longo, F.; Indelicato, S.; Indelicato, S.; Laudicina, V.A.; Arizza, V.; Vazzana, M.; et al. Valorization of Winemaking By-Products: White and Red Grape Seed Oils Improve Glucose Consumption and Uptake In Vitro. Molecules 2025, 30, 1933. https://doi.org/10.3390/molecules30091933
Ganci D, Bellistrì F, Mauro M, Chiarelli R, Longo F, Indelicato S, Indelicato S, Laudicina VA, Arizza V, Vazzana M, et al. Valorization of Winemaking By-Products: White and Red Grape Seed Oils Improve Glucose Consumption and Uptake In Vitro. Molecules. 2025; 30(9):1933. https://doi.org/10.3390/molecules30091933
Chicago/Turabian StyleGanci, Daniela, Federica Bellistrì, Manuela Mauro, Roberto Chiarelli, Francesco Longo, Serena Indelicato, Sergio Indelicato, Vito Armando Laudicina, Vincenzo Arizza, Mirella Vazzana, and et al. 2025. "Valorization of Winemaking By-Products: White and Red Grape Seed Oils Improve Glucose Consumption and Uptake In Vitro" Molecules 30, no. 9: 1933. https://doi.org/10.3390/molecules30091933
APA StyleGanci, D., Bellistrì, F., Mauro, M., Chiarelli, R., Longo, F., Indelicato, S., Indelicato, S., Laudicina, V. A., Arizza, V., Vazzana, M., & Luparello, C. (2025). Valorization of Winemaking By-Products: White and Red Grape Seed Oils Improve Glucose Consumption and Uptake In Vitro. Molecules, 30(9), 1933. https://doi.org/10.3390/molecules30091933