The Hunt for Natural Skin Whitening Agents
Abstract
:1. Introduction
2. Targeting Tyrosinase as the Key Enzyme of Melanogenesis
3. Different Modes of Reducing Melanin Production in Melanocytes and Skin
4. Induction of Pigmentation
5. Cosmetic Use of (natural) Agents for Skin Whitening
Abbreviations
AA | Ascorbic Acid |
ACTH | adrenocorticotropic hormone |
AO | antioxidant |
Arb | Arbutin |
bFGF | basic fibroblast growth factor |
BMP | bone morphogenetic proteins |
cAMP | cyclic AMP |
CT | clinical trials |
DNJ | 1-deoxynojirimycin |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
ET-1 | endothelin-1 |
ERK | extracellular signal-regulated kinases |
GP | guinea pig |
HGF | hepatocyte growth factor |
HQ | hydroquinone |
IC50 | half maximal inhibitory concentration |
Il1α | interleukin 1α |
KA | kojic acid |
l-DOPA | l-dihydroxyphenylalanine |
MC1R | melanocortin-1 receptor |
MITF | microphtalmia transcription factor |
(α)-msh | (α)-melanocyte stimulating hormone |
MT | melanosome transport |
nHEM | normal human epidermal melanocytes |
8OHdg | 8 hydroxy deoxy guanosine |
ORAC | oxygen radical absorbance capacity |
PKA | protein kinase A |
PKC | protein kinase C |
PPAR | peroxisome proliferator- activated receptor |
PTU | phenylthiourea |
SAR | structure activity relationship |
sAPP | soluble N-terminal ectodomain of the beta-amyloid precursor protein |
SCF | stem cell factor |
SEM | skin equivalent model |
Sox | Sry-related HMG box |
TE | tyrosinase expression |
TI | tyrosinase inhibition |
(c) | competitive mode |
(nc) | non competitive mode |
(m) | mixed mode of inhibition |
TNF-α | tumor necrosis factor-α |
TRP | tyrosinase related protein |
UV | ultraviolet |
UVA | ultraviolet A |
UVB | ultraviolet B |
UVR | ultraviolet radiation |
References
- Cooksey, CJ; Garratt, PJ; Land, EJ; Pavel, S; Ramsden, CA; Riley, PA; Smit, NP. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J. Biol. Chem 1997, 272, 26226–26235. [Google Scholar]
- Riley, PA. Hydroxyanisole depigmentation: In-vitro studies. J. Pathol 1969, 97, 193–206. [Google Scholar]
- Riley, PA. Hydroxyanisole depigmentation: In-vivo studies. J. Pathol 1969, 97, 185–191. [Google Scholar]
- Naish-Byfield, S; Cooksey, CJ; Latter, AM; Johnson, CI; Riley, PA. In vitro assessment of the structure-activity relationship of tyrosinase-dependent cytotoxicity of a series of substituted phenols. Melanoma. Res 1991, 1, 273–287. [Google Scholar]
- Smit, NP; Peters, K; Menko, W; Westerhof, W; Pavel, S; Riley, PA. Cytotoxicity of a selected series of substituted phenols towards cultured melanoma cells. Melanoma Res 1992, 2, 295–304. [Google Scholar]
- Friedman, M. Food browning and its prevention: An overview. J. Agric. Food Chem 1996, 44, 631–653. [Google Scholar]
- Kim, YJ; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell Mol. Life Sci 2005, 62, 1707–1723. [Google Scholar]
- Mcevily, AJ; Iyengar, R; Otwell, S. Sulfite alternative prevents shrimp melanosis. Food Technol.—Chicago 1991, 45, 80–86. [Google Scholar]
- Parvez, S; Kang, M; Chung, HS; Bae, H. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res 2007, 21, 805–816. [Google Scholar]
- Chang, TS. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci 2009, 10, 2440–2475. [Google Scholar]
- Hanamura, T; Uchida, E; Aoki, H. Skin-lightening effect of a polyphenol extract from Acerola (Malpighia emarginata DC.) fruit on UV-induced pigmentation. Biosci. Biotechnol. Biochem 2008, 72, 3211–3218. [Google Scholar]
- Zhang, X; Hu, X; Hou, A; Wang, H. Inhibitory effect of 2,4,2′,4′-tetrahydroxy-3-(3-methyl-2-butenyl)-chalcone on tyrosinase activity and melanin biosynthesis. Biol. Pharm. Bull 2009, 32, 86–90. [Google Scholar]
- Jin, YH; Lee, SJ; Chung, MH; Park, JH; Park, YI; Cho, TH; Lee, SK. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch. Pharm. Res 1999, 22, 232–236. [Google Scholar]
- Land, EJ; Ramsden, CA; Riley, PA; Stratford, MR. Evidence consistent with the requirement of cresolase activity for suicide inactivation of tyrosinase. Tohoku J. Exp. Med 2008, 216, 231–238. [Google Scholar]
- Shimizu, K; Kondo, R; Sakai, K. Inhibition of tyrosinase by flavonoids, stilbenes and related 4-substituted resorcinols: Structure-activity investigations. Planta Med 2000, 66, 11–15. [Google Scholar]
- Son, JK; Park, JS; Kim, JA; Kim, Y; Chung, SR; Lee, SH. Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity. Planta Med 2003, 69, 559–561. [Google Scholar]
- Kim, DH; Kim, JH; Baek, SH; Seo, JH; Kho, YH; Oh, TK; Lee, CH. Enhancement of tyrosinase inhibition of the extract of Veratrum patulum using cellulase. Biotechnol. Bioeng 2004, 87, 849–854. [Google Scholar]
- Shirota, S; Miyazaki, K; Aiyama, R; Ichioka, M; Yokokura, T. Tyrosinase inhibitors from crude drugs. Biol. Pharm. Bull 1994, 17, 266–269. [Google Scholar]
- Kubo, I; Kinst-Hori, I; Yokokawa, Y. Tyrosinase inhibitors from Anacardium occidentale fruits. J. Nat. Prod 1994, 57, 545–551. [Google Scholar]
- Kubo, I; Yokokawa, Y; Kinst-Hori, I. Tyrosinase inhibitors from Bolivian medicinal plants. J. Nat. Prod 1995, 58, 739–743. [Google Scholar]
- Likhitwitayawuid, K; Sritularak, B; De-Eknamkul, W. Tyrosinase inhibitors from Artocarpus gomezianus. Planta Med 2000, 66, 275–277. [Google Scholar]
- Baurin, N; Arnoult, E; Scior, T; Do, QT; Bernard, P. Preliminary screening of some tropical plants for anti-tyrosinase activity. J. Ethnopharmacol 2002, 82, 155–158. [Google Scholar]
- Lee, HS. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J. Agric. Food Chem 2002, 50, 1400–1403. [Google Scholar]
- Kubo, I; Kinst-Hori, I; Nihei, K; Soria, F; Takasaki, M; Calderon, JS; Cespedes, CL. Tyrosinase inhibitors from galls of Rhus javanica leaves and their effects on insects. Z. Naturforsch. C 2003, 58, 719–725. [Google Scholar]
- Kim, SJ; Son, KH; Chang, HW; Kang, SS; Kim, HP. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol. Pharm. Bull 2003, 26, 1348–1350. [Google Scholar]
- Kang, HS; Choi, JH; Cho, WK; Park, JC; Choi, JS. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch. Pharm. Res 2004, 27, 742–750. [Google Scholar]
- Kang, HS; Kim, HR; Byun, DS; Son, BW; Nam, TJ; Choi, JS. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res 2004, 27, 1226–1232. [Google Scholar]
- Masuda, T; Yamashita, D; Takeda, Y; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem 2005, 69, 197–201. [Google Scholar]
- Fu, B; Li, H; Wang, X; Lee, FS; Cui, S. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J. Agric. Food Chem 2005, 53, 7408–7414. [Google Scholar]
- Sabudak, T; Tareq Hassan, KM; Iqbal, CM; Oksuz, S. Potent tyrosinase inhibitors from Trifolium balansae. Nat. Prod. Res 2006, 20, 665–670. [Google Scholar]
- Khan, MT; Khan, SB; Ather, A. Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of Amberboa ramosa Jafri and their structure-activity relationship. Bioorg. Med. Chem 2006, 14, 938–943. [Google Scholar]
- Jeon, HJ; Noda, M; Maruyama, M; Matoba, Y; Kumagai, T; Sugiyama, M. Identification and kinetic study of tyrosinase inhibitors found in sake lees. J. Agric. Food Chem 2006, 54, 9827–9833. [Google Scholar]
- Okunji, C; Komarnytsky, S; Fear, G; Poulev, A; Ribnicky, DM; Awachie, PI; Ito, Y; Raskin, I. Preparative isolation and identification of tyrosinase inhibitors from the seeds of Garcinia kola by high-speed counter-current chromatography. J. Chromatogr. A 2007, 1151, 45–50. [Google Scholar]
- Karioti, A; Protopappa, A; Megoulas, N; Skaltsa, H. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorg. Med. Chem 2007, 15, 2708–2714. [Google Scholar]
- Behera, BC; Adawadkar, B; Makhija, U. Tyrosinase-inhibitory activity in some species of the lichen family Graphidaceae. J. Herb. Pharmacother 2006, 6, 55–69. [Google Scholar]
- Behera, BC; Verma, N; Sonone, A; Makhija, U. Tissue culture of some lichens and screening of their antioxidant, antityrosinase and antibacterial properties. Phytother. Res 2007, 21, 1159–1170. [Google Scholar]
- Ryu, YB; Westwood, IM; Kang, NS; Kim, HY; Kim, JH; Moon, YH; Park, KH. Kurarinol, tyrosinase inhibitor isolated from the root of Sophora flavescens. Phytomedicine 2008, 15, 612–618. [Google Scholar]
- Adhikari, A; Devkota, HP; Takano, A; Masuda, K; Nakane, T; Basnet, P; Skalko-Basnet, N. Screening of Nepalese crude drugs traditionally used to treat hyperpigmentation: In vitro tyrosinase inhibition. Int. J. Cosmet. Sci 2008, 30, 353–360. [Google Scholar]
- Chien, CC; Tsai, ML; Chen, CC; Chang, SJ; Tseng, CH. Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 2008, 166, 117–120. [Google Scholar]
- Issa, RA; Afifi, FU; Amro, BI. Studying the anti-tyrosinase effect of Arbutus andrachne L. extracts. Int. J. Cosmet. Sci 2008, 30, 271–276. [Google Scholar]
- Nattapong, S; Omboon, L. A new source of whitening agent from a Thai Mulberry plant and its betulinic acid quantitation. Nat. Prod. Res 2008, 22, 727–734. [Google Scholar]
- Magid, AA; Voutquenne-Nazabadioko, L; Bontemps, G; Litaudon, M; Lavaud, C. Tyrosinase inhibitors and sesquiterpene diglycosides from Guioa villosa. Planta Med 2008, 74, 55–60. [Google Scholar]
- Baek, YS; Ryu, YB; Curtis-Long, MJ; Ha, TJ; Rengasamy, R; Yang, MS; Park, KH. Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki. Bioorg. Med. Chem 2009, 17, 35–41. [Google Scholar]
- Zheng, ZP; Cheng, KW; To, JT; Li, H; Wang, M. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent. Mol. Nutr. Food Res 2008, 52, 1530–1538. [Google Scholar]
- Zheng, ZP; Chen, S; Wang, S; Wang, XC; Cheng, KW; Wu, JJ; Yang, D; Wang, M. Chemical components and tyrosinase inhibitors from the twigs of Artocarpus heterophyllus. J. Agric. Food Chem 2009, 57, 6649–6655. [Google Scholar]
- Ding, HY; Lin, HC; Chang, TS. Tyrosinase inhibitors isolated from the roots of Paeonia suffruticosa. J. Cosmet. Sci 2009, 60, 347–352. [Google Scholar]
- Tomita, K; Oda, N; Ohbayashi, M; Kamei, H; Miyaki, T; Oki, T. A new screening method for melanin biosynthesis inhibitors using Streptomyces bikiniensis. J. Antibiot. (Tokyo) 1990, 43, 1601–1605. [Google Scholar]
- Briganti, S; Camera, E; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 2003, 16, 101–110. [Google Scholar]
- Roh, JS; Han, JY; Kim, JH; Hwang, JK. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol. Pharm. Bull 2004, 27, 1976–1978. [Google Scholar]
- Smit, NP; Kolb, RM; Lentjes, EG; Noz, KC; van der Meulen, H; Koerten, HK; Vermeer, BJ; Pavel, S. Variations in melanin formation by cultured melanocytes from different skin types. Arch. Dermatol. Res 1998, 290, 342–349. [Google Scholar]
- Liu, SH; Chu, IM; Pan, IH. Effects of hydroxybenzyl alcohols on melanogenesis in melanocyte-keratinocyte co-culture and monolayer culture of melanocytes. J. Enzyme Inhib. Med. Chem 2008, 23, 526–534. [Google Scholar]
- Zhong, S; Wu, Y; Soo-Mi, A; Zhao, J; Wang, K; Yang, S; Jae-Ho, Y; Zhu, X. Depigmentation of melanocytes by the treatment of extracts from traditional Chinese herbs: A cell culture assay. Biol. Pharm. Bull 2006, 29, 1947–1951. [Google Scholar]
- Greatens, A; Hakozaki, T; Koshoffer, A; Epstein, H; Schwemberger, S; Babcock, G; Bissett, D; Takiwaki, H; Arase, S; Wickett, RR; Boissy, RE. Effective inhibition of melanosome transfer to keratinocytes by lectins and niacinamide is reversible. Exp. Dermatol 2005, 14, 498–508. [Google Scholar]
- Duval, C; Smit, NP; Kolb, AM; Regnier, M; Pavel, S; Schmidt, R. Keratinocytes control the pheo/eumelanin ratio in cultured normal human melanocytes. Pigment Cell Res 2002, 15, 440–446. [Google Scholar]
- Ni-Komatsu, L; Leung, JK; Williams, D; Min, J; Khersonsky, SM; Chang, YT; Orlow, SJ. Triazine-based tyrosinase inhibitors identified by chemical genetic screening. Pigment Cell Res 2005, 18, 447–453. [Google Scholar]
- Yamakoshi, J; Otsuka, F; Sano, A; Tokutake, S; Saito, M; Kikuchi, M; Kubota, Y. Lightening effect on ultraviolet-induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pigment Cell Res 2003, 16, 629–638. [Google Scholar]
- Yoshimura, M; Watanabe, Y; Kasai, K; Yamakoshi, J; Koga, T. Inhibitory effect of an ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced pigmentation. Biosci. Biotechnol. Biochem 2005, 69, 2368–2373. [Google Scholar]
- Choi, TY; Kim, JH; Ko, DH; Kim, CH; Hwang, JS; Ahn, S; Kim, SY; Kim, CD; Lee, JH; Yoon, TJ. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Res 2007, 20, 120–127. [Google Scholar]
- Kim, JH; Baek, SH; Kim, DH; Choi, TY; Yoon, TJ; Hwang, JS; Kim, MR; Kwon, HJ; Lee, CH. Downregulation of melanin synthesis by haginin A and its application to in vivo lightening model. J. Invest Dermatol 2008, 128, 1227–1235. [Google Scholar]
- Tengamnuay, P; Pengrungruangwong, K; Pheansri, I; Likhitwitayawuid, K. Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: Evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities. Int. J. Cosmet. Sci 2006, 28, 269–276. [Google Scholar]
- Francis, E; Wang, N; Parag, H; Halaban, R; Hebert, DN. Tyrosinase maturation and oligomerization in the endoplasmic reticulum require a melanocyte-specific factor. J. Biol. Chem 2003, 278, 25607–25617. [Google Scholar]
- Halaban, R; Pomerantz, SH; Marshall, S; Lambert, DT; Lerner, AB. Regulation of tyrosinase in human melanocytes grown in culture. J. Cell Biol 1983, 97, 480–488. [Google Scholar]
- Petrescu, SM; Petrescu, AJ; Titu, HN; Dwek, RA; Platt, FM. Inhibition of N-glycan processing in B16 melanoma cells results in inactivation of tyrosinase but does not prevent its transport to the melanosome. J. Biol. Chem 1997, 272, 15796–15803. [Google Scholar]
- Lee, MH; Lin, YP; Hsu, FL; Zhan, GR; Yen, KY. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry 2006, 67, 1262–1270. [Google Scholar]
- Zi, SX; Ma, HJ; Li, Y; Liu, W; Yang, QQ; Zhao, G; Lian, S. Oligomeric proanthocyanidins from grape seeds effectively inhibit ultraviolet-induced melanogenesis of human melanocytes in vitro. Int. J. Mol. Med 2009, 23, 197–204. [Google Scholar]
- Sharlow, ER; Paine, CS; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M. The protease-activated receptor-2 upregulates keratinocyte phagocytosis. J Cell Sci 2000, 113, 3093–3101. [Google Scholar]
- Seiberg, M. Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res 2001, 14, 236–242. [Google Scholar]
- Seiberg, M; Paine, C; Sharlow, E; Ndrade-Gordon, P; Costanzo, M; Eisinger, M; Shapiro, SS. Inhibition of melanosome transfer results in skin lightening. J. Invest Dermatol 2000, 115, 162–167. [Google Scholar]
- Quast, T; Wehner, S; Kirfel, G; Jaeger, K; De Luca, M; Herzog, V. sAPP as a regulator of dendrite motility and melanin release in epidermal melanocytes and melanoma cells. FASEB J 2003, 17, 1739–1741. [Google Scholar]
- Mammone, T; Marenus, K; Muizzuddin, N; Maes, D. Evidence and utility of melanin degrading enzymes. J. Cosmet. Sci 2004, 55, 116–117. [Google Scholar]
- Rangkadilok, N; Sitthimonchai, S; Worasuttayangkurn, L; Mahidol, C; Ruchirawat, M; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol 2007, 45, 328–336. [Google Scholar]
- Fujiwara, Y; Sahashi, Y; Aritro, M; Hasegawa, S; Akimoto, K; Ninomiya, S; Sakaguchi, Y; Seyama, Y. Effect of simultaneous administration of vitamin C, l-cysteine and vitamin E on the melanogenesis. Biofactors 2004, 21, 415–418. [Google Scholar]
- Balaguer, A; Chisvert, A; Salvador, A. Environmentally friendly LC for the simultaneous determination of ascorbic acid and its derivatives in skin-whitening cosmetics. J. Sep. Sci 2008, 31, 229–236. [Google Scholar]
- Silveira, JE; Pereda, MC; Eberlin, S; Dieamant, GC; Di Stasi, LC. Effects of Coccoloba uvifera L. on UV-stimulated melanocytes. Photodermatol. Photoimmunol. Photomed 2008, 24, 308–313. [Google Scholar]
- Nazzaro-Porro, M; Passi, S. Identification of tyrosinase inhibitors in cultures of pityrosporum. J. Invest Dermatol 1978, 71, 205–208. [Google Scholar]
- Lim, JT. Treatment of melasma using kojic acid in a gel containing hydroquinone and glycolic acid. Dermatol. Surg 1999, 25, 282–284. [Google Scholar]
- Chen, JS; Wei, CI; Marshall, MR. Inhibition-mechanism of kojic acid on polyphenol oxidase. J. Agric. Food Chem 1991, 39, 1897–1901. [Google Scholar]
- Maeda, K; Fukuda, M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther 1996, 276, 765–769. [Google Scholar]
- Funayama, M; Arakawa, H; Yamamoto, R; Nishino, T; Shin, T; Murao, S. Effects of alpha-arbutin and beta-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotechnol. Biochem 1995, 59, 143–144. [Google Scholar]
- Yagi, A; Kanbara, T; Morinobu, N. Inhibition of mushroom-tyrosinase by aloe extract. Planta Med 1987, 53, 515–517. [Google Scholar]
- Shimizu, K; Kondo, R; Sakai, K; Lee, SH; Sato, H. The inhibitory components from Artocarpus incisus on melanin biosynthesis. Planta Med 1998, 64, 408–412. [Google Scholar]
- Kim, YM; Yun, J; Lee, CK; Lee, H; Min, KR; Kim, Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem 2002, 277, 16340–16344. [Google Scholar]
- Lee, SH; Choi, SY; Kim, H; Hwang, JS; Lee, BG; Gao, JJ; Kim, SY. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol. Pharm. Bull 2002, 25, 1045–1048. [Google Scholar]
- Sasaki, K; Yoshizaki, F. Nobiletin as a tyrosinase inhibitor from the peel of Citrus fruit. Biol. Pharm. Bull 2002, 25, 806–808. [Google Scholar]
- Lee, KT; Lee, KS; Jeong, JH; Jo, BK; Heo, MY; Kim, HP. Inhibitory effects of Ramulus mori extracts on melanogenesis. J. Cosmet. Sci 2003, 54, 133–142. [Google Scholar]
- Nerya, O; Vaya, J; Musa, R; Izrael, S; Ben-Arie, R; Tamir, S. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J. Agric. Food Chem 2003, 51, 1201–1207. [Google Scholar]
- Kim, HJ; Seo, SH; Lee, BG; Lee, YS. Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med 2005, 71, 785–787. [Google Scholar]
- Min, KR; Kim, KS; Ro, JS; Lee, SH; Kim, JA; Son, JK; Kim, Y. Piperlonguminine from Piper longum with inhibitory effects on alpha-melanocyte-stimulating hormone-induced melanogenesis in melanoma B16 cells. Planta Med 2004, 70, 1115–1118. [Google Scholar]
- Kim, KS; Kim, JA; Eom, SY; Lee, SH; Min, KR; Kim, Y. Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression. Pigment Cell Res 2006, 19, 90–98. [Google Scholar]
- Cho, YH; Kim, JH; Park, SM; Lee, BC; Pyo, HB; Park, HD. New cosmetic agents for skin whitening from Angelica dahurica. J. Cosmet. Sci 2006, 57, 11–21. [Google Scholar]
- Khan, MT; Choudhary, MI; Atta, UR; Mamedova, RP; Agzamova, MA; Sultankhodzhaev, MN; Isaev, MI. Tyrosinase inhibition studies of cycloartane and cucurbitane glycosides and their structure-activity relationships. Bioorg. Med. Chem 2006, 14, 6085–6088. [Google Scholar]
- Wang, KH; Lin, RD; Hsu, FL; Huang, YH; Chang, HC; Huang, CY; Lee, MH. Cosmetic applications of selected traditional Chinese herbal medicines. J. Ethnopharmacol 2006, 106, 353–359. [Google Scholar]
- Yoon, JH; Shim, JS; Cho, Y; Baek, NI; Lee, CW; Kim, HS; Hwang, JK. Depigmentation of melanocytes by isopanduratin A and 4-hydroxypanduratin A isolated from Kaempferia pandurata ROXB. Biol. Pharm. Bull 2007, 30, 2141–2145. [Google Scholar]
- Choi, SW; Lee, SK; Kim, EO; Oh, JH; Yoon, KS; Parris, N; Hicks, KB; Moreau, RA. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. J. Agric. Food Chem 2007, 55, 3920–3925. [Google Scholar]
- Cheng, KT; Hsu, FL; Chen, SH; Hsieh, PK; Huang, HS; Lee, CK; Lee, MH. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes. Chem. Pharm. Bull. (Tokyo) 2007, 55, 757–761. [Google Scholar]
- Liu, SH; Pan, IH; Chu, IM. Inhibitory effect of p-hydroxybenzyl alcohol on tyrosinase activity and melanogenesis. Biol. Pharm. Bull 2007, 30, 1135–1139. [Google Scholar]
- Hyun, SK; Lee, WH; Jeong, dM; Kim, Y; Choi, JS. Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis. Biol. Pharm. Bull 2008, 31, 154–158. [Google Scholar]
- Kai, H; Baba, M; Okuyama, T. Inhibitory effect of Cucumis sativus on melanin production in melanoma B16 cells by downregulation of tyrosinase expression. Planta Med 2008, 74, 1785–1788. [Google Scholar]
- Sung, JH; Park, SH; Seo, DH; Lee, JH; Hong, SW; Hong, SS. Antioxidative and skin-whitening effect of an aqueous extract of Salicornia herbacea. Biosci. Biotechnol. Biochem 2009, 73, 552–556. [Google Scholar]
- Chu, HL; Wang, BS; Duh, PD. Effects of selected organo-sulfur compounds on melanin formation. J. Agric. Food Chem 2009, 57, 7072–7077. [Google Scholar]
- Arung, ET; Kusuma, IW; Christy, EO; Shimizu, K; Kondo, R. Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis. Nat. Med. (Tokyo) 2009, 63, 473–480. [Google Scholar]
- Chen, LG; Chang, WL; Lee, CJ; Lee, LT; Shih, CM; Wang, CC. Melanogenesis inhibition by gallotannins from Chinese galls in B16 mouse melanoma cells. Biol. Pharm. Bull 2009, 32, 1447–1452. [Google Scholar]
- Chen, YR; Chiou, RY-Y; Lin, TY; Huang, CP; Tang, WC; Chen, ST; Lin, SB. Identification of an alkylhydroquinone from rhus succedanea as an inhibitor of tyrosinase and melanogenesis. J. Agric. Food Chem 2009, 57, 2200–2205. [Google Scholar]
- Leu, YL; Hwang, TL; Hu, JW; Fang, JY. Anthraquinones from polygonum cuspidatum as tyrosinase inhibitors for dermal use. Phytother. Res 2008, 22, 552–556. [Google Scholar]
- Azhar, UH; Malik, A; Khan, MT; Anwar, UH; Khan, SB; Ahmad, A; Choudhary, MI. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn. and their structure-activity relationship. Phytomedicine 2006, 13, 255–260. [Google Scholar]
- Lu, YH; Chen, J; Wei, DZ; Wang, ZT; Tao, XY. Tyrosinase inhibitory effect and inhibitory mechanism of tiliroside from raspberry. J. Enzyme Inhib. Med. Chem 2009, 24, 1154–1160. [Google Scholar]
- Luo, LH; Kim, HJ; Nguyen, DH; Lee, HB; Lee, NH; Kim, EK. Depigmentation of melanocytes by (2Z,8Z)-matricaria acid methyl ester isolated from Erigeron breviscapus. Biol. Pharm. Bull 2009, 32, 1091–1094. [Google Scholar]
- Panich, U; Kongtaphan, K; Onkoksoong, T; Jaemsak, K; Phadungrakwittaya, R; Thaworn, A; Akarasereenont, P; Wongkajornsilp, A. Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis. Cell Biol Toxicol, 2009; doi:10.1007/s10565-009-9121-2. [Google Scholar]
- Brenner, M; Hearing, V. Modifying skin pigmentation- approaches through intrinsic biochemistry and exogenous agents. Drug Discov. Today: Dis. Mech 2008, 5, e189–e199. [Google Scholar]
- Passeron, T; Valencia, JC; Bertolotto, C; Hoashi, T; Le, PE; Takahashi, K; Ballotti, R; Hearing, VJ. SOX9 is a key player in ultraviolet B-induced melanocyte differentiation and pigmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 13984–13989. [Google Scholar]
- Zhang, YG; Hu, QH; Wang, XZ; Qi, ZL; Lin, XX; Fang, JL; Dai, CC. The regulating effect of antisense-s-oligo on TYR gene expression and melanin production of melanocytes. Zhonghua Zheng Xing Wai Ke Za Zhi 2003, 19, 285–287. (in Chinese).. [Google Scholar]
- Akiyama, T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000, 11, 273–282. [Google Scholar]
- Yamaguchi, Y; Brenner, M; Hearing, VJ. The regulation of skin pigmentation. J. Biol. Chem 2007, 282, 27557–27561. [Google Scholar]
- Ronnstrand, L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol. Life Sci 2004, 61, 2535–2548. [Google Scholar]
- Na, YJ; Baek, HS; Ahn, SM; Shin, HJ; Chang, IS; Hwang, JS. [4-t-Butylphenyl]-N-(4-imidazol-1-yl phenyl)sulfonamide (ISCK03) inhibits SCF/c-kit signaling in 501mel human melanoma cells and abolishes melanin production in mice and brownish guinea pigs. Biochem. Pharmacol 2007, 74, 780–786. [Google Scholar]
- Lan, WJ; Wang, HY; Lan, W; Wang, KY. Geniposide enhances melanogenesis by stem cell factor/c-Kit signalling in norepinephrine-exposed normal human epidermal melanocyte. Basic Clin. Pharmacol. Toxicol 2008, 103, 88–93. [Google Scholar]
- Park, HY; Lee, J; Gonzalez, S; Middelkamp-Hup, MA; Kapasi, S; Peterson, S; Gilchrest, BA. Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation. J. Invest Dermatol 2004, 122, 159–166. [Google Scholar]
- Yaar, M; Wu, C; Park, HY; Panova, I; Schutz, G; Gilchrest, BA. Bone morphogenetic protein-4, a novel modulator of melanogenesis. J. Biol. Chem 2006, 281, 25307–25314. [Google Scholar]
- Wiechers, JW; Rawlings, AV; Garcia, C; Chesne, C; Balaguer, P; Nicolas, JC; Corre, S; Galibert, MD. A new mechanism of action for skin whitening agents: Binding to the peroxisome proliferator-activated receptor. Int. J. Cosmet. Sci 2005, 27, 123–132. [Google Scholar]
- Kim, DS; Kim, SY; Chung, JH; Kim, KH; Eun, HC; Park, KC. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell Signal 2002, 14, 779–785. [Google Scholar]
- Kim, DS; Jeong, YM; Park, IK; Hahn, HG; Lee, HK; Kwon, SB; Jeong, JH; Yang, SJ; Sohn, UD; Park, KC. A new 2-imino-1,3-thiazoline derivative, KHG22394, inhibits melanin synthesis in mouse B16 melanoma cells. Biol. Pharm. Bull 2007, 30, 180–183. [Google Scholar]
- Kim, DS; Lee, S; Lee, HK; Park, SH; Ryoo, IJ; Yoo, ID; Kwon, SB; Baek, KJ; Na, JI; Park, KC. The hypopigmentary action of KI-063 (a new tyrosinase inhibitor) combined with terrein. J. Pharm. Pharmacol 2008, 60, 343–348. [Google Scholar]
- Kim, DS; Lee, HK; Park, SH; Chae, CH; Park, KC. AVS-1357 inhibits melanogenesis via prolonged ERK activation. Pharmazie 2009, 64, 532–537. [Google Scholar]
- Sprong, H; Degroote, S; Claessens, T; van Drunen, J; Oorschot, V; Westerink, BH; Hirabayashi, Y; Klumperman, J; van der, SP; van Meer, G. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J. Cell Biol 2001, 155, 369–380. [Google Scholar]
- Konno, K; Ono, H; Nakamura, M; Tateishi, K; Hirayama, C; Tamura, Y; Hattori, M; Koyama, A; Kohno, K. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proc. Natl. Acad. Sci. USA 2006, 103, 1337–1341. [Google Scholar]
- Hamed, SH; Sriwiriyanont, P; de Long, MA; Visscher, MO; Wickett, RR; Boissy, RE. Comparative efficacy and safety of deoxyarbutin, a new tyrosinase-inhibiting agent. J. Cosmet. Sci 2006, 57, 291–308. [Google Scholar]
- Hu, ZM; Zhou, Q; Lei, TC; Ding, SF; Xu, SZ. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: Biosafety as skin whitening agents. J. Dermatol. Sci 2009, 55, 179–184. [Google Scholar]
- Fuller, BB; Drake, MA; Spaulding, DT; Chaudhry, F. Downregulation of tyrosinase activity in human melanocyte cell cultures by yohimbine. J. Invest Dermatol 2000, 114, 268–276. [Google Scholar]
Source | Compounds (type) | Mode of action tested* | Refs. | |
---|---|---|---|---|
TI | comments | |||
Chouji and Yakuchi extracts, crude drugs | eugenol, yakuchinone A, ferulic acid, curcumin and yakuchinone B | TI (c) | [18] | |
Anacardium occidentale, cashew fruit | 6-[8(Z),11(Z),14-pentadecatrienyl]-salicylic acid and 5-[8(Z),11(Z),14-pentadecatrienyl]resorcinol | TI (c) | [19] | |
Bolivian medicinal plants, Buddleia coriacea, Gnaphalium cheiranthifolium, and Scheelea princeps. | phenolic | TI | [20] | |
Artocarpus gomezianus. | among eight other compounds norartocarpetin (5) and resveratrol (8) were isolated | 5,8 were most potent TI | [21] | |
Artocarpus incisus | flavonoids, stilbenes and related 4-substituted resorcinols | TI | 4-substituted recorcinol increases TI (c) | [15] |
Stryphnodendron barbatimao, Portulaca pilosa, Cariniana brasiliensis, Entada africana and Prosopis africana. Five plants out of 67 tropical plants | unknown | strong TI | TI comparable to Morus alba as positive control | [22] |
Pulsatilla cernua | 3,4-dihydroxycinnamic acid (1) 4-hydroxy-3-methoxycinnamic acid (2) | 2 > other TI > 1 1,2 (nc) | [23] | |
galls of Rhus javanica | Tannic acid | TI | - | [24] |
Sophora flavescens | prenylated flavonoids; kuraridin, kurarinone and norkurarinol | strong TI > KA | C8 and C5 substitutionis essential for TI | [16] |
Sophora flavescens | sophoraflavanone G, kuraridin, and kurarinone | TI > KA | [25] | |
Veratrum patulum | hydroxystilbene compounds; resveratrol, oxyresveratrol, and their analogs | potent TI | cellulase treatment improved TI | [17] |
Phellinus linteus | cerebroside B (1), protocate-chualdehyde (2), 5-hydroxymethyl-2-furaldehyde (HMF) (3), succinic acid (4), fumaric acid (5) | 2,3 TI 2 > 3 2 (c) 3 (nc) | [26] | |
Ecklonia stolonifera. edible brown alga out of 17 seaweed extracts | phloroglucinol derivatives [phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5)]. | 1,2 TI (c) 3–5 (nc) | TI similar to arbutin | [27] |
39 seashore plant species, Japan: Hibiscus tiliaceus, Carex pumila, and Garcinia subelliptica | GS contained 2 biflavonoids; 2R,3S-5, 7,4′,5″,7″,3‴,4‴-heptahydroxy-flavanone[3-8″] flavone (1) and 5,7,4′,5″,7″,3‴,4‴-heptahydroxy[3–8″] biflavanone (2) | both strong TI 1 > KA | [28] | |
Glycyrrhiza uralensis Glycyrrhiza inflate Licorice | liquiritin(1), licuraside (2), isoliquiritin(3), liquiritigenin(4) and licochalcone A (5) | 2,3 and 5 potent TI (c) | [29] | |
Trifolium balansae | three steroids, stigmast-5-ene-3 beta,26-diol (2), stigmast-5-ene-3-ol (3) and campesterol (4) | 2,3 and 4 potent TI 2 > 3,4 | [30] | |
Amberboa ramosa Jafri | cycloartane type triterpenoids; eight compounds identified. 3β,21,22,23-tetrahydroxycycloart-24 (31),25(26)-diene (cmpd. 7) | 7 most potent TI > KA | SAR studies | [31] |
Sake lees | triacylglycerols; triolein (1) and trilinolein (2) | TI 1,2 (nc) TI 2 > 1 | PI in E coli (2) | [32] |
Garcinia kola | screening 21 families of medicinal plants from West and Central Africa. 5 extracts selected with G. kola showing good TI; five biflavanones identified | TI > 60% IC50 > KA | [33] | |
Marrubium velutinum and Marrubium cylleneum | Screening of 45 metabolites. Flavonoids (1), phenylethanoid glycosides (2), phenolic acids (3) | 1,2 moderate TI, 3 < 2 | [34] | |
Lichen species; Graphidaceae family(1) Usnea ghattensis (2), Heterodermia podocarpa, Arthothelium awasthii (3) and Parmotrema tinctorum | unknown | TI (1) 30–78% | antioxidant, antimicrobial, antityrosinase IC50 (2,3) similar or less than other TIs | [35,36] |
Sophora flavescens | sophoraflavanone G (1), kurarinone (2) and kurarinol (3) | strong TI 1,2 (nc) 3 (c) | 1,2 antibacterial 3 PI in SB MMS on 3 | [37] |
50 crude drugs Glycyrrhiza glabra, Morus alba, Syzygium aromaticum, Citrus aurantifolia, Cypreae moneta, Punica granatum and Citrus aurantium | yes All < KA | [38] | ||
Ganoderma lucidum | yes | [39] | ||
Arbutus andrachne | Arbutin, hydroquinone, β-sitosterol and ursolic acid present in extracts | yes | [40] | |
Morus alba L. and Morus rotundiloba Koidz Mulberry | betulinic acid (present) | yes | anti inflammatory | [41] |
Guioa villosa | sesquiterpene diglycosides; crenulatosides E, F and G (1 – 3) betulin (14), lupeol (15) and soyacerebroside I (16) | no strong TI | [42] | |
Broussonetia kazinoki. | 1,3-diphenylpropanes: kazinol C (1), D (2), F (3), broussonin C (4), kazinol S (5) and kazinol T (6) | 1,3–5 (c) 4; max TI | - - | [43] |
Artocarpus heterophyllus | 15 compounds. norartocarpetin (4) and artocarpesin (6) | yes 5 cmpds > KA | - - | [44,45] |
Paeonia suffruticosa | kaempferol (I), quercetin (II), mudanpioside B (III), benzoyl-oxypaeoniflorin (IV), mudanpioside H (V), and pentagalloyl-β-d-glucose (VI) | yes I to V (c) VI (nc) | - - | [46] |
Source | Compounds (type) | Mode of action tested(*)(**) | Refs. | ||
---|---|---|---|---|---|
TI | PI | other | |||
Pityrosporum ovale | Azelaic acid; C9-dicarboxylic acid | yes | yes | - | [75] |
Aspergillus niger and Aspergillus penicillium | Kojic acid; 5-hydroxy-2-(hydroxymethyl)-γ-pyrone | Yes (c,m) | - | - | [76,77] |
Arctostaphylos uva-ursi bearberry | Arbutin; hydroquinone glucoside β-d-gluconopyranoside | yes (c,m,nc) | - | - | [13,78] [79] |
Aloe vera | Aloesin; C-glycosylated chromone | yes (nc) | - | - | [9,13,80] |
Artocarpus incisus (best of) 23 heart wood species from Papua New Guinea. | (+)-dihydromorin, chlorophorin, (+)-norartocarpanone, 4-prenyl-oxyresveratrol, artocarbene, artocarpesin and isoarto-carpesin | yes ≈ KA | yes (B16 and GP) | - | [81] |
Morus alba Rheum undulatum | 1. Oxyresveratrol 2. Hydroxystilbene | yes > KA (nc) yes | - | 1. no effect on expression or synthesis | [82] |
Morus alba | Mulberroside F (moracin M-6, 3′-di-O-beta-d-glucopyranoside | yes | yes (melan-a) | mild anti-oxidant SO scavenger <KA | [83] |
Citrus fruit peel | 3′,4′,5,6,7,8-hexamethoxy-flavone (nobiletin) | yes > KA | antimutagenic | [84] | |
Ramulus mori (young twigs of Morus alba) | 2,3′,4,5′-tetrahydroxy-stilbene (2-oxyresveratrol) | yes (c) | yes (GP + UV) | no effect on expression or synthesis non-toxic | [85] |
Glycyrrhiza glabra Licorice extract | glabrene and 2′,4′,4-tri-hydroxychalcone | yes | yes | [86] | |
Grape seed | proanthocyanidin | yes | yes (B16, GP + UV) | antioxidant activity, 8OHdG | [56] |
Aspergillus fumigatus and Saccharomyces cerevisiae | melanin degrading enzymes | - | - | [70] | |
Carthamus tinctorius safflower seeds | 1) N-feruloylserotonin,2) N-(p-coumaroyl)serotonin, and 3) acacetin | yes, 1,2 > arbutin | yes (SB, B16). 1,2 > arbutin | [49] | |
Glycyrrhiza uralensis | Glycyrrhisoflavone (1) and glyasperin C(2) | yes | yes (B16) 1 > 2 | [87] | |
Punica granatum Pomegranate | ellagic acid | yes ≈ Arb | yes (GP + UV) ≈ AA | [57] | |
Fish, Poultry | vitamin B3 derivative, niacinamide | no | no | MT inh. Mc/Kc cocult. CT | [53] |
Piper longum | piperlonguminine | no | yes (B16 + msh) | Tyr mRNA red. cAMP pathway via MITF inh. | [88,89] |
Angelica dahurica | isoimperatorin imperatorin | no | yes (B16) | Tyr protein + mRNA red. | [90] |
Artocarpus lakoocha heartwood | oxyresveratrol | yes | Nd | CT (female volunteers) > KA > licorice | [60] |
Astragalus taschkendicus | askendoside B | yes | Nd | [91] | |
Spatholobus suberectus Dunn (Leguminosae) Chinese herb | Butin (most effective compound) | yes | yes (nHEM) | Tyr,Trp-1 and Trp-2 reduced (WB,qPCR) | [64] |
Sophora japonica and Spatholobus suberectus out of 25 Chinese Herbs | high phenolic content, e.g., gallic acid | yes | yes (nHEM) | AO activity (DPPH) | [92] |
Galla Chinensis Radix Clematidis out of 90 Chinese Herbs | unknown | yes | yes (Mel-ab, melan-a, melan-a/SP1 cocult.) | Effects on Tyr, Trp-1 and Trp-2expression | [52] |
Kaempferia pandurata | chalcone compounds, isopanduratin A and 4-hydroxypanduratin A | yes > PTU | yes (melan-a) > PTU | Tyr protein reduced | [93] |
Corn bran | Polyamine conjugates, N,N′-dicoumaroylputrescine (DCP), N-p-coumaroyl-N′-feruloylputrescine (CFP), and N,N′-diferuloyl-putrescine (DFP) | yes DCP > AA | yes (B16) DFP > Arb | AO activity (DPPH) | [94] |
Podocarpus macrophyllus | 2,3-dihydro-4′,4‴-di-O-methylamentoflavone | yes | yes (nHEM) | Trp-2 mRNA reduced | [95] |
Longan seed | corilagin, gallic acid and ellagic acid or other phenolic/flavonoid glycosides and ellagitannins | yes | n.d. | AO activity (DPPH and ORAC assays) | [71] |
Gastrodia elata Blume Orchidaceae | (synthetic) p-hydroxybenzyl alcohol | yes (Irrev) | yes (B16, mouse MC-KC cocult.) | AO; radical scavenger | [51,96] |
Sophora flavescens | 1) kurarinol, 2) kuraridinol, and 3) trifolirhizin | yes 1,2 > KA 1,2 (nc) | yes (B16) | [97] | |
Cucumis sativus | Lutein | no | yes (B16) | Tyr protein reduced | [98] |
Lespedeza cyrtobotrya | Haginin A | yes (nc) | yes (melan-a) GP (+UV) zebra fish | MITF, Tyr, Trp-1 reduced. Erk induced | [59] |
Malpighia emarginata Acerola fruit | cyanidin-3-alpha-O-rhamnoside. pelargonidin-3-α-O-rhamnoside | yes | yes (B16) GP (+UV) | [11] | |
Coccoloba uvifera Sea grape | unknown | yes (nHEM) | AO; reduces IL-1alpha, TNF-alpha and alpha-MSH in nHEM + UV | [74] | |
Salicornia herbacea, halophyte | yes | yes (B16) | AO activity | [99] | |
Allium species such as garlic and onions. | 1-propylmercaptan | yes ≈ KA | yes ≈ KA | [100] | |
Willughbeia coriacea Phyllanthus urinaria out of 14 medicinal plants Central Kalimantan | unknown | yes yes | yes (B16) yes (B16) | AO assay DPPH | [101] |
Rhus Ghinensis; Chinese galls | 3 Gallotannins; 2,3,4,6-tetra-O-galloyl-d-glucopyranose, 1,2,3,6-tetra-O-galloyl-β-d-glucopyranose, and 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose | yes (nc) | Yes (B16 + UVA; MSH) | [102] | |
Rhus succedanea | 10′(Z)-heptadecenyl-hydroquinone | yes > HQ | yes > HQ (B16) | [103] | |
Polygonum cuspidatum. Paris polyphylla Vitex negundo | Physcion (anthraquinone + anthraquinone analog) (+)-Lyoniresinol | yes ≈ KA yes > KA yes > KA | n.d. n.d. n.d, | Good skin permeation | [10,104] [105] |
Raspberry | Tiliroside | yes | Yes (B16) | >Arb | [106] |
Erigeron breviscapus Chinese herb | (2Z,8Z)-matricaria acid methyl ester | no | yes (B16, elan-a > Arb | Tyr protein reduced? | [107] |
Alpinia galanga and Curcuma aromatica medicinal plants | eugenol and curcuminoids possible active ingredients | yes | yes (G361 ma cells + UVA) | AO defence | [108] |
Grape seed | oligomeric proanthocyanidins | - | yes, nHEM + UV | effects on TE, Trp-1 and Trp-2 expression AO activity | [65] |
Company | Product | Ingredients | Documentation; in Vitro/in Vivo Effect |
---|---|---|---|
Revitol | Skin Brightener | Arbutin, Lumiskin (diacetyl boldine), Z Whitener (new natural ingredient, unknown) + vitamins A,C and E and other natural extracts (antioxidants) | Lumiskin TM: action on tyrosinase expression based on principle described by Fuller 2000 [128] http://naturalskincareformula.com/ |
Premium Naturals | Skinbright | Arbutin, Kojic Acid, Lemon Extract | www.whiterskin.com/ |
Sisquoc | Lucederm | Niacinamide, α-Arbutin, Kojic Acid, Mulberry, Bearberry, Licorice, Lemon | www.whiterskin.com/ [29,53,82,83] |
LIBiol | Synerlight | Actinidia Chinensis (Kiwi) Fruit, Sophora Angustifolia Root | http://www.gattefossecanada.ca/ |
Bayer HealthCare | Mandresy extract | Buddleja axillaris leaves; extract rich in orthocinnamic compounds and flavonoids, verbascoside & luteolin | TI (mushroom); PI (nHEM + UV); reduces dendricity; in vivo brightening 8 volunteers (Chromameter) www.serdex-plantextracts.com: United States Patent Application 20090028969 |
Civant Skin care | Meladerm | Kojic Acid, α-Arbutin, Niacinamide, Mulberry, Bearberry, Licorice, Tego® Cosmo C250, Gigawhite, Lemon Juice, Emblica TegoCosmo; a natural amino acid derivative that belongs to the class of guanidine compounds Giga white:plant extracts from the Swiss alps; Malva Sylvestris, Mentha Piperita, Primula Veris, Alchemilla Vulgaris, Veronica Officinalis, Melissa Officinalis, Achillea Millefolium | niacinamide, mulberry and licorice (refs. [29,53,82,83]) www.whiterskin.com/; http://www.whiterskin.com/studies/cosmo.pdf http://www.whiterskin.com/studies/giga.pdf |
Juju Cosmetics | Tosekki whitening cream | Glycyrrhetinic acid, Ginseng, Houttuynia, Yeast, Coix, Horse Chestnut, Arica, Grape Leaf, Ypericum, Ivy, Witch Hazel, Sophora Root, Mulberry Bark, Peony Root, Japanese Angelica Root, Rose Fruit and other ingredients. | Glycyrrhetinc acid; Sophora Root; Peony Root; Mulberry Bark (refs. [25,29,38,46,82,83,86]) http://beautyknot.wordpress.com/2009/02/27/juju-cosmetics-tosekki-whitening-cream/ |
Lipotec | Chromabright | dimetylmethoxy chromanyl palmitate | TI (mushroom + human); PI (nHEM) photoprotective; in vivo brightening 20 Asian females (Chromameter) www.lipotec.com ; Patent; http://www.maxworth.co.th/max/pdf/ES291%20Chromabriht.pdf |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Smit, N.; Vicanova, J.; Pavel, S. The Hunt for Natural Skin Whitening Agents. Int. J. Mol. Sci. 2009, 10, 5326-5349. https://doi.org/10.3390/ijms10125326
Smit N, Vicanova J, Pavel S. The Hunt for Natural Skin Whitening Agents. International Journal of Molecular Sciences. 2009; 10(12):5326-5349. https://doi.org/10.3390/ijms10125326
Chicago/Turabian StyleSmit, Nico, Jana Vicanova, and Stan Pavel. 2009. "The Hunt for Natural Skin Whitening Agents" International Journal of Molecular Sciences 10, no. 12: 5326-5349. https://doi.org/10.3390/ijms10125326
APA StyleSmit, N., Vicanova, J., & Pavel, S. (2009). The Hunt for Natural Skin Whitening Agents. International Journal of Molecular Sciences, 10(12), 5326-5349. https://doi.org/10.3390/ijms10125326