Host Defense Peptides as Effector Molecules of the Innate Immune Response: A Sledgehammer for Drug Resistance?
Abstract
:1. Introduction
2. Cationic Host Defense Peptides
3. Activities of Host Defense Peptides
4. Strategies and Functional Properties of Host Defense Peptides
5. Current Limitations of Host Defense Peptides
6. Are We Entering the Post-Antibiotic Era?
7. Conclusions
References and Notes
- Davies, J. Origins and evolution of antibiotic resistance. Microbiologia 1996, 12, 9–16. [Google Scholar]
- Barber, M; Rozwadowska-Dowzenko, M. Infection by penicillin-resistant staphylococci. Lancet 1948, 2, 641–644. [Google Scholar]
- Benner, EJ; Kayser, FH. Growing clinical significance of methcillin-resistant Staphylococcus aureus. Lancet 1968, 2, 741–744. [Google Scholar]
- Armstrong, GL; Conn, LA; Pinner, RW. Trends in infectious disease mortality in the United States during the 20th century. JAMA 1999, 281, 61–66. [Google Scholar]
- Surveillance for methicillin-resistant Staphylococcus aureus in Canadian hospitals--a report update from the Canadian Nosocomial Infection Surveillance Program. Can. Commun. Dis. Rep 2005, 31, 33–40.
- Goetghebeur, M; Landry, PA; Han, D; Vicente, C. Methicillin-resistant Staphylococcus aureus: A public health issue with economic consequences. Can. J. Infect. Dis. Med. Microbiol 2007, 18, 27–34. [Google Scholar]
- Clark, NC; Weigel, LM; Patel, JB; Tenover, FC. Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob. Agents. Chemother 2005, 49, 470–472. [Google Scholar]
- Deans, KJ; Haley, M; Natanson, C; Eichacker, PQ; Minneci, PC. Novel therapies for sepsis: A review. J. Trauma 2005, 58, 867–784. [Google Scholar]
- Ziebuhr, W; Xiao, K; Coulibaly, B; Schwarz, R; Dandekar, T. Pharmacogenomic strategies against resistance development in microbial infections. Pharmacogenomics 2004, 5, 361–379. [Google Scholar]
- Wesche-Soldato, DE; Swan, RZ; Chung, CS; Ayala, A. The apoptotic pathway as a therapeutic target in sepsis. Curr. Drug Targets 2007, 8, 493–500. [Google Scholar]
- Tossi, A; Sandri, L; Giangaspero, A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000, 55, 4–30. [Google Scholar]
- Hancock, RE; Scott, MG. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 2000, 97, 8856–8861. [Google Scholar]
- Hancock, RE. Peptide antibiotics. Lancet 1997, 349, 418–422. [Google Scholar]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar]
- Hancock, RE. Cationic peptides: Effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis 2004, 1, 156–164. [Google Scholar]
- Steinstraesser, L; Oezdogan, Y; Wang, SC; Steinau, HU. Host defense peptides in burns. Burns 2004, 30, 619–627. [Google Scholar]
- Brahmachary, M; Krishnan, SP; Koh, JL; Khan, AM; Seah, SH; Tan, TW; Brusic, V; Bajic, VB. ANTIMIC: A database of antimicrobial sequences. Nucleic Acids Res 2004, 32, D586–D589. [Google Scholar]
- Fjell, CD; Hancock, RE; Cherkasov, A. AMPer: A database and an automated discovery tool for antimicrobial peptides. Bioinformatics 2007, 23, 1148–1155. [Google Scholar]
- Wang, G; Li, X; Wang, Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009, 37, D933–D937. [Google Scholar]
- Andreu, D; Rivas, L. Animal antimicrobial peptides: An overview. Biopolymers 1998, 47, 415–433. [Google Scholar]
- van’t Hof, W; Veerman, EC; Helmerhorst, EJ; Amerongen, AV. Antimicrobial peptides: Properties and applicability. Biol. Chem 2001, 382, 597–619. [Google Scholar]
- Koczulla, AR; Bals, R. Antimicrobial peptides: Current status and therapeutic potential. Drugs 2003, 63, 389–406. [Google Scholar]
- Mookherjee, N; Brown, KL; Bowdish, DM; Doria, S; Falsafi, R; Hokamp, K; Roche, FM; Mu, R; Doho, GH; Pistolic, J; Powers, JP; Bryan, J; Brinkman, FS; Hancock, RE. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol 2006, 176, 2455–2464. [Google Scholar]
- Zanetti, M. The role of cathelicidins in the innate host defenses of mammals. Curr. Issues Mol. Biol 2005, 7, 179–196. [Google Scholar]
- Scott, MG; Davidson, DJ; Gold, MR; Bowdish, D; Hancock, RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol 2002, 169, 3883–3891. [Google Scholar]
- Koczulla, R; von Degenfeld, G; Kupatt, C; Krotz, F; Zahler, S; Gloe, T; Issbrucker, K; Unterberger, P; Zaiou, M; Lebherz, C; Karl, A; Raake, P; Pfosser, A; Boekstegers, P; Welsch, U; Hiemstra, PS; Vogelmeier, C; Gallo, RL; Clauss, M; Bals, R. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest 2003, 111, 1665–1672. [Google Scholar] [Green Version]
- Jacobsen, F; Mittler, D; Hirsch, T; Gerhards, A; Lehnhardt, M; Voss, B; Steinau, HU; Steinstraesser, L. Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene. Ther 2005, 12, 1494–1502. [Google Scholar]
- Shaykhiev, R; Beisswenger, C; Kandler, K; Senske, J; Puchner, A; Damm, T; Behr, J; Bals, R. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am. J. Physiol. Lung Cell Mol. Physiol 2005, 289, L842–L848. [Google Scholar]
- Sieprawska-Lupa, M; Mydel, P; Krawczyk, K; Wojcik, K; Puklo, M; Lupa, B; Suder, P; Silberring, J; Reed, M; Pohl, J; Shafer, W; McAleese, F; Foster, T; Travis, J; Potempa, J. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother 2004, 48, 4673–4679. [Google Scholar]
- Guina, T; Yi, EC; Wang, H; Hackett, M; Miller, SI. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J. Bacteriol 2000, 182, 4077–4086. [Google Scholar]
- Maemoto, A; Qu, X; Rosengren, KJ; Tanabe, H; Henschen-Edman, A; Craik, DJ; Ouellette, AJ. Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J. Biol. Chem 2004, 279, 44188–44196. [Google Scholar]
- Campopiano, DJ; Clarke, DJ; Polfer, NC; Barran, PE; Langley, RJ; Govan, JR; Maxwell, A; Dorin, JR. Structure-activity relationships in defensin dimers: A novel link between beta-defensin tertiary structure and antimicrobial activity. J. Biol. Chem 2004, 279, 48671–48679. [Google Scholar]
- Wu, Z; Hoover, DM; Yang, D; Boulegue, C; Santamaria, F; Oppenheim, JJ; Lubkowski, J; Lu, W. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc. Natl. Acad. Sci. USA 2003, 100, 8880–8885. [Google Scholar]
- Yang, D; Biragyn, A; Hoover, DM; Lubkowski, J; Oppenheim, JJ. Beta-defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999, 286, 525–528. [Google Scholar]
- Gabay, JE; Scott, RW; Campanelli, D; Griffith, J; Wilde, C; Marra, MN; Seeger, M; Nathan, CF. Antibiotic proteins of human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 1989, 86, 5610–5614. [Google Scholar]
- Lehrer, RI; Barton, A; Daher, KA; Harwig, SS; Ganz, T; Selsted, ME. Interaction of human defensins with Escherichia coli. mechanism of bactericidal activity. J. Clin. Invest 1989, 84, 553–561. [Google Scholar]
- Panyutich, AV; Voitenok, NN; Lehrer, RI; Ganz, T. An enzyme immunoassay for human defensins. J. Immunol. Methods 1991, 141, 149–155. [Google Scholar]
- Panyutich, AV; Panyutich, EA; Krapivin, VA; Baturevich, EA; Ganz, T. Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis. J. Lab. Clin. Med 1993, 122, 202–207. [Google Scholar]
- Panyutich, A; Ganz, T. Activated alpha 2-macroglobulin is a principal defensin-binding protein. Am. J. Respir. Cell Mol. Biol 1991, 5, 101–106. [Google Scholar]
- Panyutich, AV; Szold, O; Poon, PH; Tseng, Y; Ganz, T. Identification of defensin binding to C1 complement. FEBS Lett 1994, 356, 169–173. [Google Scholar]
- Tani, K; Murphy, WJ; Chertov, O; Salcedo, R; Koh, CY; Utsunomiya, I; Funakoshi, S; Asai, O; Herrmann, SH; Wang, JM; Kwak, LW; Oppenheim, JJ. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int. Immunol 2000, 12, 691–700. [Google Scholar]
- Lemaitre, B; Nicolas, E; Michaut, L; Reichhart, JM; Hoffmann, JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996, 86, 973–983. [Google Scholar]
- Chromek, M; Slamova, Z; Bergman, P; Kovacs, L; Podracka, L; Ehren, I; Hokfelt, T; Gudmundsson, GH; Gallo, RL; Agerberth, B; Brauner, A. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med 2006, 12, 636–641. [Google Scholar]
- Thompson, L; Turko, I; Murad, F. Mass spectrometry-based relative quantification of human neutrophil peptides 1, 2, and 3 from biological samples. Mol. Immunol 2006, 43, 1485–1489. [Google Scholar]
- Zhou, L; Huang, LQ; Beuerman, RW; Grigg, ME; Li, SF; Chew, FT; Ang, L; Stern, ME; Tan, D. Proteomic analysis of human tears: Defensin expression after ocular surface surgery. J. Proteome Res 2004, 3, 410–416. [Google Scholar]
- Hegedus, CM; Skibola, CF; Warner, M; Skibola, DR; Alexander, D; Lim, S; Dangleben, NL; Zhang, L; Clark, M; Pfeiffer, RM; Steinmaus, C; Smith, AH; Smith, MT; Moore, LE. Decreased urinary beta-defensin-1 expression as a biomarker of response to arsenic. Toxicol. Sci 2008, 106, 74–82. [Google Scholar]
- Coffelt, SB; Waterman, RS; Florez, L; Honer zu Bentrup, K; Zwezdaryk, KJ; Tomchuck, SL; LaMarca, HL; Danka, ES; Morris, CA; Scandurro, AB. Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion. Int. J. Cancer 2008, 122, 1030–1039. [Google Scholar]
- von Haussen, J; Koczulla, R; Shaykhiev, R; Herr, C; Pinkenburg, O; Reimer, D; Wiewrodt, R; Biesterfeld, S; Aigner, A; Czubayko, F; Bals, R. The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 2008, 59, 12–23. [Google Scholar]
- Bose, SK; Gibson, W; Bullard, RS; Donald, CD. PAX2 oncogene negatively regulates the expression of the host defense peptide human beta defensin-1 in prostate cancer. Mol. Immunol 2009, 46, 1140–1148. [Google Scholar]
- Brown, KL; Hancock, RE. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol 2006, 18, 24–30. [Google Scholar]
- Boman, HG. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol 1995, 13, 61–92. [Google Scholar]
- Yang, D; Biragyn, A; Kwak, LW; Oppenheim, JJ. Mammalian defensins in immunity: More than just microbicidal. Trends Immunol 2002, 23, 291–296. [Google Scholar]
- Bals, R; Wilson, JM. Cathelicidins—A family of multifunctional antimicrobial peptides. Cell. Mol. Life Sci 2003, 60, 711–720. [Google Scholar]
- Bowdish, DM; Davidson, DJ; Lau, YE; Lee, K; Scott, MG; Hancock, RE. Impact of LL-37 on anti-infective immunity. J. Leukoc. Biol 2005, 77, 451–459. [Google Scholar]
- Morrison, G; Kilanowski, F; Davidson, D; Dorin, J. Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect. Immun 2002, 70, 3053–3060. [Google Scholar]
- Niyonsaba, F; Suzuki, A; Ushio, H; Nagaoka, I; Ogawa, H; Okumura, K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol 2009, 160, 243–249. [Google Scholar]
- Rieg, S; Steffen, H; Seeber, S; Humeny, A; Kalbacher, H; Dietz, K; Garbe, C; Schittek, B. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J. Immunol 2005, 174, 8003–8010. [Google Scholar]
- Bals, R; Weiner, DJ; Moscioni, AD; Meegalla, RL; Wilson, JM. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999, 67, 6084–6089. [Google Scholar]
- Salzman, NH; Ghosh, D; Huttner, KM; Paterson, Y; Bevins, CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003, 422, 522–526. [Google Scholar]
- Schittek, B; Paulmann, M; Senyurek, I; Steffen, H. The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect. Disord. Drug Targets 2008, 8, 135–143. [Google Scholar]
- Harder, J; Meyer-Hoffert, U; Wehkamp, K; Schwichtenberg, L; Schroder, JM. Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J. Invest. Dermatol 2004, 123, 522–529. [Google Scholar]
- Proud, D; Sanders, SP; Wiehler, S. Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo. J. Immunol 2004, 172, 4637–4645. [Google Scholar]
- Vora, P; Youdim, A; Thomas, LS; Fukata, M; Tesfay, SY; Lukasek, K; Michelsen, KS; Wada, A; Hirayama, T; Arditi, M; Abreu, MT. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol 2004, 173, 5398–5405. [Google Scholar]
- Bhat, S; Milner, S. Antimicrobial peptides in burns and wounds. Curr. Protein Pept. Sci 2007, 8, 506–520. [Google Scholar]
- Vallender, EJ; Lahn, BT. Positive selection on the human genome. Hum. Mol. Genet 2004, 13, R245–R254. [Google Scholar]
- Patil, A; Hughes, AL; Zhang, G. Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol. Genomics 2004, 20, 1–11. [Google Scholar]
- Andres, E; Dimarcq, JL. Cationic antimicrobial peptides: From innate immunity study to drug development. Update. Med. Mal. Infect 2007, 37, 194–199. [Google Scholar]
- Dorschner, RA; Lopez-Garcia, B; Peschel, A; Kraus, D; Morikawa, K; Nizet, V; Gallo, RL. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J 2006, 20, 35–42. [Google Scholar]
- Johansson, J; Gudmundsson, GH; Rottenberg, ME; Berndt, KD; Agerberth, B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem 1998, 273, 3718–3724. [Google Scholar]
- Oren, Z; Lerman, JC; Gudmundsson, GH; Agerberth, B; Shai, Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: Relevance to the molecular basis for its non-cell-selective activity. Biochem. J 1999, 341, 501–513. [Google Scholar]
- Hirsch, T; Jacobsen, F; Steinau, HU; Steinstraesser, L. Host defense peptides and the new line of defence against multiresistant infections. Protein Pept. Lett 2008, 15, 238–248. [Google Scholar]
- Larrick, JW; Hirata, M; Balint, RF; Lee, J; Zhong, J; Wright, SC. Human CAP18: A novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun 1995, 63, 1291–1297. [Google Scholar]
- Steinstraesser, L; Tippler, B; Mertens, J; Lamme, E; Homann, HH; Lehnhardt, M; Wildner, O; Steinau, HU; Uberla, K. Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides. Retrovirology 2005, 2, 2–14. [Google Scholar]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar]
- Bowdish, DM; Hancock, RE. Anti-endotoxin properties of cationic host defence peptides and proteins. J. Endotoxin Res 2005, 11, 230–236. [Google Scholar]
- Hancock, RE; Rozek, A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett 2002, 206, 143–149. [Google Scholar]
- Hale, JD; Hancock, RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti. Infect. Ther 2007, 5, 951–959. [Google Scholar]
- Lohner, K; Blondelle, SE. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb. Chem. High Throughput Screen 2005, 8, 241–256. [Google Scholar]
- Yang, D; Biragyn, A; Hoover, DM; Lubkowski, J; Oppenheim, JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol 2004, 22, 181–215. [Google Scholar]
- Finlay, BB; Hancock, RE. Can innate immunity be enhanced to treat microbial infections? Nat. Rev. Microbiol 2004, 2, 497–504. [Google Scholar]
- Hiemstra, PS; Fernie-King, BA; McMichael, J; Lachmann, PJ; Sallenave, JM. Antimicrobial peptides: Mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr. Pharm. Des 2004, 10, 2891–2905. [Google Scholar]
- Selsted, ME; Ouellette, AJ. Mammalian defensins in the antimicrobial immune response. Nat. Immunol 2005, 6, 551–557. [Google Scholar]
- Braff, MH; Hawkins, MA; Di Nardo, A; Lopez-Garcia, B; Howell, MD; Wong, C; Lin, K; Streib, JE; Dorschner, R; Leung, DY; Gallo, RL. Structure-function relationships among human cathelicidin peptides: Dissociation of antimicrobial properties from host immunostimulatory activities. J. Immunol 2005, 174, 4271–4278. [Google Scholar]
- Davidson, DJ; Currie, AJ; Reid, GS; Bowdish, DM; MacDonald, KL; Ma, RC; Hancock, RE; Speert, DP. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol 2004, 172, 1146–1156. [Google Scholar]
- Nagaoka, I; Hirota, S; Niyonsaba, F; Hirata, M; Adachi, Y; Tamura, H; Heumann, D. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J. Immunol 2001, 167, 3329–3338. [Google Scholar]
- Befus, AD; Mowat, C; Gilchrist, M; Hu, J; Solomon, S; Bateman, A. Neutrophil defensins induce histamine secretion from mast cells: Mechanisms of action. J. Immunol 1999, 163, 947–953. [Google Scholar]
- Niyonsaba, F; Iwabuchi, K; Someya, A; Hirata, M; Matsuda, H; Ogawa, H; Nagaoka, I. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 2002, 106, 20–26. [Google Scholar]
- Salzet, M. Antimicrobial peptides are signaling molecules. Trends Immunol 2002, 23, 283–284. [Google Scholar]
- Remick, DG. Pathophysiology of sepsis. Am. J. Pathol 2007, 170, 1435–1444. [Google Scholar]
- Russell, JA. Management of sepsis. N. Engl. J. Med 2006, 355, 1699–1713. [Google Scholar]
- Calandra, T; Bochud, PY; Heumann, D. Cytokines in septic shock. Curr. Clin. Top. Infect. Dis 2002, 22, 1–23. [Google Scholar]
- Byl, B; Clevenbergh, P; Kentos, A; Jacobs, F; Marchant, A; Vincent, JL; Thys, JP. Ceftazidime- and imipenem-induced endotoxin release during treatment of gram-negative infections. Eur. J. Clin. Microbiol. Infect. Dis 2001, 20, 804–807. [Google Scholar]
- Parker, SJ; Watkins, PE. Experimental models of gram-negative sepsis. Br. J. Surg 2001, 88, 22–30. [Google Scholar]
- Shenep, JL; Barton, RP; Mogan, KA. Role of antibiotic class in the rate of liberation of endotoxin during therapy for experimental gram-negative bacterial sepsis. J. Infect. Dis 1985, 151, 1012–1018. [Google Scholar]
- Scott, MG; Vreugdenhil, AC; Buurman, WA; Hancock, RE; Gold, MR. Cutting edge: Cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein. J. Immunol 2000, 164, 549–553. [Google Scholar]
- Cirioni, O; Giacometti, A; Ghiselli, R; Bergnach, C; Orlando, F; Silvestri, C; Mocchegiani, F; Licci, A; Skerlavaj, B; Rocchi, M; Saba, V; Zanetti, M; Scalise, G. LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob. Agents Chemother 2006, 50, 1672–1679. [Google Scholar]
- McPhee, JB; Hancock, RE. Function and therapeutic potential of host defence peptides. J. Pept. Sci 2005, 11, 677–687. [Google Scholar]
- Murphy, CJ; Foster, BA; Mannis, MJ; Selsted, ME; Reid, TW. Defensins are mitogenic for epithelial cells and fibroblasts. J. Cell Physiol 1993, 155, 408–413. [Google Scholar]
- Chavakis, T; Cines, DB; Rhee, JS; Liang, OD; Schubert, U; Hammes, HP; Higazi, AA; Nawroth, PP; Preissner, KT; Bdeir, K. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): A link between inflammation and angiogenesis. FASEB J 2004, 18, 1306–1308. [Google Scholar]
- Steinstraesser, L; Ring, A; Bals, R; Steinau, HU; Langer, S. The human host defense peptide LL37/hCAP accelerates angiogenesis in PEGT/PBT biopolymers. Ann. Plast. Surg 2006, 56, 93–98. [Google Scholar]
- Sorensen, OE; Cowland, JB; Theilgaard-Monch, K; Liu, L; Ganz, T; Borregaard, N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol 2003, 170, 5583–5589. [Google Scholar]
- Heilborn, JD; Nilsson, MF; Kratz, G; Weber, G; Sorensen, O; Borregaard, N; Stahle-Backdahl, M. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol 2003, 120, 379–389. [Google Scholar]
- Yount, NY; Bayer, AS; Xiong, YQ; Yeaman, MR. Advances in antimicrobial peptide immunobiology. Biopolymers 2006, 84, 435–458. [Google Scholar]
- Peschel, A. How do bacteria resist human antimicrobial peptides? Trends Microbiol 2002, 10, 179–186. [Google Scholar]
- Jin, T; Bokarewa, M; Foster, T; Mitchell, J; Higgins, J; Tarkowski, A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol 2004, 172, 1169–1176. [Google Scholar]
- Frick, IM; Akesson, P; Rasmussen, M; Schmidtchen, A; Bjorck, L. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J. Biol. Chem 2003, 278, 16561–16566. [Google Scholar]
- Shafer, WM; Qu, XD; Waring, AJ; Lehrer, RI. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl. Acad. Sci. USA 1998, 95, 1829–1833. [Google Scholar]
- Tzeng, YL; Ambrose, KD; Zughaier, S; Zhou, X; Miller, YK; Shafer, WM; Stephens, DS. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J. Bacteriol 2005, 187, 5387–5396. [Google Scholar]
- Hancock, RE; Sahl, HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol 2006, 24, 1551–1557. [Google Scholar]
- Cox, CR; Coburn, PS; Gilmore, MS. Enterococcal cytolysin: A novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci 2005, 6, 77–84. [Google Scholar]
- Scott, MG; Hancock, RE. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol 2000, 20, 407–431. [Google Scholar]
- Ganz, T; Selsted, ME; Lehrer, RI. Defensins. Eur. J. Haematol 1990, 44, 1–8. [Google Scholar]
- Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1999, 1462, 55–70. [Google Scholar]
- Matsuzaki, K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta 1999, 1462, 1–10. [Google Scholar]
- Yang, L; Weiss, TM; Lehrer, RI; Huang, HW. Crystallization of antimicrobial pores in membranes: Magainin and protegrin. Biophys. J 2000, 79, 2002–2009. [Google Scholar]
- Dathe, M; Meyer, J; Beyermann, M; Maul, B; Hoischen, C; Bienert, M. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim. Biophys. Acta 2002, 1558, 171–186. [Google Scholar]
- Fukumoto, K; Nagaoka, I; Yamataka, A; Kobayashi, H; Yanai, T; Kato, Y; Miyano, T. Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr. Surg. Int 2005, 21, 20–24. [Google Scholar]
- Torossian, A; Gurschi, E; Bals, R; Vassiliou, T; Wulf, HF; Bauhofer, A. Effects of the antimicrobial peptide LL-37 and hyperthermic preconditioning in septic rats. Anesthesiology 2007, 107, 437–441. [Google Scholar]
- Oren, Z; Lerman, JC; Gudmundsson, GH; Agerberth, B; Shai, Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: Relevance to the molecular basis for its non-cell-selective activity. Biochem. J 1999, 341, 501–513. [Google Scholar]
- Ciornei, CD; Egesten, A; Bodelsson, M. Effects of human cathelicidin antimicrobial peptide LL-37 on lipopolysaccharide-induced nitric oxide release from rat aorta in vitro. Acta Anaesthesiol. Scand 2003, 47, 213–220. [Google Scholar]
- Niyonsaba, F; Ushio, H; Nagaoka, I; Okumura, K; Ogawa, H. The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J. Immunol 2005, 175, 1776–1784. [Google Scholar]
- Scott, MG; Davidson, DJ; Gold, MR; Bowdish, D; Hancock, RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol 2002, 169, 3883–3891. [Google Scholar]
- Steinstraesser, L; Koehler, T; Jacobsen, F; Daigeler, A; Goertz, O; Langer, S; Kesting, M; Steinau, H; Eriksson, E; Hirsch, T. Host defense peptides in wound healing. Mol. Med 2008, 14, 528–537. [Google Scholar]
- Kaus, A; Jacobsen, F; Sorkin, M; Rittig, A; Voss, B; Daigeler, A; Sudhoff, H; Steinau, HU; Steinstraesser, L. Host defence peptides in human burns. Burns 2008, 34, 32–40. [Google Scholar]
- Jacobsen, F; Mohammadi-Tabrisi, A; Hirsch, T; Mittler, D; Mygind, PH; Sonksen, CP; Raventos, D; Kristensen, HH; Gatermann, S; Lehnhardt, M; Daigeler, A; Steinau, HU; Steinstraesser, L. Antimicrobial activity of the recombinant designer host defence peptide P-novispirin G10 in infected full-thickness wounds of porcine skin. J. Antimicrob. Chemother 2007, 59, 493–498. [Google Scholar]
- Hirsch, T; von Peter, S; Dubin, G; Mittler, D; Jacobsen, F; Lehnhardt, M; Eriksson, E; Steinau, HU; Steinstraesser, L. Adenoviral gene delivery to primary human cutaneous cells and burn wounds. Mol. Med 2006, 12, 199–207. [Google Scholar]
- Steinstraesser, L; Tack, BF; Waring, AJ; Hong, T; Boo, LM; Fan, MH; Remick, DI; Su, GL; Lehrer, RI; Wang, SC. Activity of novispirin G10 against Pseudomonas aeruginosa in vitro and in infected burns. Antimicrob. Agents. Chemother 2002, 46, 1837–1844. [Google Scholar]
- Sigurdardottir, T; Andersson, P; Davoudi, M; Malmsten, M; Schmidtchen, A; Bodelsson, M. In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37. Antimicrob. Agents Chemother 2006, 50, 2983–2989. [Google Scholar]
- Eckert, R; Qi, F; Yarbrough, DK; He, J; Anderson, MH; Shi, W. Adding selectivity to antimicrobial peptides: Rational design of a multidomain peptide against Pseudomonas spp. Antimicrob. Agents Chemother 2006, 50, 1480–1488. [Google Scholar]
- Eckert, R; Greenberg, EP; Qi, F; Yarbrough, DK; He, J; McHardy, I; Anderson, MH; Shi, W. Enhancement of antimicrobial activity against pseudomonas aeruginosa by coadministration of G10KHc and tobramycin. Antimicrob. Agents Chemother 2006, 50, 3833–3838. [Google Scholar]
- Kristian, SA; Timmer, AM; Liu, GY; Lauth, X; Sal-Man, N; Rosenfeld, Y; Shai, Y; Gallo, RL; Nizet, V. Impairment of innate immune killing mechanisms by bacteriostatic antibiotics. FASEB J 2007, 21, 1107–1116. [Google Scholar]
- Ghiselli, R; Giacometti, A; Cirioni, O; Mocchegiani, F; Orlando, F; D’Amato, G; Sisti, V; Scalise, G; Saba, V. Cecropin B enhances betalactams activities in experimental rat models of gram-negative septic shock. Ann. Surg 2004, 239, 251–256. [Google Scholar]
- Zhang, L; Falla, TY. Antimicrobial peptides: Therapeutic potential. Expert. Opin. Pharmacother 2006, 7, 653–663. [Google Scholar]
- Levin, M; Quint, PA; Goldstein, B; Barton, P; Bradley, JS; Shemie, SD; Yeh, T; Kim, SS; Cafaro, DP; Scannon, PJ; Giroir, BP. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: A randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 2000, 356, 961–967. [Google Scholar]
- Hancock, RE; Patrzykat, A. Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics. Curr. Drug Targets Infect. Disord 2002, 2, 79–83. [Google Scholar]
Host Defense Peptide | Site of Expression | Immunomodulatory Function |
---|---|---|
Human cathelicidin (cationic, α-helical structure, consist of a highly conserved N-terminal domain, cathelin, and a variable C-terminal peptide) [13, 16, 23, 25, 51, 53, 54, 75, 79, 95, 100] | ||
hCAP18/LL37 | Neutrophils, keratinocytes, epithelial cells of skin and testis, gastrointestinal and respiratory tract, mast cells, monocytes/macrophages, CD4+ cells, myelocytes, wound and blister fluid, cervix vagina, esophagus, mouth, tongue | Broad antimicrobial activity, antiviral and antifungal activity, endotoxin-binding properties, modulation of pro-inflammatory response, chemotactic, influence of cell proliferation and differentiation, promoting wound healing and angiogenesis, induction of gene expression, induction of adaptive immunity |
Human α-Defensins (human neutrophil proteins; closely-related to human cathelicidin, Cys–Arg-rich, cationic, disulfide bridges, β-sheet structure) [22, 36–40] | ||
HNP-1 to -4 | Azurophilic granules of neutrophil granulocytes, B-cells, natural killer cells, T-cells | Killing of phagocytosed microorganisms, antimicrobial activity against Gram-positive and gram-negative bacteria, antiviral (HSV, CMV, HIV-1) properties, exotoxin-inactivation, chemotactic for monocytes, T-cells, immature dendritic cells, upregulation of tumor-necrosis factor α (TNF-α) and IL-1, downregulation of complement activation, promotion of DC activation |
HD-5 and -6 | Paneth cells granules of neutrophils, natural killer cells | Microbicidal activity against Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, C. albicans, induction of IL-8 |
Human-β-Defensins (closely-related to human cathelicidin, Cys–Arg-rich, cationic, disulfide bridges, β-sheet structure) [13, 34–36, 61, 105] | ||
hBD-1 | CD4+ and CD8+ T-cells, dendritic cells, epithelial cells of skin, respiratory, gastrointestinal and urogenital tract, trachea, uterus, pancreas, thymus, testis, vagina, gingival intestine, conjunctiva, cornea, lacrimal and buccal mucosa, tongue, salivary gland, mammary glands, limb joints, astrocytes, microglia | Broad antimicrobial activity, antiviral and antifungal activity, chemotactic, induction of chemokines and cytokines, recruiting immune cells, induction of adaptive immunity and pro-inflammatory cytokines such as IL-8, -18 and -20, degranulation of mast cells, promotion of phagocytosis, induction of dendritic cell maturations by TLR-4, LPS and LTS binding properties, inhibition of MMP-inhibitors (TIMP-1/-2) |
hBD- 2 | Mast cells, CD4+ and CD8+ T-cells, dendritic cells, skin, oral, pulmonl, gastric epithelia, conjuctiva, cornea, astrocytes | |
hBD- 3 | Monocytes, CD4+ T-cells, oral, respiratory tract, gastrointestinal tract, urinary and skin epithelial cells, uterus, placenta, testis, esophagus, heart, neutrophils, trachea, skeletal muscle, tongue, kidney, liver gastrointestinal tract, oropharynx, tonsils, salivary glands |
Drug | Stage of development | Medical use |
---|---|---|
BL2060 (a synthetic compound comprising fatty acid and lysine copolymers) | Lead optimization | Anti-infective |
CSA-13 (cationic steroid (ceragenin) that mimics host-defense peptides) | Preclinical | Anti-infective |
CZEN-002 (synthetic 8-mer derived from - melanocyte–stimulating hormone) | Phase 2b | Vulvovaginal candidiasis |
HB-50 (synthetic natural peptide mimetic of cecropin) | Preclinical | Anti-infective |
HB-107 (19-amino-acid fragment of cecropin B) | Preclinical | Wound healing |
hLF-1-11 (small peptide derived from human lactoferrin) | Phase 2 | Allogeneic bone marrow stem cell transplantation–associated infections |
IMX942 (5-amino-acid peptide) | Lead optimization | Immunomodulation; treatment of fevers and neutropenia in chemotherapy patients |
MSI-78 | Phase IIIb | Anti-infetive; Wound healing |
Omiganan pentahydrocholoride/CP-226/MX-226/CLS001 (12-mer analog of bactolysin) | Phase 3b | Prevention of catheter-related infections; dermatology-related infections |
MBI 594AN | Preclinical | Anti-infective |
Mersacidin (bacteriocin) | Preclinical | Gram-positive infections |
Plectasin (fungal defensin) | Preclinical | Systemic anti–Gram positive, especially pneumococcal and streptococcal infections |
PAC113 (based on the active segment of histatin 5 protein found in human saliva) | Investigational New Drug (IND) approval | Oral candidiasis |
PTX002 (33-mer peptide) PTX005 (12-mer peptide), PTX006 (N-acylated analog of PTX005) and PTX007 (a nonpeptidic structur analog of PTX005) | Discovery | Broad-spectrum antimicrobial antiendotoxin |
Peptidomimetics (derived from the arylamide, calixarene, hydrazide and salicylamide series) | Discovery/preclinical | Anti-infectives; antimicrobial polymers and coating materials |
rBPI21 | Phase IIIb | Anti-infective; Allogeneic bone marrow stem cell transplantation–associated infections; Prevention of burn infections |
XOMA 629 | Phase 2a | Anti-infective |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Steinstraesser, L.; Kraneburg, U.M.; Hirsch, T.; Kesting, M.; Steinau, H.-U.; Jacobsen, F.; Al-Benna, S. Host Defense Peptides as Effector Molecules of the Innate Immune Response: A Sledgehammer for Drug Resistance? Int. J. Mol. Sci. 2009, 10, 3951-3970. https://doi.org/10.3390/ijms10093951
Steinstraesser L, Kraneburg UM, Hirsch T, Kesting M, Steinau H-U, Jacobsen F, Al-Benna S. Host Defense Peptides as Effector Molecules of the Innate Immune Response: A Sledgehammer for Drug Resistance? International Journal of Molecular Sciences. 2009; 10(9):3951-3970. https://doi.org/10.3390/ijms10093951
Chicago/Turabian StyleSteinstraesser, Lars, Ursula M. Kraneburg, Tobias Hirsch, Marco Kesting, Hans-Ulrich Steinau, Frank Jacobsen, and Sammy Al-Benna. 2009. "Host Defense Peptides as Effector Molecules of the Innate Immune Response: A Sledgehammer for Drug Resistance?" International Journal of Molecular Sciences 10, no. 9: 3951-3970. https://doi.org/10.3390/ijms10093951
APA StyleSteinstraesser, L., Kraneburg, U. M., Hirsch, T., Kesting, M., Steinau, H.-U., Jacobsen, F., & Al-Benna, S. (2009). Host Defense Peptides as Effector Molecules of the Innate Immune Response: A Sledgehammer for Drug Resistance? International Journal of Molecular Sciences, 10(9), 3951-3970. https://doi.org/10.3390/ijms10093951