Proteomic Serum Biomarkers and Their Potential Application in Cancer Screening Programs
Abstract
:1. Introduction
2. Screening for Breast Cancer and Colorectal Cancer
2.1. Breast Cancer
2.2. Colorectal Cancer
3. Workflow in Proteomic Profiling
3.1. Blood Sample Preparation
3.2. Standardization
3.3. Clean-up Procedure
3.4. Functionalized Magnetic Beads
3.5. Automation
3.6. MALDI-TOF Mass Spectrometry
3.7. SELDI-TOF
3.8. Data Analysis
4. Potential Mass Spectrometry Derived Biomarkers
4.1. Early Detection of Breast Cancer
4.2. Early Detection of CRC
5. Identification of Biomarkers
5.1. Biomarker Identification in Breast Cancer
5.2. Biomarker Identification in Colorectal Cancer
6. Discussion
7. Conclusion
References
- SEER: Surveillance Epidemiology and End Results Program; National Cancer Institute: Bethesda, MD, USA, 2006. Available online: http://seer.cancer.gov/ (accessed on 16 October 2010).
- Pepe, MS; Etzioni, R; Feng, Z; Potter, JD; Thompson, ML; Thornquist, M; Winget, M; Yasui, Y. Phases of biomarker development for early detection of cancer. J. Natl. Cancer Inst 2001, 93, 1054–1061. [Google Scholar]
- Etzioni, R; Urban, N; Ramsey, S; McIntosh, M; Schwartz, S; Reid, B; Radich, J; Anderson, G; Hartwell, L. The case for early detection. Nat. Rev. Cancer 2003, 3, 243–252. [Google Scholar]
- Srinivas, PR; Kramer, BS; Srivastava, S. Trends in biomarker research for cancer detection. Lancet Oncol 2001, 2, 698–704. [Google Scholar]
- Petricoin, EF; Liotta, LA. Proteomic analysis at the bedside: Early detection of cancer. Trends Biotechnol 2002, 20, S30–S34. [Google Scholar]
- Srinivas, PR; Verma, M; Zhao, Y; Srivastava, S. Proteomics for cancer biomarker discovery. Clin. Chem 2002, 48, 1160–1169. [Google Scholar]
- Wulfkuhle, JD; Liotta, LA; Petricoin, EF. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 2003, 3, 267–275. [Google Scholar]
- Aebersold, R; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. [Google Scholar]
- Ikonomou, G; Samiotaki, M; Panayotou, G. Proteomic methodologies and their application in colorectal cancer research. Crit. Rev. Clin. Lab. Sci 2009, 46, 319–342. [Google Scholar]
- Veronesi, U; Boyle, P; Goldhirsch, A; Orecchia, R; Viale, G. Breast cancer. Lancet 2005, 365, 1727–1741. [Google Scholar]
- Jemal, A; Siegel, R; Ward, E; Hao, Y; Xu, J; Thun, MJ. Cancer statistics, 2009. CA Cancer J. Clin 2009, 59, 225–249. [Google Scholar]
- Peto, R; Boreham, J; Clarke, M; Davies, C; Beral, V. UK and USA breast cancer deaths down 25% in year 2000 at ages 20–69 years. Lancet 2000, 355, 1822. [Google Scholar]
- Astley, SM. Computer-based detection and prompting of mammographic abnormalities. Br. J. Radiol 2004, 77, S194–S200. [Google Scholar]
- Benson, SR; Blue, J; Judd, K; Harman, JE. Ultrasound is now better than mammography for the detection of invasive breast cancer. Am. J. Surg 2004, 188, 381–385. [Google Scholar]
- Roder, D; Houssami, N; Farshid, G; Gill, G; Luke, C; Downey, P; Beckmann, K; Iosifidis, P; Grieve, L; Williamson, L. Population screening and intensity of screening are associated with reduced breast cancer mortality: Evidence of efficacy of mammography screening in Australia. Breast Cancer Res. Treat 2008, 108, 409–416. [Google Scholar]
- Antman, K; Shea, S. Screening mammography under age 50. JAMA 1999, 281, 1470–1472. [Google Scholar]
- Li, J; Orlandi, R; White, CN; Rosenzweig, J; Zhao, J; Seregni, E; Morelli, D; Yu, Y; Meng, XY; Zhang, Z; et al. Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin. Chem 2005, 51, 2229–2235. [Google Scholar]
- Brennan, ME; Houssami, N; Lord, S; Macaskill, P; Irwig, L; Dixon, JM; Warren, RM; Ciatto, S. Magnetic resonance imaging screening of the contralateral breast in women with newly diagnosed breast cancer: Systematic review and meta-analysis of incremental cancer detection and impact on surgical management. J. Clin. Oncol 2009, 27, 5640–5649. [Google Scholar]
- Weinstein, SP; Localio, AR; Conant, EF; Rosen, M; Thomas, KM; Schnall, MD. Multimodality screening of high-risk women: A prospective cohort study. J. Clin. Oncol 2009, 27, 6124–6128. [Google Scholar]
- Kriege, M; Brekelmans, CT; Obdeijn, IM; Boetes, C; Zonderland, HM; Muller, SH; Kok, T; Manoliu, RA; Besnard, AP; Tilanus-Linthorst, MM; et al. Factors affecting sensitivity and specificity of screening mammography and MRI in women with an inherited risk for breast cancer. Breast Cancer Res. Treat 2006, 100, 109–119. [Google Scholar]
- Gotzsche, PC; Nielsen, M. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2009, 4, CD001877. [Google Scholar]
- Bresalier, RS. Early detection of and screening for colorectal neoplasia. Gut Liver 2009, 3, 69–80. [Google Scholar]
- Jemal, A; Siegel, R; Xu, J; Ward, E. Cancer Statistics, 2010. CA Cancer J Clin 2010. doi:10.3322/caac.20073. [Google Scholar]
- de Noo, ME; Liefers, GJ; Tollenaar, RA. Translational research in prognostic profiling in colorectal cancer. Dig. Surg 2005, 22, 276–281. [Google Scholar]
- Wang, Q; Shen, J; Li, ZF; Jie, JZ; Wang, WY; Wang, J; Zhang, ZT; Li, ZX; Yan, L; Gu, J. Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer. BMC Cancer 2009, 19. doi:10.1186/1471-2407-9-287. [Google Scholar]
- Jemal, A; Siegel, R; Ward, E; Hao, Y; Xu, J; Murray, T; Thun, MJ. Cancer statistics, 2008. CA Cancer J. Clin 2008, 58, 71–96. [Google Scholar]
- Imperiale, TF; Ransohoff, DF; Itzkowitz, SH; Turnbull, BA; Ross, ME. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med 2004, 351, 2704–2714. [Google Scholar]
- Yang, H; Ge, Z; Dai, J; Li, X; Gao, Y. Effectiveness of the immunofecal occult blood test for colorectal cancer screening in a large population. Dig Dis Sci 2010. doi:10.1007/s10620-010-1264–1268. [Google Scholar]
- Rozen, P; Comaneshter, D; Levi, Z; Hazazi, R; Vilkin, A; Maoz, E; Birkenfeld, S; Niv, Y. Cumulative evaluation of a quantitative immunochemical fecal occult blood test to determine its optimal clinical use. Cancer 2010, 116, 2115–2125. [Google Scholar]
- Levin, B; Lieberman, DA; McFarland, B; Andrews, KS; Brooks, D; Bond, J; Dash, C; Giardiello, FM; Glick, S; Johnson, D; et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology 2008, 134, 1570–1595. [Google Scholar]
- Lieberman, DA; Weiss, DG; Bond, JH; Ahnen, DJ; Garewal, H; Chejfec, G. Use of colonoscopy to screen asymptomatic adults for colorectal cancer. N. Engl. J. Med 2000, 20, 162–168. [Google Scholar]
- Lieberman, DA. Clinical practice. Screening for colorectal cancer. N. Engl. J. Med 2009, 361, 1179–1187. [Google Scholar]
- Zavoral, M; Suchanek, S; Zavada, F; Dusek, L; Muzik, J; Seifert, B; Fric, P. Colorectal cancer screening in Europe. World J. Gastroenterol 2009, 15, 5907–5915. [Google Scholar]
- Tagore, KS; Lawson, MJ; Yucaitis, JA; Gage, R; Orr, T; Shuber, AP; Ross, ME. Sensitivity and specificity of a stool DNA multitarget assay panel for the detection of advanced colorectal neoplasia. Clin. Colorectal Cancer 2003, 3, 47–53. [Google Scholar]
- Brand, RE; Ross, ME; Shuber, AP. Reproducibility of a multitarget stool-based DNA assay for colorectal cancer detection. Am. J. Gastroenterol 2004, 99, 1338–1341. [Google Scholar]
- Syngal, S; Stoffel, E; Chung, D; Willett, C; Schoetz, D; Schroy, P; Jagadeesh, D; Morel, K; Ross, M. Detection of stool DNA mutations before and after treatment of colorectal neoplasia. Cancer 2006, 106, 277–283. [Google Scholar]
- Villanueva, J; Philip, J; Chaparro, CA; Li, Y; Toledo-Crow, R; DeNoyer, L; Fleisher, M; Robbins, RJ; Tempst, P. Correcting common errors in identifying cancer-specific serum peptide signatures. J. Proteome. Res 2005, 4, 1060–1072. [Google Scholar]
- de Noo, ME; Tollenaar, RA; Ozalp, A; Kuppen, PJ; Bladergroen, MR; Eilers, PH; Deelder, AM. Reliability of human serum protein profiles generated with C8 magnetic beads assisted MALDI-TOF mass spectrometry. Anal. Chem 2005, 77, 7232–7241. [Google Scholar]
- de Noo, ME; Tollenaar, RA; Deelder, AM; Bouwman, LH. Current status and prospects of clinical proteomics studies on detection of colorectal cancer: Hopes and fears. World J. Gastroenterol 2006, 12, 6594–6601. [Google Scholar]
- West-Norager, M; Kelstrup, CD; Schou, C; Hogdall, EV; Hogdall, CK; Heegaard, NH. Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci 2007, 847, 30–37. [Google Scholar]
- Baumann, S; Ceglarek, U; Fiedler, GM; Lembcke, J; Leichtle, A; Thiery, J. Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chem 2005, 51, 973–980. [Google Scholar]
- Omenn, GS; States, DJ; Adamski, M; Blackwell, TW; Menon, R; Hermjakob, H; Apweiler, R; Haab, BB; Simpson, RJ; Eddes, JS; et al. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005, 5, 3226–3245. [Google Scholar]
- A gene-centric human proteome project: HUPO--the Human Proteome organization. Mol. Cell Proteomics 2010, 9, 427–429.
- Mauri, P; Scigelova, M. Multidimensional protein identification technology for clinical proteomic analysis. Clin. Chem. Lab Med 2009, 47, 636–646. [Google Scholar]
- de Noo, ME; Deelder, A; van der Werff, M; Ozalp, A; Mertens, B; Tollenaar, R. MALDI-TOF serum protein profiling for the detection of breast cancer. Onkologie 2006, 29, 501–506. [Google Scholar]
- Villanueva, J; Philip, J; Entenberg, D; Chaparro, CA; Tanwar, MK; Holland, EC; Tempst, P. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem 2004, 76, 1560–1570. [Google Scholar]
- Whiteaker, JR; Zhang, H; Eng, JK; Fang, R; Piening, BD; Feng, LC; Lorentzen, TD; Schoenherr, RM; Keane, JF; Holzman, T; et al. Head-to-head comparison of serum fractionation techniques. J. Proteome Res 2007, 6, 828–836. [Google Scholar]
- Tiss, A; Smith, C; Camuzeaux, S; Kabir, M; Gayther, S; Menon, U; Waterfield, M; Timms, J; Jacobs, I; Cramer, R. Serum peptide profiling using MALDI mass spectrometry: Avoiding the pitfalls of coated magnetic beads using well-established ZipTip technology. Proteomics 2007, 7, S77–S89. [Google Scholar]
- Callesen, AK; Vach, W; Jorgensen, PE; Cold, S; Mogensen, O; Kruse, TA; Jensen, ON; Madsen, JS. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: A systematic review. J. Proteome. Res 2008, 7, 1395–1402. [Google Scholar]
- Mertens, BJ; de Noo, ME; Tollenaar, RA; Deelder, AM. Mass spectrometry proteomic diagnosis: Enacting the double cross-validatory paradigm. J. Comput. Biol 2006, 13, 1591–1605. [Google Scholar]
- Mertens, BJ. Proteomic diagnosis competition: Design, concepts, participants and first results. J. Proteomics 2009, 72, 785–790. [Google Scholar]
- Hu, Y; Zhang, S; Yu, J; Liu, J; Zheng, S. SELDI-TOF-MS: The proteomics and bioinformatics approaches in the diagnosis of breast cancer. Breast 2005, 14, 250–255. [Google Scholar]
- Fan, Y; Wang, J; Yang, Y; Liu, Q; Fan, Y; Yu, J; Zheng, S; Li, M; Wang, J. Detection and identification of potential biomarkers of breast cancer. J. Cancer Res. Clin. Oncol 2010, 136, 1243–1254. [Google Scholar]
- Belluco, C; Petricoin, EF; Mammano, E; Facchiano, F; Ross-Rucker, S; Nitti, D; Di, MC; Liu, C; Lise, M; Liotta, LA; et al. Serum proteomic analysis identifies a highly sensitive and specific discriminatory pattern in stage 1 breast cancer. Ann. Surg. Oncol 2007, 14, 2470–2476. [Google Scholar]
- Callesen, AK; Vach, W; Jorgensen, PE; Cold, S; Tan, Q; Depont, CR; Mogensen, O; Kruse, TA; Jensen, ON; Madsen, JS. Combined experimental and statistical strategy for mass spectrometry based serum protein profiling for diagnosis of breast cancer: A case-control study. J. Proteome Res 2008, 7, 1419–1426. [Google Scholar]
- Li, J; Zhang, Z; Rosenzweig, J; Wang, YY; Chan, DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem 2002, 48, 1296–1304. [Google Scholar]
- Vlahou, A; Laronga, C; Wilson, L; Gregory, B; Fournier, K; McGaughey, D; Perry, RR; Wright, GL, Jr; Semmes, OJ. A novel approach toward development of a rapid blood test for breast cancer. Clin. Breast Cancer 2003, 4, 203–209. [Google Scholar]
- Mathelin, C; Cromer, A; Wendling, C; Tomasetto, C; Rio, MC. Serum biomarkers for detection of breast cancers: A prospective study. Breast Cancer Res. Treat 2006, 96, 83–90. [Google Scholar]
- Belluco, C; Petricoin, EF; Mammano, E; Facchiano, F; Ross-Rucker, S; Nitti, D; Di, MC; Liu, C; Lise, M; Liotta, LA; et al. Serum proteomic analysis identifies a highly sensitive and specific discriminatory pattern in stage 1 breast cancer. Ann. Surg. Oncol 2007, 14, 2470–2476. [Google Scholar]
- Timms, JF; Arslan-Low, E; Gentry-Maharaj, A; Luo, Z; T'Jampens, D; Podust, VN; Ford, J; Fung, ET; Gammerman, A; Jacobs, I; et al. Preanalytic influence of sample handling on SELDI-TOF serum protein profiles. Clin. Chem 2007, 53, 645–656. [Google Scholar]
- van Winden, AW; Gast, MC; Beijnen, JH; Rutgers, EJ; Grobbee, DE; Peeters, PH; van Gils, CH. Validation of previously identified serum biomarkers for breast cancer with SELDI-TOF MS: A case control study. BMC Med. Genomics 2009, 2, 4. [Google Scholar]
- Li, J; Orlandi, R; White, CN; Rosenzweig, J; Zhao, J; Seregni, E; Morelli, D; Yu, Y; Meng, XY; Zhang, Z; et al. Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin. Chem 2005, 51, 2229–2235. [Google Scholar]
- Villanueva, J; Shaffer, DR; Philip, J; Chaparro, CA; Erdjument-Bromage, H; Olshen, AB; Fleisher, M; Lilja, H; Brogi, E; Boyd, J; et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest 2006, 116, 271–284. [Google Scholar]
- Yu, JK; Chen, YD; Zheng, S. An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics. World J. Gastroenterol 2004, 10, 3127–3131. [Google Scholar]
- Liu, XP; Shen, J; Li, ZF; Yan, L; Gu, J. A serum proteomic pattern for the detection of colorectal adenocarcinoma using surface enhanced laser desorption and ionization mass spectrometry. Cancer Invest 2006, 24, 747–753. [Google Scholar]
- de Noo, ME; Mertens, BJ; Ozalp, A; Bladergroen, MR; van der Werff, MP; van de Velde, CJ; Deelder, AM; Tollenaar, RA. Detection of colorectal cancer using MALDI-TOF serum protein profiling. Eur. J. Cancer 2006, 42, 1068–1076. [Google Scholar]
- Ward, DG; Suggett, N; Cheng, Y; Wei, W; Johnson, H; Billingham, LJ; Ismail, T; Wakelam, MJ; Johnson, PJ; Martin, A. Identification of serum biomarkers for colon cancer by proteomic analysis. Br. J. Cancer 2006, 19, 1898–1905. [Google Scholar]
- Engwegen, JY; Helgason, HH; Cats, A; Harris, N; Bonfrer, JM; Schellens, JH; Beijnen, JH. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry. World J. Gastroenterol 2006, 12, 1536–1544. [Google Scholar]
- Chen, YD; Zheng, S; Yu, JK; Hu, X. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin. Cancer Res 2004, 10, 8380–8385. [Google Scholar]
- Zhao, G; Gao, CF; Song, GY; Li, DH; Wang, XL. Identification of colorectal cancer using proteomic patterns in serum. Ai Zheng 2004, 23, 614–618. (in Chinese). [Google Scholar]
- Habermann, JK; Roblick, UJ; Luke, BT; Prieto, DA; Finlay, WJ; Podust, VN; Roman, JM; Oevermann, E; Schiedeck, T; Homann, N; et al. Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology 2006, 131, 1020–1029. [Google Scholar]
- Nesvizhskii, AI; Vitek, O; Aebersold, R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 2007, 4, 787–797. [Google Scholar]
- Diamandis, EP. Validation of breast cancer biomarkers identified by mass spectrometry. Clin. Chem 2006, 52, 771–772. [Google Scholar]
- Melle, C; Ernst, G; Schimmel, B; Bleul, A; Thieme, H; Kaufmann, R; Mothes, H; Settmacher, U; Claussen, U; Halbhuber, KJ; et al. Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology 2005, 129, 66–73. [Google Scholar]
- Albrethsen, J; Bogebo, R; Gammeltoft, S; Olsen, J; Winther, B; Raskov, H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1–3) in colon cancer serum and tumours: A biomarker study. BMC Cancer 2005. doi:10.1186/1471-2407-5-8. [Google Scholar]
- Carr, S; Aebersold, R; Baldwin, M; Burlingame, A; Clauser, K; Nesvizhskii, A. The need for guidelines in publication of peptide and protein identification data: Working group on publication guidelines for peptide and protein identification data. Mol. Cell Proteomics 2004, 3, 531–533. [Google Scholar]
- Anderson, NL; Anderson, NG. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell Proteomics 2002, 1, 845–867. [Google Scholar]
- Liotta, LA; Petricoin, EF. Serum peptidome for cancer detection: Spinning biologic trash into diagnostic gold. J. Clin. Invest 2006, 116, 26–30. [Google Scholar]
- Diamandis, EP. Peptidomics for cancer diagnosis: Present and future. J. Proteome Res 2006, 5, 2079–2082. [Google Scholar]
Study | MS Method | Study Size N = | Sensitivity | Specificity | External Validation? |
---|---|---|---|---|---|
Hu et al. The Breast 2005 [52] | SELDI-TOF | 49 BC 51 BBD 33 HC | 83.33% | 88.89% | Yes N = 18 BC, 9HC |
Fan et al. Journal of Cancer Research and Clinical Oncology 2010 [53] | SELDI-TOF | 80 BC 40 HC | 96.45% | 94.87% | Yes N = 44 BC, 98 BBD, 20 HC |
Belluco et al. Annals of Surgical Oncology 2007 [54] | SELDI-TOF | 109 BC 109 HC | 95.6% | 86.5% | Yes N = 46 BC, 46 HC |
Callesen et al. Journal of Proteome Research 2008 [55] | SELDI-TOF | 48 BC 28 HC | 85% | 85% | No |
Li et al. Clinical Chemistry 2002 [56] | SELDI-TOF | 103 BC 25 BBD 41 HC | 93% | 91% | No |
Vlahou et al. Clinical Breast Cancer 2003 [57] | SELDI-TOF | 45 BC 42 BBD 47 HC | 80% | 79% | No |
De Noo et al. Onkologie 2006 [45] | MALDI-TOF | 78 BC 29 HC | 100% | 97% | No |
Study | MS Method | Study Size (N) | Sensitivity | Specificity | External validation? |
---|---|---|---|---|---|
Yu et al. World J Gastroenterology 2004 [64] | SELDI-TOF | 55 CRC 35 CRA 92 HC | 89% | 83–92% | No |
Liu et al. Cancer Investigation 2006 [65] | SELDI-TOF | 74 CRC 48 HC | 95% | 94.87% | Yes N = 60 CRC, 39 HC |
De Noo et al. European Journal of Cancer 2006 [45] | MALDI-TOF | 66 CRC 50 HC | 95.2% | 90.0% | No |
Ward et al. British Journal of Cancer 2006 [67] | SELDI-TOF | 62 CRC 31 HC | 95% | 91% | No |
Chen et al. Clinical Cancer Research 2004 [69] | SELDI-TOF | 55 CRC 92 HC | 91% | 93% | No |
Zhao et al. Chinese Journal of Clinical Medicine 2004 [70] | SELDI-TOF | 73 CRC 16 CRA 31 HC | 96% | 98% | Yes N = 73 CRC, 16 CRA, 31 HC |
Engwegen et al. World Journal of Gastroenterology 2006 [68] | SELDI-TOF | 77 CRC 80 HC | 66.7–89.5% | 73.3–88.9% | Yes |
Author | Identified biomarkers (m/z ratio) |
---|---|
Li et al. Clinical Chemistry 2005 [62] | C3 fragment (8.1 × 103/8.9 × 103) |
Fan et al. Journal of Cancer Research and Clinical Oncology 2010 [53] | Apolipoprotein C-I (6.6 × 103) C3 fragment (8.1 × 103/8.9 × 103) |
Villanueva et al. Journal of Clinical Investigation 2006 [63] | FPA, fibrinogen alpha, C3f, C4a, ITIH4, ApoA-IV, Bradykinin, Factor XIII, Transthyretin |
Author | Identified biomarkers (m/z ratio) |
---|---|
Engwegen et al. World Journal of Gastroenterology 2006 [68] | -N-terminal albumin fragment (3.1 × 103) -Apolipoprotein C-I (3.3 × 103/6.6 × 103) -Apolipoprotein A-I (28 × 103) |
Ward et al. British Journal of Cancer 2006 [67] | -Alpha1-antitrypsin (50.7 × 103) -Apolipoprotein C-I (6.4 × 103/6.6 × 103) -Transferrin (79.1 × 103), -C3 fragment (8.94 × 103) |
Albrethsen et al. BMC Cancer 2005 [75] | -HNP 1 (3.37 × 103) -HNP 2 (3.44 × 103)) -HNP 3 (3.49 × 103) |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huijbers, A.; Velstra, B.; Dekker, T.J.A.; Mesker, W.E.; Burgt, Y.E.M.v.d.; Mertens, B.J.; Deelder, A.M.; Tollenaar, R.A.E.M. Proteomic Serum Biomarkers and Their Potential Application in Cancer Screening Programs. Int. J. Mol. Sci. 2010, 11, 4175-4193. https://doi.org/10.3390/ijms11114175
Huijbers A, Velstra B, Dekker TJA, Mesker WE, Burgt YEMvd, Mertens BJ, Deelder AM, Tollenaar RAEM. Proteomic Serum Biomarkers and Their Potential Application in Cancer Screening Programs. International Journal of Molecular Sciences. 2010; 11(11):4175-4193. https://doi.org/10.3390/ijms11114175
Chicago/Turabian StyleHuijbers, Anouck, Berit Velstra, Tim J. A. Dekker, Wilma E. Mesker, Yuri E. M. van der Burgt, Bart J. Mertens, André M. Deelder, and Rob A. E. M. Tollenaar. 2010. "Proteomic Serum Biomarkers and Their Potential Application in Cancer Screening Programs" International Journal of Molecular Sciences 11, no. 11: 4175-4193. https://doi.org/10.3390/ijms11114175
APA StyleHuijbers, A., Velstra, B., Dekker, T. J. A., Mesker, W. E., Burgt, Y. E. M. v. d., Mertens, B. J., Deelder, A. M., & Tollenaar, R. A. E. M. (2010). Proteomic Serum Biomarkers and Their Potential Application in Cancer Screening Programs. International Journal of Molecular Sciences, 11(11), 4175-4193. https://doi.org/10.3390/ijms11114175