Biomarkers for Colorectal Cancer
Abstract
:1. Introduction
2. Fecal Markers
2.1. Fecal Hemoglobin
2.2. Genes and Epigenetic Markers
3. Serum or Blood Markers
3.1. CEA
3.2. CA 19-9
3.3. Tissue Inhibitor of Metalloproteinase Type 1
3.4. Five-Serum-Marker Panel (Spondin-2, DcR3, Trail-R2, Reg IV, MIC 1)
3.5. Nicotinamide N-methyltransferase and Proteasome Activator Complex Subunit 3
3.6. Collapsin Response Mediator Protein-2
4. MicroRNA
5. Other Potential Biomarkers
6. Conclusions
Acknowledgements
References
- Bingham, S; Riboli, E. Diet and cancer-the european prospective investigation into cancer and nutrition. Nat. Rev. Cancer 2004, 4, 206–215. [Google Scholar]
- Sung, JJ; Lau, JY; Goh, KL; Leung, WK. Increasing incidence of colorectal cancer in Asia: Implications for screening. Lancet Oncol 2005, 6, 871–876. [Google Scholar]
- Hardcastle, JD; Chamberlain, JO; Robinson, MH; Moss, SM; Amar, SS; Balfour, TW; James, PD; Mangham, CM. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 1996, 348, 1472–1477. [Google Scholar]
- Kronborg, O; Fenger, C; Olsen, J; Jorgensen, OD; Sondergaard, O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet 1996, 348, 1467–1471. [Google Scholar]
- Winawer, S; Fletcher, R; Rex, D; Bond, J; Burt, R; Ferrucci, J; Ganiats, T; Levin, T; Woolf, S; Johnson, D; Kirk, L; Litin, S; Simmang, C. Colorectal cancer screening and surveillance: Clinical guidelines and rationale-Update based on new evidence. Gastroenterology 2003, 124, 544–560. [Google Scholar]
- Booth, RA. Minimally invasive biomarkers for detection and staging of colorectal cancer. Cancer Lett 2007, 249, 87–96. [Google Scholar]
- Habermann, JK; Bader, FG; Franke, C; Zimmermann, K; Gemoll, T; Fritzsche, B; Ried, T; Auer, G; Bruch, HP; Roblick, UJ. From the genome to the proteome-biomarkers in colorectal cancer. Langenbecks Arch. Surg 2008, 393, 93–104. [Google Scholar]
- Kim, SY; Hahn, WC. Cancer genomics: Integrating form and function. Carcinogenesis 2007, 28, 1387–1392. [Google Scholar]
- Duffy, MJ; van Dalen, A; Haglund, C; Hansson, L; Holinski-Feder, E; Klapdor, R; Lamerz, R; Peltomaki, P; Sturgeon, C; Topolcan, O. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur. J. Cancer 2007, 43, 1348–1360. [Google Scholar]
- Huang, CS; Lal, SK; Farraye, FA. Colorectal cancer screening in average risk individuals. Cancer Causes Control 2005, 16, 171–188. [Google Scholar]
- Mandel, JS; Bond, JH; Church, TR; Snover, DC; Bradley, GM; Schuman, LM; Ederer, F. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota colon cancer control study. N. Engl. J. Med 1993, 328, 1365–1371. [Google Scholar]
- Loktionov, A; O’Neill, IK; Silvester, KR; Cummings, JH; Middleton, SJ; Miller, R. Quantitation of DNA from exfoliated colonocytes isolated from human stool surface as a novel noninvasive screening test for colorectal cancer. Clin. Cancer Res 1998, 4, 337–342. [Google Scholar]
- Shaw, RJ; Cantley, LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006, 441, 424–430. [Google Scholar]
- Fearon, ER; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar]
- Losi, L; Roncucci, L; di Gregorio, C; de Leon, MP; Benhattar, J. K-ras and p53 mutations in human colorectal aberrant crypt foci. J. Pathol 1996, 178, 259–263. [Google Scholar]
- Shivapurkar, N; Huang, L; Ruggeri, B; Swalsky, PA; Bakker, A; Finkelstein, S; Frost, A; Silverberg, S. K-ras and p53 mutations in aberrant crypt foci and colonic tumors from colon cancer patients. Cancer Lett 1997, 115, 39–46. [Google Scholar]
- Smith, AJ; Stern, HS; Penner, M; Hay, K; Mitri, A; Bapat, BV; Gallinger, S. Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res 1994, 54, 5527–5530. [Google Scholar]
- Takahashi, M; Wakabayashi, K. Gene mutations and altered gene expression in azoxymethaneinduced colon carcinogenesis in rodents. Cancer Sci 2004, 95, 475–480. [Google Scholar]
- Mills, AA. p53: Link to the past, bridge to the future. Genes Dev 2005, 19, 2091–2099. [Google Scholar]
- Iacopetta, B. TP53 mutation in colorectal cancer. Hum. Mutat 2003, 21, 271–276. [Google Scholar]
- Hart, MJ; de los Santos, R; Albert, IN; Rubinfeld, B; Polakis, P. Downregulation of betacatenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr. Biol 1998, 8, 573–581. [Google Scholar]
- Ahlquist, DA; Skoletsky, JE; Boynton, KA; Harrington, JJ; Mahoney, DW; Pierceall, WE; Thibodeau, SN; Shuber, AP. Colorectal cancer screening by detection of altered human DNA in stool: Feasibility of a multitarget assay panel. Gastroenterology 2000, 119, 1219–1227. [Google Scholar]
- Srivastava, S; Verma, M; Henson, DE. Biomarkers for early detection of colon cancer. Clin. Cancer Res 2001, 7, 1118–1126. [Google Scholar]
- Dietmaier, W; Wallinger, S; Bocker, T; Kullmann, F; Fishel, R; Ruschoff, J. Diagnostic microsatellite instability: Definition and correlation with mismatch repair protein expression. Cancer Res 1997, 57, 4749–4756. [Google Scholar]
- Ribic, CM; Sargent, DJ; Moore, MJ; Thibodeau, SN; French, AJ; Goldberg, RM; Hamilton, SR; Laurent-Puig, P; Gryfe, R; Shepherd, LE; Tu, D; Redston, M; Gallinger, S. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med 2003, 349, 247–257. [Google Scholar]
- Esteller, M; Levine, R; Baylin, SB; Ellenson, LH; Herman, JG. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998, 17, 2413–2417. [Google Scholar]
- Albaugh, GP; Iyengar, V; Lohani, A; Malayeri, M; Bala, S; Nair, PP. Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. Int. J. Cancer 1992, 52, 347–350. [Google Scholar]
- Boynton, KA; Summerhayes, IC; Ahlquist, DA; Shuber, AP. DNA integrity as a potential marker for stool-based detection of colorectal cancer. Clin. Chem 2003, 49, 1058–1065. [Google Scholar]
- Imperiale, TF; Ransohoff, DF; Itzkowitz, SH; Turnbull, BA; Ross, ME. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med 2004, 351, 2704–2714. [Google Scholar]
- Soreide, K; Nedrebo, BS; Knapp, JC; Glomsaker, TB; Soreide, JA; Korner, H. Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: Potential implications for the surgical oncologist. Surg. Oncol 2009, 18, 31–50. [Google Scholar]
- Duffy, MJ. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem 2001, 47, 624–630. [Google Scholar]
- Magnani, JL; Nilsson, B; Brockhaus, M; Zopf, D; Steplewski, Z; Koprowski, H; Ginsburg, V. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J. Biol. Chem 1982, 257, 14365–14369. [Google Scholar]
- Duffy, MJ. CA 19-9 as a marker for gastrointestinal cancers: A review. Ann. Clin. Biochem 1998, 35, 364–370. [Google Scholar]
- Hundt, S; Haug, U; Brenner, H. Blood markers for early detection of colorectal cancer: A systematic review. Cancer Epidemiol. Biomarkers Prev 2007, 16, 1935–1953. [Google Scholar]
- Holten-Andersen, MN; Murphy, G; Nielsen, HJ; Pedersen, AN; Christensen, IJ; Hoyer- Hansen, G; Brunner, N; Stephens, RW. Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer. Br. J. Cancer 1999, 80, 495–503. [Google Scholar]
- Sorensen, NM; Schrohl, AS; Jensen, V; Christensen, IJ; Nielsen, HJ; Brunner, N. Comparative studies of tissue inhibitor of metalloproteinases-1 in plasma, serum and tumour tissue extracts from patients with primary colorectal cancer. Scand. J. Gastroenterol 2008, 43, 186–191. [Google Scholar]
- Holten-Andersen, MN; Fenger, C; Nielsen, HJ; Rasmussen, AS; Christensen, IJ; Brunner, N; Kronborg, O. Plasma TIMP-1 in patients with colorectal adenomas: A prospective study. Eur. J. Cancer 2004, 40, 2159–2164. [Google Scholar]
- Holten-Andersen, M; Christensen, IJ; Nilbert, M; Bendahl, PO; Nielsen, HJ; Brunner, N; Fernebro, E. Association between preoperative plasma levels of tissue inhibitor of metalloproteinases 1 and rectal cancer patient survival. A validation study. Eur. J. Cancer 2004, 40, 64–72. [Google Scholar]
- Holten-Andersen, MN; Stephens, RW; Nielsen, HJ; Murphy, G; Christensen, IJ; Stetler-Stevenson, W; Brunner, N. High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with sho rt survival of patients with colorectal cancer. Clin. Cancer Res 2000, 6, 4292–4299. [Google Scholar]
- Roessler, M; Rollinger, W; Mantovani-Endl, L; Hagmann, ML; Palme, S; Berndt, P; Engel, AM; Pfeffer, M; Karl, J; Bodenmuller, H; Ruschoff, J; Henkel, T; Rohr, G; Rossol, S; Rosch, W; Langen, H; Zolg, W; Tacke, M. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol. Cell Proteomics 2006, 5, 2092–2101. [Google Scholar]
- Roessler, M; Rollinger, W; Palme, S; Hagmann, ML; Berndt, P; Engel, AM; Schneidinger, B; Pfeffer, M; Andres, H; Karl, J; Bodenmuller, H; Ruschoff, J; Henkel, T; Rohr, G; Rossol, S; Rosch, W; Langen, H; Zolg, W; Tacke, M. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer Res 2005, 11, 6550–6557. [Google Scholar]
- Wu, CC; Chen, HC; Chen, SJ; Liu, HP; Hsieh, YY; Yu, CJ; Tang, R; Hsieh, LL; Yu, JS; Chang, YS. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics 2008, 8, 316–332. [Google Scholar]
- Chen, X; Jorgenson, E; Cheung, ST. New tools for functional genomic analysis. Drug. Discov. Today 2009, 14, 754–760. [Google Scholar]
- Krichevsky, AM; Gabriely, G. miR-21: A small multi-faceted RNA. J. Cell Mol. Med 2009, 13, 39–53. [Google Scholar]
- Akao, Y; Nakagawa, Y; Naoe, T. MicroRNA-143 and -145 in colon cancer. DNA Cell Biol 2007, 26, 311–320. [Google Scholar]
- Faber, C; Kirchner, T; Hlubek, F. The impact of microRNAs on colorectal cancer. Virchows Arch 2009, 454, 359–367. [Google Scholar]
- Yang, L; Belaguli, N; Berger, DH. MicroRNA and colorectal cancer. World J. Surg 2009, 33, 638–646. [Google Scholar]
- Hoshida, Y; Toffanin, S; Lachenmayer, A; Villanueva, A; Minguez, B; Llovet, JM. Molecular classification and novel targets in hepatocellular carcinoma: Recent advancements. Semin. Liver Dis 2010, 30, 35–51. [Google Scholar]
- Sorensen, KD; Orntoft, TF. Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev. Mol. Diagn 2010, 10, 49–64. [Google Scholar]
- Kan, T; Meltzer, SJ. MicroRNAs in Barrett’s esophagus and esophageal adenocarcinoma. Curr. Opin. Pharmacol 2009, 9, 727–732. [Google Scholar]
- Novakova, J; Slaby, O; Vyzula, R; Michalek, J. MicroRNA involvement in glioblastoma pathogenesis. Biochem. Biophys. Res. Commun 2009, 386, 1–5. [Google Scholar]
- Izumiya, M; Okamoto, K; Tsuchiya, N; Nakagama, H. Functional screening using a microRNA virus library and microarrays: A new high-throughput assay to identify tumor-suppressive microRNAs. Carcinogenesis 2010, 31. in press. [Google Scholar]
- Shi, M; Guo, N. MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer. Cancer Treat. Rev 2009, 35, 328–334. [Google Scholar]
- Ho, L; Fivecoat, H; Wang, J; Pasinetti, GM. Alzheimer’s disease biomarker discovery in symptomatic and asymptomatic patients: Experimental approaches and future clinical applications. Exp. Gerontol 2010, 45, 15–22. [Google Scholar]
- Tazawa, H; Tsuchiya, N; Izumiya, M; Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA 2007, 104, 15472–15477. [Google Scholar]
- Tsuchiya, N; Ochiai, M; Nakashima, K; Ubagai, T; Sugimura, T; Nakagama, H. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res 2007, 67, 9568–9576. [Google Scholar]
- Yamakuchi, M; Ferlito, M; Lowenstein, CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 2008, 105, 13421–13426. [Google Scholar]
- Earle, JS; Luthra, R; Romans, A; Abraham, R; Ensor, J; Yao, H; Hamilton, SR. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J. Mol. Diagn 2010, 12. in press. [Google Scholar]
- Takamizawa, J; Konishi, H; Yanagisawa, K; Tomida, S; Osada, H; Endoh, H; Harano, T; Yatabe, Y; Nagino, M; Nimura, Y; Mitsudomi, T; Takahashi, T. Reduced expression of the let- 7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004, 64, 3753–3756. [Google Scholar]
- Yanaihara, N; Caplen, N; Bowman, E; Seike, M; Kumamoto, K; Yi, M; Stephens, RM; Okamoto, A; Yokota, J; Tanaka, T; Calin, GA; Liu, CG; Croce, CM; Harris, CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006, 9, 189–198. [Google Scholar]
- Hu, Z; Chen, J; Tian, T; Zhou, X; Gu, H; Xu, L; Zeng, Y; Miao, R; Jin, G; Ma, H; Chen, Y; Shen, H. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J. Clin. Invest 2008, 118, 2600–2608. [Google Scholar]
- Yu, SL; Chen, HY; Chang, GC; Chen, CY; Chen, HW; Singh, S; Cheng, CL; Yu, CJ; Lee, YC; Chen, HS; Su, TJ; Chiang, CC; Li, HN; Hong, QS; Su, HY; Chen, CC; Chen, WJ; Liu, CC; Chan, WK; Li, KC; Chen, JJ; Yang, PC. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008, 13, 48–57. [Google Scholar]
- Markou, A; Tsaroucha, EG; Kaklamanis, L; Fotinou, M; Georgoulias, V; Lianidou, ES. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin. Chem 2008, 54, 1696–1704. [Google Scholar]
- Li, W; Xie, L; He, X; Li, J; Tu, K; Wei, L; Wu, J; Guo, Y; Ma, X; Zhang, P; Pan, Z; Hu, X; Zhao, Y; Xie, H; Jiang, G; Chen, T; Wang, J; Zheng, S; Cheng, J; Wan, D; Yang, S; Li, Y; Gu, J. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer 2008, 123, 1616–1622. [Google Scholar]
- Yan, LX; Huang, XF; Shao, Q; Huang, MY; Deng, L; Wu, QL; Zeng, YX; Shao, JY. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14, 2348–2360. [Google Scholar]
- Chan, SH; Wu, CW; Li, AF; Chi, CW; Lin, WC. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res 2008, 28, 907–911. [Google Scholar]
- Schepeler, T; Reinert, JT; Ostenfeld, MS; Christensen, LL; Silahtaroglu, AN; Dyrskjot, L; Wiuf, C; Sorensen, FJ; Kruhoffer, M; Laurberg, S; Kauppinen, S; Orntoft, TF; Andersen, CL. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 2008, 68, 6416–6424. [Google Scholar]
- Diaz, R; Silva, J; Garcia, JM; Lorenzo, Y; Garcia, V; Pena, C; Rodriguez, R; Munoz, C; Garcia, F; Bonilla, F; Dominguez, G. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Gene. Chromosome. Canc 2008, 47, 794–802. [Google Scholar]
- Childs, G; Fazzari, M; Kung, G; Kawachi, N; Brandwein-Gensler, M; McLemore, M; Chen, Q; Burk, RD; Smith, RV; Prystowsky, MB; Belbin, TJ; Schlecht, NF. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol 2009, 174, 736–745. [Google Scholar]
- Roldo, C; Missiaglia, E; Hagan, JP; Falconi, M; Capelli, P; Bersani, S; Calin, GA; Volinia, S; Liu, CG; Scarpa, A; Croce, CM. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol 2006, 24, 4677–4684. [Google Scholar]
- Marcucci, G; Radmacher, MD; Maharry, K; Mrozek, K; Ruppert, AS; Paschka, P; Vukosavljevic, T; Whitman, SP; Baldus, CD; Langer, C; Liu, CG; Carroll, AJ; Powell, BL; Garzon, R; Croce, CM; Kolitz, JE; Caligiuri, MA; Larson, RA; Bloomfield, CD. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med 2008, 358, 1919–1928. [Google Scholar]
- Calin, GA; Ferracin, M; Cimmino, A; Di Leva, G; Shimizu, M; Wojcik, SE; Iorio, MV; Visone, R; Sever, NI; Fabbri, M; Iuliano, R; Palumbo, T; Pichiorri, F; Roldo, C; Garzon, R; Sevignani, C; Rassenti, L; Alder, H; Volinia, S; Liu, CG; Kipps, TJ; Negrini, M; Croce, CM. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med 2005, 353, 1793–1801. [Google Scholar]
- Lu, L; Katsaros, D; de la Longrais, IA; Sochirca, O; Yu, H. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 2007, 67, 10117–10122. [Google Scholar]
- Guo, Y; Chen, Z; Zhang, L; Zhou, F; Shi, S; Feng, X; Li, B; Meng, X; Ma, X; Luo, M; Shao, K; Li, N; Qiu, B; Mitchelson, K; Cheng, J; He, J. Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 2008, 68, 26–33. [Google Scholar]
- Habermann, JK; Roblick, UJ; Luke, BT; Prieto, DA; Finlay, WJ; Podust, VN; Roman, JM; Oevermann, E; Schiedeck, T; Homann, N; Duchrow, M; Conrads, TP; Veenstra, TD; Burt, SK; Bruch, HP; Auer, G; Ried, T. Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology 2006, 131, 1020–1029, quiz 1284. [Google Scholar]
- Albrethsen, J; Bogebo, R; Gammeltoft, S; Olsen, J; Winther, B; Raskov, H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1–3) in colon cancer serum and tumours: A biomarker study. BMC Cancer 2005, 5, 8. [Google Scholar]
- Melle, C; Ernst, G; Schimmel, B; Bleul, A; Thieme, H; Kaufmann, R; Mothes, H; Settmacher, U; Claussen, U; Halbhuber, KJ; Von Eggeling, F. Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology 2005, 129, 66–73. [Google Scholar]
- Lee, H; Rhee, H; Kang, HJ; Kim, HS; Min, BS; Kim, NK; Kim, H. Macrophage migration inhibitory factor may be used as an early diagnostic marker in colorectal carcinomas. Am. J. Clin. Pathol 2008, 129, 772–779. [Google Scholar]
- Mroczko, B; Groblewska, M; Wereszczynska-Siemiatkowska, U; Kedra, B; Konopko, M; Szmitkowski, M. The diagnostic value of G-CSF measurement in the sera of colorectal cancer and adenoma patients. Clin. Chim. Acta 2006, 371, 143–147. [Google Scholar]
- Mroczko, B; Groblewska, M; Wereszczynska-Siemiatkowska, U; Okulczyk, B; Kedra, B; Laszewicz, W; Dabrowski, A; Szmitkowski, M. Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin. Chim. Acta 2007, 380, 208–212. [Google Scholar]
- Soroush, AR; Zadeh, HM; Moemeni, M; Shakiba, B; Elmi, S. Plasma prolactin in patients with colorectal cancer. BMC Cancer 2004, 4, 97. [Google Scholar]
- Schneider, J; Bitterlich, N; Schulze, G. Improved sensitivity in the diagnosis of gastro-intestinal tumors by fuzzy logic-based tumor marker profiles including the tumor M2-PK. Anticancer Res 2005, 25, 1507–1515. [Google Scholar]
- Zhang, B; Chen, JY; Chen, DD; Wang, GB; Shen, P. Tumor type M2 pyruvate kinase expression in gastric cancer, colorectal cancer and controls. World J. Gastroenterol 2004, 10, 1643–1646. [Google Scholar]
- Zhu, J; Yao, X. Use of DNA methylation for cancer detection and molecular classification. J. Biochem. Mol. Biol 2007, 40, 135–141. [Google Scholar]
- Tost, J. DNA methylation: An introduction to the biology and the disease-associated changes of a promising biomarker. Methods Mol. Biol 2009, 507, 3–20. [Google Scholar]
- Lofton-Day, C; Model, F; Devos, T; Tetzner, R; Distler, J; Schuster, M; Song, X; Lesche, R; Liebenberg, V; Ebert, M; Molnar, B; Grutzmann, R; Pilarsky, C; Sledziewski, A. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem 2008, 54, 414–423. [Google Scholar]
- Han, M; Liew, CT; Zhang, HW; Chao, S; Zheng, R; Yip, KT; Song, ZY; Li, HM; Geng, XP; Zhu, LX; Lin, JJ; Marshall, KW; Liew, CC. Novel blood-based, five-gene biomarker set for the detection of colorectal cancer. Clin. Cancer Res 2008, 14, 455–460. [Google Scholar]
- Brunagel, G; Vietmeier, BN; Bauer, AJ; Schoen, RE; Getzenberg, RH. Identification of nuclear matrix protein alterations associated with human colon cancer. Cancer Res 2002, 62, 2437–2442. [Google Scholar]
- Leman, ES; Schoen, RE; Magheli, A; Sokoll, LJ; Chan, DW; Getzenberg, RH. Evaluation of colon cancer-specific antigen 2 as a potential serum marker for colorectal cancer. Clin. Cancer Res 2008, 14, 1349–1354. [Google Scholar]
- Hurst, NG; Stocken, DD; Wilson, S; Keh, C; Wakelam, MJ; Ismail, T. Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients. Br. J. Cancer 2007, 97, 971–977. [Google Scholar]
- Maurel, J; Nadal, C; Garcia-Albeniz, X; Gallego, R; Carcereny, E; Almendro, V; Marmol, M; Gallardo, E; Maria Auge, J; Longaron, R; Martinez-Fernandez, A; Molina, R; Castells, A; Gascon, P. Serum matrix metalloproteinase 7 levels identifies poor prognosis advanced colorectal cancer patients. Int. J. Cancer 2007, 121, 1066–1071. [Google Scholar]
- Saito, N; Kameoka, S. Serum laminin is an independent prognostic factor in colorectal cancer. Int. J. Colorectal. Dis 2005, 20, 238–244. [Google Scholar]
- Jain, KK. Cancer biomarkers: Current issues and future directions. Curr. Opin. Mol. Ther 2007, 9, 563–571. [Google Scholar]
Type of biomarkers | Analysis |
---|---|
Genetic | Gene mutations |
Tumor suppressor gene status | |
DNA | Gene amplification |
Microsatellite instability | |
Mitochondrial DNA | |
Epigenetic | DNA methylation |
RNA | microRNAs |
Protein | - |
Metabolic | - |
Immunological | T-cell and cytokine responses |
Clinical use | Subjects | Types | Potential markers |
---|---|---|---|
In use | Stool | Protein | Fecal hemoglobin |
Serum | Protein | CEA | |
Carbohydrate | CA19.9 | ||
Clinical validation | Stool | DNA | K-ras |
DNA | APC | ||
DNA | L-DNA | ||
DNA | p53 | ||
Serum | Protein | TIMP-1 | |
Preclinical development | Serum | Protein | Spondin-2, DcR3, Trail-R2, Reg IV, MIC1 |
Protein | PSME3 | ||
Protein | NNMT | ||
Protein | CRMP-2 | ||
Protein | SELDI (apolipoprotein C1, C3a-desArg, α1-antitrypsin, transferring) | ||
Protein | HNP 1–3 | ||
Protein | MIF | ||
Protein | M-CSF | ||
Protein | M2-PK | ||
Protein | Prolactin | ||
Protein | CCSA-2, −3, −4 | ||
Protein | MMP-9, −7 | ||
Protein | Laminin | ||
Plasma | DNA | Septin 9 | |
WBC | DNA | 5-gene panel (CDA, BANK1, BCNP1, MS4A1, MGC20553) |
Cancers | miRNA | Authors and Ref. nos. |
---|---|---|
Lung cancer | hsa-let-7 | [59] |
hsa-let-7a-2 | [60] | |
hsa-miR-155 | ||
hsa-miR-196a2 | [61] | |
hsa-miR-221 | [62] | |
hsa-let-7a | ||
hsa-miR-137 | ||
hsa-miR-372 | ||
hsa-miR-182* | ||
hsa-miR-21 | [63] | |
Hepatocellular carcinoma | hsa-miR-125b | [64] |
Breast cancer | hsa-miR-21 | [65] |
Gastric cancer | hsa-miR-21 | [66] |
Colorectal cancer | hsa-miR-21 | [67] |
hsa-miR-106a | [68] | |
Head and neck cancer | hsa-miR-7d | [69] |
hsa-miR-205 | ||
Pancreatic cancer | hsa-miR-21 | [70] |
Acute myelogenous leukemia | hsa-miR-181 family | [71] |
Chronic lymphocytic leukemia | hsa-miR-1-miR-15a | [72] |
Ovarian cancer | hsa-let-7a-3 | [73] |
Esophageal cancer | hsa-miR-103/107 | [74] |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tanaka, T.; Tanaka, M.; Tanaka, T.; Ishigamori, R. Biomarkers for Colorectal Cancer. Int. J. Mol. Sci. 2010, 11, 3209-3225. https://doi.org/10.3390/ijms11093209
Tanaka T, Tanaka M, Tanaka T, Ishigamori R. Biomarkers for Colorectal Cancer. International Journal of Molecular Sciences. 2010; 11(9):3209-3225. https://doi.org/10.3390/ijms11093209
Chicago/Turabian StyleTanaka, Takuji, Mayu Tanaka, Takahiro Tanaka, and Rikako Ishigamori. 2010. "Biomarkers for Colorectal Cancer" International Journal of Molecular Sciences 11, no. 9: 3209-3225. https://doi.org/10.3390/ijms11093209
APA StyleTanaka, T., Tanaka, M., Tanaka, T., & Ishigamori, R. (2010). Biomarkers for Colorectal Cancer. International Journal of Molecular Sciences, 11(9), 3209-3225. https://doi.org/10.3390/ijms11093209