Production and Radioprotective Effects of Pyrroloquinoline Quinone
Abstract
:1. Introduction
2. Results and Discussion
2.1. PQQ Fermentation, Purification and Detection
2.2. Survival of Mice After Irradiation
2.3. Effect of PQQ on White Blood Cells
2.4. Effect of PQQ on Reticulocytes
2.5. Effect of PQQ on Bone Marrow Cells
3. Experimental Section
3.1. Bacteria and Chemicals
3.2. Batch Cultivation of MP688 in a 3-L Bioreactor
3.3. PQQ Purification
3.4. PQQ Analysis
3.5. Animals
3.6. Irradiation
3.7. Administration
3.8. Survival
3.9. Haematological Methods
3.10. Statistic Analysis
4. Conclusions
Acknowledgments
References
- Salisbury, S.A.; Forrest, H.S.; Cruse, W.B.; Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 1979, 280, 843–844. [Google Scholar]
- Duine, J.A.; Frank, J.; van Zeeland, J.K. Glucose dehydrogenase from Acinetobacter calcoaceticus, a quinoprotein. FEBS Lett 1979, 108, 443–446. [Google Scholar]
- Duine, J.A.; Frank, J. Quinoprotein alcohol dehydrogenase from a non-methylotroph, Acinetobacter calcoaceticus. J. Gen. Microbiol 1981, 122, 201–209. [Google Scholar]
- Ameyama, M.; Matsushita, K.; Ohno, Y.; Shinagawa, E.; Adachi, O. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett 1981, 130, 179–183. [Google Scholar]
- Andrea, C.R.; Antonio, R.; Augusto, R.; Enrico, S. Modeling novel quinocofactors: An overview. Bioorg. Chem 1999, 27, 253–288. [Google Scholar]
- Kobayashi, K.; Mustafa, G.; Tagawa, S.; Yamada, M. Transient formation of a neutral ubisemiquinone radical and subsequent intramolecular electron transfer to pyrroloquinoline quinone in the Escherichia coli membrane-integrated glucose dehydrogenase. Biochemistry 2005, 44, 13567–13572. [Google Scholar]
- Khairnar, N.P.; Kamble, V.A.; Mangoli, S.H.; Apte, S.K.; Misra, H.S. Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. Mol. Microbiol 2007, 65, 294–304. [Google Scholar]
- Choi, O.; Kim, J.; Kim, J.G.; Jeong, Y.; Moon, J.S.; Park, C.S.; Hwang, I. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 2008, 146, 657–668. [Google Scholar]
- Yamaguchi, K.; Sasano, A.; Urakami, T.; Tsuji, T.; Kondo, K. Stimulation of nerve growth factor production by pyrroloquinoline quinine and its derivatives in vitro and in vivo. Biosci. Biotechnol. Biochem 1993, 57, 1231–1233. [Google Scholar]
- Kempf, J.V.; Gopal, D.; Walter, S. Synthesis of Pyrroloquinoline Quinone (PQQ). US 2007/0072894A1, 29 March 2007. [Google Scholar]
- van Kleef, M.A.G.; Duine, J.A. l-Tyrosine is the precursor of PQQ biosynthesis in Hyphomicrobium X. FEBS Lett 1988, 237, 91–97. [Google Scholar]
- Wang, X.; Wang, J.; Liu, D.; Zhang, W. Establishment of the screening method and isolation of PQQ producing strains. Acta Microbiol. Sin 2007, 47, 982–986. [Google Scholar]
- Xiong, X.H.; Zhi, J.J.; Yang, L.; Wang, J.H.; Zhao, Y.; Wang, X.; Cui, Y.J.; Dong, F.; Li, M.X.; Yang, Y.X.; et al. Complete genome sequence of the bacterium Methylovorus sp. strain MP688, a high-level producer of pyrroloquinolone quinone. J. Bacteriol 2011, 193, 1012–1013. [Google Scholar]
- Rajpurohit, Y.S.; Gopalakrishnan, R.; Misra, H.S. Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. J. Bacteriol 2008, 190, 3948–3954. [Google Scholar]
- Qiu, X.Q.; Liu, C.L.; Xu, L.; Zhao, J.Y.; Wu, S.L. Effect of pyrroloquinoline quinone on antioxidative competence of AGS cell radiated by γ-ray. J. Jiangsu Univ. (Med. Ed.) 2009, 19, 293–295. [Google Scholar]
- Wu, Q.S.; Wang, J.H.; Zhou, Y.H.; Qin, F.; Shen, L.; Wu, S.L. Effect of pyrroloquinoline quinone on free radical in rats with radiation induced skin injury. J. Jiangsu Univ. (Med. Ed.) 2008, 18, 403–405. [Google Scholar]
- Nunome, K.; Miyazaki, S.; Nakano, M.; Iguchi-Ariga, S.; Ariga, H. Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol. Pharm. Bull 2008, 31, 1321–1326. [Google Scholar]
- Ameyama, M.; Hayashi, M.; Matsushita, K.; Shinagawa, E.; Adachi, O. Microbial production of pyrroloquinoline quinone. Agric. Biol. Chem 1984, 48, 561–565. [Google Scholar]
- van Kleef, M.A.G.; Duine, J.A. Factors relevant in bacterial pyrroloquinoline quinone production. Appl. Environ. Microbiol 1989, 55, 1209–1213. [Google Scholar]
- Urakami, T.; Yashima, K.; Kobayshi, H.; Yoshida, A.; Ito-Yoshida, C. Production of pyrroloquinoline quinone by using methanol-utilizing bacteria. Appl. Environ. Microbiol 1992, 58, 3970–3976. [Google Scholar]
- Waselenko, J.K.; MacVittie, T.J.; Blakely, W.F.; Pesik, N.; Wiley, A.L.; Dickerson, W.E.; Tsu, H.; Confer, D.L.; Coleman, C.N.; Seed, T.; et al. Medical management of the acute radiation syndrome: Recommendations of the strategic national stockpile radiation working group. Ann. Intern. Med 2004, 140, 1037–1051. [Google Scholar]
- Mettler, F.A.J.; Voelz, G.L. Major radiation exposure—What to expect and how to respond. N. Engl. J. Med 2002, 346, 1554–1561. [Google Scholar]
- Xiao, M.X.; Zheng, J.X. The effect of “523” on survival and haematopoietic reconstruction of congenic bone marrow transplantation mice. J. First Mil. Med. Univ 1996, 16, 50–51. [Google Scholar]
- Zhou, H.N.; Wang, Q.; Zhang, C.L.; Ruan, J.L.; Li, X.L.; Gao, F.M. The observation on radioprotective effect of nilestriol. Chin. J. Radiol. Health 1998, 7, 41–42. [Google Scholar]
- Liu, Y.L.; Zhu, L.; Han, Z.W.; Han, Y.T.; Ma, L.; Wang, C.B.; Wang, Z.L.; Li, Y.S.; Li, S.J.; Wang, J.Q. Anti-oxidative effect of ipomoea batatas poir Cv anthocyanins on mice irradiated by 60Co gamma ray. Acta Acad. Med. Qingdao Univ 2005, 41, 46–51. [Google Scholar]
- Wang, Y.Y.; Liu, Q.; Wu, H.Y.; Li, D.G.; Zhang, H.; Wang, X.C.; Lu, L.; Meng, A.M.; Wang, R.Q.; Zhang, L.A. Protective effects of E838 on mouse lymphocyte double strand DNA broken induced by radiation. Cancer Res. Prev. Treat 2010, 37, 748–762. [Google Scholar]
- Devi, P.U. Normal tissue protection in cancer therapy: progress and prospects. Acta Oncol 1998, 37, 247–252. [Google Scholar]
- He, K.; Nukada, H.; Urankami, T.; Murphy, P.M. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): Implications for its function in biological systems. Biochem. Pharmacol 2003, 65, 67–74. [Google Scholar]
- Misraa, H.S.; Khairnar, N.P.; Barikb, A.; Priyadarsini, K.I.; Mohanb, H.; Apte, S.K. Pyrroloquinoline-quinone: A reactive oxygen species scavenger in bacteria. FEBS Lett 2004, 578, 26–30. [Google Scholar]
- Khairnar, N.P.; Misra, H.S.; Apte, S.K. Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem. Biophys. Res. Commun 2003, 312, 303–308. [Google Scholar]
- Ohwada, K.; Takeda, H.; Yamazaki, M.; Isogai, H.; Nakano, M.; Shimomura, M.; Fukui, K.; Urano, S. Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by oxidative stress in Rats. J. Clin. Biochem. Nutr 2008, 42, 29–34. [Google Scholar]
Group | Time of Irradiation (days) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | |
Irradiation | 1.00 ± 0.04 | 0.11 ± 0.04 | 0.26 ± 0.12 | 0.32 ± 0.13 | 0.42 ± 0.09 | 0.49 ± 0.12 | 0.55 ± 0.11 | 0.76 ± 0.22 |
Irradiation + nilestriol | 1.00 ± 0.02 | 0.12 ± 0.04 | 0.19 ± 0.11 | 0.28 ± 0.14 | 0.54 ± 0.13 * | 0.67 ± 0.22 * | 0.70 ± 0.16 * | 0.98 ± 0.32 * |
Irradiation + PQQ | 1.00 ± 0.05 | 0.13 ± 0.04 | 0.19 ± 0.05 | 0.28 ± 0.09 | 0.54 ± 0.13 * | 0.61 ± 0.08 * | 0.74 ± 0.16 ** | 0.91 ± 0.16 * |
Group | Time of Irradiation (days) | ||||
---|---|---|---|---|---|
0 | 3 | 9 | 15 | 21 | |
Irradiation | 0.32 ± 0.16 | 4.62 ± 0.89 | 3.46 ± 0.66 | 1.63 ± 0.52 | 0.77 ± 0.43 |
Irradiation + nilestriol | 0.35 ± 0.21 | 4.55 ± 0.74 | 1.18 ± 0.61 * | 0.94 ± 0.32 * | 0.38 ± 0.18 * |
Irradiation + PQQ | 0.40 ± 0.29 | 4.07 ± 0.89 | 0.91 ± 0.33 ** | 0.90 ± 0.32 * | 0.41 ± 0.17 * |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xiong, X.-H.; Zhao, Y.; Ge, X.; Yuan, S.-J.; Wang, J.-H.; Zhi, J.-J.; Yang, Y.-X.; Du, B.-H.; Guo, W.-J.; Wang, S.-S.; et al. Production and Radioprotective Effects of Pyrroloquinoline Quinone. Int. J. Mol. Sci. 2011, 12, 8913-8923. https://doi.org/10.3390/ijms12128913
Xiong X-H, Zhao Y, Ge X, Yuan S-J, Wang J-H, Zhi J-J, Yang Y-X, Du B-H, Guo W-J, Wang S-S, et al. Production and Radioprotective Effects of Pyrroloquinoline Quinone. International Journal of Molecular Sciences. 2011; 12(12):8913-8923. https://doi.org/10.3390/ijms12128913
Chicago/Turabian StyleXiong, Xiang-Hua, Yan Zhao, Xin Ge, Shou-Jun Yuan, Jian-Hua Wang, Jing-Juan Zhi, Yan-Xin Yang, Bao-Hua Du, Wan-Jun Guo, Shan-Shan Wang, and et al. 2011. "Production and Radioprotective Effects of Pyrroloquinoline Quinone" International Journal of Molecular Sciences 12, no. 12: 8913-8923. https://doi.org/10.3390/ijms12128913
APA StyleXiong, X. -H., Zhao, Y., Ge, X., Yuan, S. -J., Wang, J. -H., Zhi, J. -J., Yang, Y. -X., Du, B. -H., Guo, W. -J., Wang, S. -S., Yang, D. -X., & Zhang, W. -C. (2011). Production and Radioprotective Effects of Pyrroloquinoline Quinone. International Journal of Molecular Sciences, 12(12), 8913-8923. https://doi.org/10.3390/ijms12128913