Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Sample Characterization
3. Results and Discussion
3.1. Thermal Behavior of the Zinc Titanate Precursor Powders
3.2. Phase Transition of Zinc Titanate Precursor Powders Calcined at Various Temperatures for 1 h
3.3. Microstructure of the Zinc Titanate Precursor Powders Calcined at Various Temperatures for 1 h
3.4. The Transmittance of Zinc Titanate Precursor Powders Calcined at 900 °C for 1 h
4. Conclusions
- When the zinc titanate precursor powders were prepared at pH = 7 and calcined at 600 °C for 1 h, the XRD results show that the phases of ZnO, anatase TiO2 and Zn2Ti3O8 coexisted in the sample. However, when calcined at 900 °C for 1 h, the XRD result reveals the existence of Zn2TiO4, rutile TiO2, and ZnO.
- The SEM results reveal significant agglomeration in both the freeze-dried and post-calcined samples.
- The TEM and ED examination indicates the existence of near spherical Zn2Ti3O8 crystallites with size of about 5 nm on larger ZnO particles with a length of 200 nm and width of 100 nm. The microstructure ZnTiO3 shows a somewhat belt-shaped morphology, with a length of 200 nm and width of 50 nm for precipitates calcined at 900 °C for 1 h.
- The calcined samples have an acceptable transmittance when the wavelength is 400 nm. This result indicates that zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent.
Acknowledgments
References
- Fairhurst, D; Mitchnick, MA. Sunscreens: Development, Evaluation, and Regulatory Aspects, 2nd ed; Lowe, NJ, Shaath, NA, Pathat, MA, Eds.; Marcel Dekker: New York, NY, USA, 1997; pp. 313–352. [Google Scholar]
- Shaath, NA. Sunscreens: Development, Evaluation, and Regulatory Aspects, 2nd ed; Lowe, NJ, Shaath, NA, Pathat, MA, Eds.; Marcel Dekker: New York, NY, USA, 1997; pp. 3–33. [Google Scholar]
- Al-Hill, SM; Willamder, M. Optical propertics of zinc oxide nano-particles embedded in dielectric medium for UV region: Numberical simulation. J. Nanoparticle Res 2006, 8, 79–97. [Google Scholar]
- Dulin, FH; Rase, DE. Phase equilibria in the system ZnO-TiO2. J. Am. Ceram. Soc 1960, 43, 125–131. [Google Scholar]
- Bartram, SF; Slepetys, RA. Compound formation and crystal structure in the system ZnO-TiO2. J. Am. Ceram. Soc 1961, 44, 493–499. [Google Scholar]
- Yamaguchi, O; Morimi, M; Kawabata, H; Shimizu, K. Formation and transformation of ZnTiO3. J. Am. Ceram. Soc 1987, 70, 97–98. [Google Scholar]
- Steinike, U; Wallis, B. Formation and Strusture of Ti-Zn-Oxides. Cryst. Res. Technol 1997, 32, 187–193. [Google Scholar]
- Kim, HT; Kim, Y; Valant, M; Suvorov, D. Titanium incorporation in Zn2TiO4 spinel ceramics. J. Am. Ceram. Soc 2001, 84, 1081–1086. [Google Scholar]
- Swisher, JH; Schwerdtfeger, K. Thermodynamic analysis of sorption reactions for the removal of sulfur from hot gases. J. Mater. Eng. Preform 1992, 1, 565–571. [Google Scholar]
- Swisher, JH; Yang, J; Gupta, RP. Attrition-resistant zinc titanate sorbent for Sulfur. Ind. Eng. Chem 1995, 34, 4463–4471. [Google Scholar]
- McCord, AT; Saunder, HF. Preparation of pigmentary materials. US Patent 2379019. 1945.
- Obayashi, H; Sakurai, Y; Gejo, T. Perovskite-type oxide as ethanol sensors. J. Solid State Chem 1976, 17, 299–303. [Google Scholar]
- Kagata, H; Inoue, T; Kato, J; Kameyama, I; Ishizaki, T. Low-fire microwave dielectric ceramics, and maltilayer devices with silver internal electrode. Ceram. Trans 1993, 32, 81–90. [Google Scholar]
- Negas, T; Yeager, T; Bell, S; Coats, N; Minis, I. BaTi9O20-based ceramics resulted for modern microwave applications. Am. Ceram. Soc. Bull 1993, 72, 80–89. [Google Scholar]
- Chang, YS; Chang, YH; Chen, IG; Chen, GJ. Synthesis and characterization of zinc titanate doped with magnesium. Solid State Commun 2003, 128, 203–208. [Google Scholar]
- Chang, YS; Chang, YH; Chen, IG; Chen, GJ; Chai, YL. Synthesis and characterization of zinc titanate nano-crystal powders by sol-gel technique. J. Cryst. Growth 2002, 243, 319–326. [Google Scholar]
- Hosono, E; Fujihara, S; Onuki, M; Kimura, T. Low-temperature synthesis of nanocrystalline zinc titanate materials with high specific surface area. J. Am. Ceram. Soc 2004, 87, 1785–1788. [Google Scholar]
- Manik, SK; Bose, P; Pradhan, SK. Microstructure characterization and phase transformation kinetics of ball-milled preprared nanocrystalline Zn2TiO4 by Rietveld method. Mater. Chem. Phys 2003, 82, 837–847. [Google Scholar]
- Reddy, VB; Goel, SP; Mehrotra, PN. Investigation on formation of zinc titanates via thermal decomposition of zinc titanyl oxalate hydrate. Mater. Chem. Phys 1984, 10, 365–373. [Google Scholar]
- Kuo, CL; Wang, CL; Chen, TY; Chen, GJ; Hung, IM; Shih, CJ; Fung, KZ. Low-temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical co-precipitation. J. Alloy. Compd 2007, 392, 367–374. [Google Scholar]
- Golón, G; Hidalgo, MC; Navío, JA; Melián, EP; Díaz, OG; Rodriguez, JMD. Highly photoactive ZnO by amine capping-assisted hydrothermal treatment. Appl. Catal. B Environ 2008, 83, 30–38. [Google Scholar]
- Krylova, G; Brioude, A; Girard, SA; Mrazek, J; Spanhel, L. Natural superhydrophilicity and photocatalytic properties of sol-gel derived ZnTiO3-ilmenite/r-TiO2 films. Phys. Chem. Chem. Phys 2010, 12, 15101–15110. [Google Scholar]
- Aubert, T; Grasset, F; Potel, M; Nazabal, V; Cardinal, T; Pechev, S; Saito, N; Ohashi, N; Haneda, H. Synthesis and characterization of Eu3+,Ti4+@ZnO organosols and nanocrystalline c-ZnTiO3 thin films aiming at high transparency and luminescence. Sci. Technol. Adv. Mater 2010, 11, 044401. [Google Scholar]
- Yang, J; Swisher, JH. The phase stability of Zn2Ti3O8. Mater. Character 1996, 37, 153–159. [Google Scholar]
- Aal, AA; Barakat, MA; Mohamed, RM. Electrophoreted Zn-TiO2-ZnO nanocompsite coating films for photocatalytic degradation of 2-chlorophenol. Appl. Surface Sci 2008, 254, 4577–4583. [Google Scholar]
- Mrázek, J; Spanhel, L; Chadeyron, G; Matêjec, V. Evolution and Eu3+ doping of sol–gel derived ternary ZnxTiyOz nanocrystals. J. Phys. Chem. C 2010, 114, 2843–2852. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, C.-L.; Hwang, W.-S.; Chang, K.-M.; Ko, H.-H.; Hsi, C.-S.; Huang, H.-H.; Wang, M.-C. Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer. Int. J. Mol. Sci. 2011, 12, 935-945. https://doi.org/10.3390/ijms12020935
Wang C-L, Hwang W-S, Chang K-M, Ko H-H, Hsi C-S, Huang H-H, Wang M-C. Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer. International Journal of Molecular Sciences. 2011; 12(2):935-945. https://doi.org/10.3390/ijms12020935
Chicago/Turabian StyleWang, Cheng-Li, Weng-Sing Hwang, Kuo-Ming Chang, Horng-Huey Ko, Chi-Shiung Hsi, Hong-Hsin Huang, and Moo-Chin Wang. 2011. "Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer" International Journal of Molecular Sciences 12, no. 2: 935-945. https://doi.org/10.3390/ijms12020935
APA StyleWang, C.-L., Hwang, W.-S., Chang, K.-M., Ko, H.-H., Hsi, C.-S., Huang, H.-H., & Wang, M.-C. (2011). Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer. International Journal of Molecular Sciences, 12(2), 935-945. https://doi.org/10.3390/ijms12020935