Nutritional Deficiencies and Phospholipid Metabolism
Abstract
:1. Introduction
2. Importance of Dietary Fatty Acids on Phospholipid Distribution and Metabolism
2.1. Phospholipids in Brain
2.2. Phospholipids in Heart
2.3. Phospholipids in Bone
2.4. Phospholipids in Intestine
2.5. Phospholipids in Liver
2.6. Phospholipids in Serum and Plasma
3. Vitamin A: Its Effects on Phospholipid Metabolism
3.1. Vitamin A Deficiency on Liver Phospholipid Metabolism
3.2. Vitamin A Deficiency on Heart Phospholipid Metabolism
3.3. Vitamin A Deficiency on Aorta Phospholipid Metabolism
4. Vitamin E: Its Effects on Membrane Phospholipids
4.1. Vitamin E on Phospholipids in the Cardiovascular System
4.2. Vitamin E on Phospholipids of the Liver
4.3. Vitamin E on Phospholipids of the Lung
4.4. Other Vitamin E Actions on Phospholipids
5. Folates: Its Effects on Phospholipid Metabolism
6. Zinc on Phospholipid Metabolism
6.1. Zn Deficiency on Phospholipids of the Lung
6.2. Other Effects of Zn on Phospholipids
7. Magnesium on Phospholipids Metabolism
7.1. Magnesium on Phospholipids of the Cardiovascular System
7.2. Magnesium on Phospholipids of the Blood Components
7.3. Other Functions of Magnesium on Phospholipids
8. Conclusion
References
- Zhao, J; Gillam, ME; Taylor, CG; Weiler, HA. Deposition of docosahexaenoic acid (DHA) is limited in forebrain of young obese fa/fa Zucker rats fed a diet high in α-linolenic acid but devoid of DHA. J Nutr Biochem, 2010. [Google Scholar] [CrossRef]
- Le Guenneca, JY; Judec, S; Bessonb, P; Martelc, E; Champerouxc, P. Cardioprotection by omega-3 fatty acids: Involvement of PKCs? Essent. Fat. Acids 2010, 82, 173–177. [Google Scholar]
- Horrocks, LA; Farooqui, AA. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 361–372. [Google Scholar]
- Kim, HY; Akbar, M; Kim, YS. Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid. Prostaglandins Leukot. Essent. Fat. Acids 2010, 82, 165–172. [Google Scholar]
- Ariyama, H; Kono, N; Matsuda, S; Inoue, T; Arai, H. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem 2010, 16, 22027–22030. [Google Scholar]
- Langelier, B; Linard, A; Bordat, C; Lavialle, M; Heberden, C. Long chain-polyunsaturated fatty acids modulate membrane phospholipids composition and protein localization in lipid rafts of neural stem cell cultures. Cell Biochem 2010, 15, 1356–1364. [Google Scholar]
- Shantharam, P; Srinivasa Rao, P. Activity of myelin membrane Na+/K+-ATPase and 5′-nucleotidase in relation to phospholipid acyl profiles, ganglioside composition and phosphoinositides in developing brains of undernourished rats. Biochim. Biophys. Acta 1989, 982, 115–122. [Google Scholar]
- Burdge, GC; Calder, PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev 2005, 45, 581–597. [Google Scholar]
- Niu, SL; Mitchell, DC; Lim, SY; Wen, ZM; Kim, HY; Salem, N, Jr; Litman, BJ. Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n−3 fatty acid deficiency. J. Biol Chem 2004, 279, 31098–310104. [Google Scholar]
- Carter, JM; Demizieux, L; Campenot, RB; Vance, DE; Vance, JE. Phosphatidylcholine biosynthesis via CTP:phosphocholine cytidylyltransferase 2 facilitates neurite outgrowth and branching. J. Biol. Chem 2008, 283, 202–212. [Google Scholar]
- Suganuma, H; Arai, Y; Kitamura, Y; Hayashi, M; Okumura, A; Shimizu, T. Maternal docosahexaenoic acid-enriched diet prevents neonatal brain injury. Neuropathology 2010, 30, 597–605. [Google Scholar]
- Carlson, SE. Arachidonic acid status of human infants: influence of gestational age at birth and diets with very long chain n−3 and n−6 fatty acids. J. Nutr 1996, 126, 1092S–1098S. [Google Scholar]
- Carlson, SE; Ford, AJ; Werkman, SH; Peeples, JM; Koo, WW. Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin. Pediatr. Res 1996, 39, 882–888. [Google Scholar]
- Kamphuis, PJ; Wurtman, RJ. Nutrition and Alzheimer's disease: pre-clinical concepts. Eur. J Neurol 2009, 16, 12–18. [Google Scholar]
- Schaefer, EJ; Bongard, V; Beiser, AS; Lamon-Fava, S; Robins, SJ; Au, R; Tucker, KL; Kyle, DJ; Wilson, PW; Wolf, PA. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol 2006, 63, 1545–1550. [Google Scholar]
- Dyall, SC; Michael-Titus, AT. Neurological Benefits of Omega-3 Fatty Acids. Neuromol. Med 2008, 10, 219–235. [Google Scholar]
- Bazan, NG. Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neroprotectin D1. Adv. Exp. Med. Biol 2008, 613, 39–44. [Google Scholar]
- Suzuki, H; Park, SJ; Tamura, M; Ando, S. Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mech. Ageing Dev 1998, 10, 119–128. [Google Scholar]
- Levant, B; Ozias, MK; Carlson, SE. Specific brain regions of female rats are differentially depleted of docosahexaenoic acid by reproductive activity and an (n−3) fatty acid-deficient diet. J. Nutr 2007, 137, 130–134. [Google Scholar]
- Viviani, AC; Ferreri, C; Novelli, V; Roncarati, R; Bronzini, R; Marchese, G; Somalvico, F; Condorelli, G; Montenero, AS; Puca, AA. Fatty acid percentage in erythrocyte membranes of atrial flutter/fibrillation patients and controls. J. Interv. Card. Electrophysiol 2010, 27, 95–99. [Google Scholar]
- O'Shea, KM; Khairallah, RJ; Sparagna, GC; Xu, W; Hecker, PA; Robillard-Frayne, I; Des Rosiers, C; Kristian, T; Murphy, RC; Fiskum, G; Stanley, WC. Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition. J. Mol. Cell. Cardiol 2009, 47, 819–827. [Google Scholar]
- Dimitrow, PP; Jawien, M. Pleiotropic, cardioprotective effects of omega-3 polyunsaturated fatty acids. Mini Rev. Med. Chem 2009, 9, 1030–1039. [Google Scholar]
- Faulks, SC; Turner, N; Else, PL; Hulbert, AJ. Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J. Gerontol. A Biol. Sci. Med. Sci 2006, 61, 781–794. [Google Scholar]
- Mensink, RP; Zock, PL; Kester, AD; Katan, MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr 2003, 77, 1146–1155. [Google Scholar]
- Aro, A. Epidemiology of trans fatty acids and coronary heart disease in Europe. Nutr. Metab. Card. Dis 1998, 8, 402–407. [Google Scholar]
- Lichtenstein, AH; Ausman, LM; Jalbert, SM; Schaefer, EJ. Effects of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N. Engl. J. Med 1999, 340, 1933–1940. [Google Scholar]
- Kummerow, FA; Zhou, Q; Mahfouz, MM; Smiricky, MR; Grieshop, CM; Schaeffer, DJ. Trans fatty acids in hydrogenated fat inhibited the synthesis of the polyunsaturated fatty acids in the phospholipids of arterial cells. Life Sci 2004, 16, 74. 2707–2723. [Google Scholar]
- Cho, YY; Kwon, EY; Kim, HJ; Jeon, SM; Lee, KT; Choi, MS. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat. Lipids Health Dis 2011, 10, 15. [Google Scholar]
- Watkins, BA; Li, Y; Lippman, HE; Seifert, MF. Biochemical and molecular actions of fatty acids in bone modeling. World Rev. Nutr. Diet 2001, 88, 126–140. [Google Scholar]
- Lau, BY; Ward, WE; Kang, JX; Ma, DW. Fat-1 gene modulates the fatty acid composition of femoral and vertebral phospholipids. Appl. Physiol. Nutr. Metab 2010, 35, 447–455. [Google Scholar]
- Deshimaru, R; Ishitani, K; Makita, K; Horiguchi, F; Nozawa, S. Analysis of fatty acid composition in human bone marrow aspirates. Keio J. Med 2005, 54, 150–555. [Google Scholar]
- López-Pedrosa, JM; Ramírez, M; Torres, MI; Gil, A. Dietary phospholipids rich in long-chain polyunsaturated fatty acids improve the repair of small intestine in previously malnourished piglets. J. Nutr 1999, 129, 1149–1155. [Google Scholar]
- Hess, HA; Corl, BA; Lin, X; Jacobi, SK; Harrell, RJ; Blikslager, AT; Odle, J. Enrichment of intestinal mucosal phospholipids with arachidonic and eicosapentaenoic acids fed to suckling piglets is dose and time dependent. J. Nutr 2008, 138, 2164–2171. [Google Scholar]
- Steel, DM; Ryd, W; Ascher, H; Strandvik, B. Abnormal fatty acid pattern in intestinal mucosa of children with celiac disease is not reflected in serum phospholipids. J. Pediatr. Gastroenterol. Nutr 2006, 43, 318–323. [Google Scholar]
- Chocian, G; Chabowski, A; Zendzian-Piotrowska, M; Harasim, E; Łukaszuk, B; Górski, J. High fat diet induces ceramide and sphingomyelin formation in rat's liver nuclei. Mol. Cell. Biochem 2010, 340, 125–131. [Google Scholar]
- Li, LO; Ellis, JM; Paich, HA; Wang, S; Gong, N; Altshuller, G; Thresher, RJ; Koves, TR; Watkins, SM; Muoio, DM; Cline, GW; Shulman, GI; Coleman, RA. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J. Biol. Chem 2009, 284, 27816–27826. [Google Scholar]
- Riediger, ND; Othman, R; Fitz, E; Pierce, GN; Suh, M; Moghadasian, MH. Low n−6:n−3 fatty acid ratio, with fish- or flaxseed oil, in a high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice. Eur. J. Nutr 2008, 47, 153–160. [Google Scholar]
- Levant, B; Ozias, MK; Carlson, SE. Diet (n−3) polyunsaturated fatty acid content and parity affect liver and erythrocyte phospholipid fatty acid composition in female rats. J. Nutr 2007, 137, 2425–2430. [Google Scholar]
- Ait-Yahia, D; Madani, S; Savelli, JL; Prost, J; Bouchenak, M; Belleville, J. Dietary fish protein lowers blood pressure and alters tissue polyunsaturated fatty acid composition in spontaneously hypertensive rats. Nutrition 2003, 19, 342–346. [Google Scholar]
- Weindruch, R; Keenan, KP; Carney, JM; Fernández, G; Feuers, RJ; Floyd, RA; Halter, JB; Ramsey, JJ; Richardson, A; Roth, GS; Spindler, SR. Caloric restriction mimetics: metabolic interventions. J. Gerontol. A Biol. Sci. Med. Sci 2001, 56, 20–33. [Google Scholar]
- Tamburini, I; Quartacci, MF; Izzo, R; Bergamini, E. Effects of dietary restriction on age-related changes in the phospholipid fatty acid composition of various rat tissues. Aging Clin. Exp. Res 2004, 16, 425–431. [Google Scholar]
- Poppitt, SD; Kilmartin, P; Butler, P; Keogh, GF. Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary MUFA, PUFA or saturated fatty acid intake in a controlled cross-over intervention trial. Lipids Health Dis 2005, 4, 30–40. [Google Scholar]
- Thiébaut, AC; Rotival, M; Gauthier, E; Lenoir, GM; Boutron-Ruault, MC; Joulin, V; Clavel-Chapelon, F; Chajès, V. Correlation between serum phospholipid fatty acids and dietary intakes assessed a few years earlier. Nutr. Cancer 2009, 61, 500–509. [Google Scholar]
- Marosvolgyi, T; Horvath, G; Dittrich, A; Cseh, J; Lelovics, Z; Szabo, E; Decsi, T; Figler, M. Fatty Acid composition of plasma lipid classes in chronic alcoholic pancreatitis. Pancreatology 2010, 10, 580–585. [Google Scholar]
- Harvei, S; Bjerve, KS; Tretli, S; Jellum, E; Robsahm, TE; Vatten, L. Prediagnostic level of fatty acids in serum phospholipids: omega-3 and omega-6 fatty acids and the risk of prostate cancer. Int J Cancer 1997, 16. [Google Scholar]
- Murff, HJ; Shu, XO; Li, H; Yang, G; Wu, X; Cai, H; Wen, W; Gao, YT; Zheng, W. Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: A prospective cohort study. Int J Cancer 2011, 15, 128. 1434–1441. [Google Scholar]
- Hodge, AM; English, DR; O'Dea, K; Sinclair, AJ; Makrides, M; Gibson, RA; Giles, GG. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am. J. Clin. Nutr 2007, 86, 189–197. [Google Scholar]
- Yamada, M; Sasaki, S; Murakami, K; Takahashi, Y; Uenishi, K. Association of trans fatty acid intake with metabolic risk factors among free-living young Japanese women. Asia Pac. J. Clin. Nutr 2009, 18, 359–731. [Google Scholar]
- Alam, DS; van Raaij, JM; Hautvast, JG; Yunus, M; Wahed, MA; Fuchs, GJ. Effect of dietary fat supplementation during late pregnancy and first six months of lactation on maternal and infant vitamin A status in rural Bangladesh. J. Health Popul. Nutr 2010, 4, 333–342. [Google Scholar]
- Khanna, A; Reddy, TS. Effect of undernutrition and vitamin A deficiency on the phospholipid composition of rat tissues at 21 days of age. I. Liver, spleen and kidney. Int. J. Vitam. Nutr. Res 1983, 53, 3–8. [Google Scholar]
- Alarcón Corredor, OM; Silva Larralte, T; Chacón Patiño, A; Pachano Primera, YJ; Alarcón, AO; Reinosa, J. Changes in liver and kidney phosphorus in guinea pigs exposed to high doses of vitamin A (retinol). Acta Cient. Venez 1996, 47, 127–131. [Google Scholar]
- Oliveros, L; Domeniconi, MA; Vega, VA; Gatica, LV; Brigada, AM; Gimenez, MS. Vitamin a deficiency modifies the fatty acid metabolism in rat liver. Br. J. Nutr 2007, 97, 263–272. [Google Scholar]
- McMillin, JB; Dowhan, W. Cardiolipin and apoptosis. Biochim. Biophys. Acta 2002, 1585, 97–107. [Google Scholar]
- Anzulovich, AC; Oliveros, LB; Muñoz, E; Martínez, LD; Gimenez, MS. Nutritional vitamina A deficiency alters antioxidante defensas and modifies the liver histoarchitecture in rat. J. Trace Elem. Exp. Med 2000, 13, 343–357. [Google Scholar]
- Sastre, J; Serviddio, G; Pereda, J; Minana, JB; Arduini, A; Vendemiale, G; Poli, G; Pallardo, FV; Vina, J. Mitochondrial function in liver disease. Front. Biosci 2007, 12, 1200–1209. [Google Scholar]
- Petrosillo, G; Ruggiero, FM; DiVenosa, N; Paradies, G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB. J 2003, 17, 714–716. [Google Scholar]
- Vega, VA; Anzulovich, AC; Varas, SM; Bonomi, MR; Giménez, MS; Oliveros, LB. Effect of nutritional vitamin A deficiency on lipid metabolism in the rat heart: Its relation to PPAR gene expression. Nutrition 2009, 25, 828–838. [Google Scholar]
- Henneberry, AL; Wright, MM; McMaster, CR. The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol. Biol. Cell 2002, 13, 3148–3161. [Google Scholar]
- Ohvo-Rekilä, H; Ramstedt, B; Leppimäki, P; Slotte, JP. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res 2002, 41, 66–97. [Google Scholar]
- Itoh, K; Yoshizumi, M; Kitagawa, T; Fukuta, Y; Hori, T; Houchi, H; Tamaki, T; Katoh, I. Extracellulary administered lysophosphatidylcholine causes Ca2+ efflux from freshly isolated adult rat cardiomyocytes. Basic Res. Cardiol 1998, 93, 23–29. [Google Scholar]
- Hatch, GM. Cell biology of cardiac mitochondrial phospholipids. Biochem. Cell Biol 2004, 82, 99–112. [Google Scholar]
- Schlame, M; Ren, M; Xu, Y; Greenberg, ML; Haller, I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids 2005, 138, 38–49. [Google Scholar]
- Ostrander, DB; Sparagna, GC; Amoscato, AA; McMillin, JB; Dowhan, W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J. Biol. Chem 2001, 276, 38061–38067. [Google Scholar]
- Oliveros, LB; Vega, VA; Anzulovich, AC; Ramírez, DC; Giménez, MS. Vitamin A deficiency modifies antioxidant defenses and essential element contents in rat heart. Nutr. Res 2000, 20, 1139–1150. [Google Scholar]
- Azevedo, PS; Minicucci, MF; Chiuso-Minicucci, F; Justulin, LA, Jr; Matsubara, LS; Matsubara, BB; Novelli, E; Seiva, F; Ebaid, G; Campan, AO; Leonardo, AM; Zornof, LAM; Paiva, SAR. Ventricular remodeling induced by tissue vitamin A deficiency in rats. Cell. Physiol. Biochem 2010, 26, 395–402. [Google Scholar]
- Patrignani, P. Oxidized lipids. Ital. Heart J 2001, 2, 873–887. [Google Scholar]
- Sprecher, H. Biochemistry of essential fatty acids. Prog. Lipid Res 1981, 20, 13–22. [Google Scholar]
- Zolfaghari, R; Cifelli, CJ; Banta, MD; Ross, AC. Fatty acid delta(5)-desaturase mRNA is regulated by dietary vitamin A and exogenous retinoic acid in liver of adult rats. Arch. Biochem. Biophys 2001, 39, 8–15. [Google Scholar]
- Wang, Y; Botolin, D; Xu, J; Christian, B; Mitchell, E; Jayaprakasam, B; Nair, MG; Peters, JM; Busik, JV; Olson, LK; Jump, DB. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J. Lipid Res 2006, 47, 2028–2041. [Google Scholar]
- Gatica, LV; Vega, VA; Zirulnik, F; Oliveros, L; Gimenez, MS. Alterations in lipid metabolism of rat aorta. Effects of vitamin A. J. Vasc. Res 2006, 43, 602–610. [Google Scholar]
- Gatica, L; Alvarez, S; Gomez, N; Zago, MP; Oteiza, P; Oliveros, L; Gimenez, MS. Vitamin A deficiency induces prooxidant environment and inflammation in rat aorta. Free Radic. Res 2005, 39, 621–628. [Google Scholar]
- Mustacich, DJ; Bruno, RS; Traber, MG. Vitamin E. Vitam. Horm 2007, 76, 1–21. [Google Scholar]
- Fukuzawa, K. Dynamics of lipid peroxidation and antioxidion of alpha-tocopherol in membranes. J. Nutr. Sci. Vitaminol (Tokyo) 2008, 54, 273–285. [Google Scholar]
- Azzi, A; Stocker, A. Vitamin E: non-antioxidant roles. Prog. Lipid Res 2000, 39, 231–255. [Google Scholar]
- Hacquebard, M; Carpentier, YA. Vitamin E: absorption, plasma transport and cell uptake. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 133–138. [Google Scholar]
- Atkinson, J; Harroun, T; Wassall, SR; Stillwell, W; Katsaras, J. The location and behavior of alpha-tocopherol in membranes. Mol. Nutr. Food Res 2010, 54, 641–651. [Google Scholar]
- Bagatini, MD; Martins, CC; Battisti, V; Gasparetto, D; da Rosa, CS; Spanevello, RM; Ahmed, M; Schmatz, R; Schetinger, MR; Morsch, VM. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessels 2010, 26, 55–63. [Google Scholar]
- Chaudhary, G; Sinha, K; Gupta, YK. Protective effect of exogenous administration of alpha-tocopherol in middle cerebral artery occlusion model of cerebral ischemia in rats. Fundam. Clin. Pharmacol 2003, 17, 703–707. [Google Scholar]
- Bjelakovic, G; Nikolova, D; Gluud, LL; Simonetti, RG; Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007, 297, 842–857. [Google Scholar]
- Koshkaryev, A; Barshtein, G; Yedgar, S. Vitamin E induces phosphatidylserine externalization and red cell adhesion to endothelial cells. Cell. Biochem. Biophys 2010, 56, 109–114. [Google Scholar]
- Morley, S; Panagabko, C; Shineman, D; Mani, B; Stocker, A; Atkinson, J; Manor, D. Molecular determinants of heritable vitamin E deficiency. Biochemistry 2004, 43, 4143–4149. [Google Scholar]
- Leonard, SW; Terasawa, Y; Farese, RV, Jr; Traber, MG. Incorporation of deuterated RRR- or all-rac-alpha-tocopherol in plasma and tissues of alpha-tocopherol transfer protein-null mice. Am. J. Clin. Nutr 2002, 75, 555–560. [Google Scholar]
- Zaki, MS; Eid, RA. Role of vitamin-E on rat liver-amiodarone: an ultrastructural study. Saudi J. Gastroenterol 2009, 15, 104–110. [Google Scholar]
- Bjelakovic, G; Gluud, LL; Nikolova, D; Bjelakovic, M; Nagorni, A; Gluud, C. Meta-analysis: Antioxidant supplements for liver diseases—the Cochrane Hepato-Biliary Group. Aliment. Pharmacol. Ther 2010, 32, 356–367. [Google Scholar]
- Goerke, S. Lung surfactant. Biochim. Biophys. Acta 1974, 344, 241–261. [Google Scholar]
- Weiss, SJ; Lobuglio, AF. Biology and disease. Phagocyte-generated oxygen metabolites and cellular injury. Lab. Invest 1982, 47, 5–18. [Google Scholar]
- Chow, CK; Chen, LH; Thacker, RB; Griffith, RB. Dietary vitamin E and pulmonary biochemical responses of rats to cigarette smoking. Environ. Res 1984, 34, 8–17. [Google Scholar]
- Rostow, B; Haupt, R; Stevens, PA; Kunze, D. Type II pneumocytes secrete vitamin E together with surfactant lipids. Am J Physiol 1993, 265, L133–L139. [Google Scholar]
- Kolleck, I; Sinha, P; Rustow, B. Vitamin E as an antioxidant of the lung. Mechanisms of vitamin E delivery to alveolar type II cells. Am. J. Respir. Crit. Care Med 2002, 166, S62–S66. [Google Scholar]
- Smith, EL; Schuchman, EH. The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 2008, 22, 3419–3431. [Google Scholar]
- Li, J; Yu, W; Tiwary, R; Park, SK; Xiong, A; Sanders, BG; Kline, K. α-TEA-induced death receptor dependent apoptosis involves activation of acid sphingomyelinase and elevated ceramide-enriched cell surface membranes. Cancer Cell Int 2010, 10, 40. [Google Scholar]
- Nakagawa, K; Shibata, A; Yamashita, S; Tsuzuki, T; Kariya, J; Oikawa, S; Miyazawa, T. In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. J. Nutr 2007, 137, 1938–1943. [Google Scholar]
- Balamurugan, K; Said, HM. Role of reduced folate carrier in intestinal folate uptake. Am. J. Physiol. Cell Physiol 2006, 291, 189–193. [Google Scholar]
- Said, HM; Ghishan, FK; Redha, R. Folate transport by human intestinal brush-border membrane vesicles. Am J Physiol Gastrointest Liver Physiol 1987, 252, G229–G236. [Google Scholar]
- Matherly, LH; Goldman, DI. Membrane transport of folates. Vitam. Horm 2003, 66, 403–456. [Google Scholar]
- Dev, S; Ahmad Wani, N; Kaur, J. Regulatory mechanisms of intestinal folate uptake in a rat model of folate oversupplementation. Br. J. Nutr 2010, 23, 1–9. [Google Scholar]
- Finkelstein, JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 1998, 157, S40–S44. [Google Scholar]
- Yano, H; Nakaso, K; Yasui, K; Wakutani, Y; Nakayasu, H; Kowa, H; Adachi, Y; Nakashima, K. Mutations of the MTHFR gene (428C>T and [458G>T+459C>T]) markedly decrease MTHFR enzyme activity. Neurogenetics 2004, 5, 135–140. [Google Scholar]
- Chen, Z; Karaplis, AC; Ackerman, SL; Pogribny, IP; Melnyk, S; Lussier-Cacan, S; Chen, MF; Pai, A; John, SW; Smith, RS; Bottiglieri, T; Bagley, P; Selhub, J; Rudnicki, MA; James, SJ; Rozen, R. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet 2001, 10, 433–443. [Google Scholar]
- Panagia, V; Okumura, K; Shah, KR; Dhalla, NS. Modification of sarcolemmal phosphatidylethanolamine N-methylation during heart hypertrophy. Am. J. Physiol 1987, 253, H8–H15. [Google Scholar]
- Fujii, T; Masai, M; Misawa, H; Okuda, T; Takada-Takatori, Y; Moriwaki, Y; Haga, T; Kawashima, K. Acetylcholine synthesis and release in NIH3T3 cells coexpressing the high-affinity choline transporter and choline acetyltransferase. J. Neurosci. Res 2009, 87, 3024–3032. [Google Scholar]
- Farooqui, AA; Horrocks, LA; Farooqui, T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 2000, 106, 1–29. [Google Scholar]
- Gibellini, F; Smith, TK. The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 2010, 62, 414–428. [Google Scholar]
- Jacob, RA; Jenden, DJ; Allman-Farinelli, MA; Swendseid, ME. Folate nutriture alters choline status of women and men fed low choline diets. J. Nutr 1999, 129, 712–717. [Google Scholar]
- Abratte, CM; Wang, W; Li, R; Moriarty, DJ; Caudill, MA. Folate intake and the MTHFR C677T genotype influence choline status in young Mexican American women. J. Nutr. Biochem 2008, 19, 158–165. [Google Scholar]
- Guinotte, CL; Burns, MG; Axume, JA; Hata, H; Urrutia, TF; Alamilla, A; McCabe, D; Singgih, A; Cogger, EA; Caudil, MA. Methylenetetrahydrofolate reductase 677C->T variant modulates folate status response to controlled folate intakes in young women. J. Nutr 2003, 133, 1272–1280. [Google Scholar]
- Loy, R; Heyer, D; Williams, CL; Meck, WH. Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv. Exp. Med. Biol 1991, 295, 373–338. [Google Scholar]
- Chi-Liang, E; Yen, CL; Mar, MH; Meeker, RB; Fernandez, A; Zeisel, SH. Choline deficiency induces apoptosis in primary cultures of fetal neurons. FASEB J 2001, 15, 1704–1710. [Google Scholar]
- Yen, CL; Mar, MH; Zeisel, SH. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J 1999, 13, 135–142. [Google Scholar]
- Chen, Z; Yu, Y; Fu, D; Li, Z; Niu, X; Liao, M; Lu, S. Functional roles of PC-PLC and Cdc20 in the cell cycle, proliferation, and apoptosis. Cell Biochem. Funct 2010, 28, 249–257. [Google Scholar]
- Caudill, MA. Pre- and postnatal health: evidence of increased choline needs. Am. Diet. Assoc 2010, 110, 1198–1206. [Google Scholar]
- Zeisel, SH; Mar, MH; Zhou, Z; da Costa, KA. Pregnancy and lactation are associated with diminished concentrations of choline and its metabolites in rat liver. J. Nutr 1995, 15, 3049–3054. [Google Scholar]
- Zivkovic, AM; Bruce German, J; Esfandiari, F; Halsted, CH. Quantitative lipid metabolomic changes in alcoholic micropigs with fatty liver disease. Alcohol Clin. Exp. Res 2009, 33, 751–758. [Google Scholar]
- Larsson, SC; Giovannucci, E; Wolk, AM. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology 2006, 131, 1271–1283. [Google Scholar]
- Torres, AR; Bahr, VP. El Zinc: la chispa de la vida. Rev. Cubana Pediatr 2004, 76, 4. [Google Scholar]
- Riordan, JF. Biochemistry of zinc. Med. Clin. North Am 1976, 60, 661–674. [Google Scholar]
- Coto, JA; Hadden, EM; Sauro, M; Zorn, N; Hadden, JW. Interleukin 1 regulates secretion of zinc-thymulin by human thymic epithelial cells and its action on T-lymphocyte proliferation and nuclear protein kinase C. Proc. Natl. Acad. Sci. USA 1992, 89, 7752–7756. [Google Scholar]
- Hanas, JS; Hazuda, DJ; Bogenhagen, DF; Wu, FY; Wu, CW. Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J. Biol. Chem 1983, 258, 14120–14125. [Google Scholar]
- Truong-Tran, AQ; Carter, J; Ruffin, R; Zalewski, PD. New insights into the role of Zn in the respiratory epithelium. Immunol. Cell Biol 2001, 79, 170–177. [Google Scholar]
- Eder, K; Kirchgessner, M. Zinc deficiency and activities of lipogenic and glycolytic enzymes in liver of rats fed coconut oil or linseed oil. Lipids 1995, 30, 63–69. [Google Scholar]
- Bettger, WJ; Reeves, PG; Moscatelli, EA; Reynolds, G; O’Dell, BL. Interaction of zinc and essential fatty acids in the rat. J. Nutr 1979, 109, 480–488. [Google Scholar]
- Gomez, NN; Ojeda, MS; Gimenez, MS. Lung lipid composition in Zinc-deficient diet. Lipids 2002, 37, 291–296. [Google Scholar]
- Gomez, NN; Biaggio, BS; Rozzen, EJ; Álvarez, SM; Giménez, MS. Zn-limited diet modifies the expression of the rate regulatory enzymes involved in phosphatidylcholine and cholesterol synthesis. Br. J. Nutr 2003, 96, 1038–1046. [Google Scholar]
- Caviglia, JM; De Gomez Dumm, IN; Coleman, RA; Igal, RA. Phosphatidylcholine deficiency upregulates enzymes of triacylglycerol metabolism in CHO cells. J. Lipid Res 2004, 45, 1500–1509. [Google Scholar]
- Gomez, NN; Davicino, RC; Biaggio, VS; Bianco, GA; Alvarez, SM; Fischer, P; Masnatta, L; Rabinovich, GA; Gimenez, MS. Overexpression of inducible nitric oxide synthase and cyclooxygenase-2 in rat Zn-deficient lung: Involvement of a NF-kappaB dependent pathway. Nitric Oxide 2006, 14, 30–38. [Google Scholar]
- DiSilvestro, RA; Blostein-Fujii, A. Moderate Zinc deficiency in rats enhances lipoprotein oxidation in vitro. Free Radic. Biol. Med 1997, 22, 739–742. [Google Scholar]
- Frey, B; Haupt, R; Alms, S; Holzmann, G; Konig, T; Kern, H; Kox, W; Rustow, B; Schlame, M. Increase in fragmented phosphatidylcholine in blood plasma by oxidative stress. J. Lipid Res 2000, 41, 1145–1153. [Google Scholar]
- Noh, SK; Koo, SI. Feeding of a marginally low level of dietary zinc lowers the concentrations of alfa-tocopherol in selected organs. FASEB J 1998, 12, A217. [Google Scholar]
- Ahn, J; Koo, SI. Effects of zinc and essential fatty acid deficiencies on the lymphatic absorption of vitamin A and secretion of phospholipids. J. Nutr. Biochem 1995, 6, 595–603. [Google Scholar]
- Noh, SK; Koo, SI. Intraduodenal infusion of lysophosphatidylcholine restores the intestinal absorption of vitamins A and E in rats fed a low-Zinc diet. Exp. Biol. Med 2001, 226, 342–348. [Google Scholar]
- Dieck, HT; Döring, F; Fuchs, D; Roth, HP; Daniel, H. Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in Zn-deficient rats. J. Nutr 2005, 135, 199–205. [Google Scholar]
- Merrells, KJ; Blewett, H; Jamieson, JA; Taylor, CG; Suh, M. Relationship between abnormal sperm morphology induced by dietary zinc deficiency and lipid composition in testes of growing rats. Br. J. Nutr 2009, 102, 226–232. [Google Scholar]
- Tallman, DL; Taylor, CG. Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J. Nutr. Biochem 2003, 14, 17–23. [Google Scholar]
- Altura, BM; Barbour, RL; Dowd, TL; Wu, F; Altura, BT; Gupta, RK. Low extracellular magnesium induces intracellular free Mg deficits, depletion of high-energy phosphates and cardiac failure in intact working rat hearts: A 31P-NMR study. Biochim. Biophys. Acta 1993, 1182, 329–332. [Google Scholar]
- Rubenowitz, E; Molin, I; Axelsson, G; Rylander, R. Magnesium in drinking water in relation to morbidity and mortality from acute myocardial infarction. Epidemiology 2003, 11, 416–421. [Google Scholar]
- Altura, BM; Altura, BT. Magnesium: forgotten mineral in cardiovascular biology and atherogenesis. In New Perspectives in Magnesium Research; Nishizawa, N, Morii, H, Durlach, J, Eds.; Springer: New York, NY, USA, 2007; pp. 239–260. [Google Scholar]
- Altura, BM; Gebrewold, A; Altura, BT; Brautbar, N. Magnesium depletion impairs myocardial carbohydrate and lipid metabolism and cardiac bioenergetics and raises myocardial calcium content in vivo: relationship to etiology of cardiac diseases. Biochem. Mol. Biol. Int 1996, 40, 1183–1190. [Google Scholar]
- Altura, BM; Shah, NC; Li, Z; Jiang, XC; Perez-Albela, JL; Altura, BT. Magnesium deficiency upregulates serine palmitoyl transferase (SPT 1 and SPT 2) in cardiovascular tissues: Relationship to serum ionized Mg and cytochrome c. Am. J. Physiol. Heart Circ. Physiol 2010, 296, H932–H938. [Google Scholar]
- Morrill, GA; Gupta, RK; Kostellow, AB; Ma, GY; Zhang, A; Altura, BT; Altura, BM. Mg2+ modulates membrane sphingolipids and lipid second messengers levels in vascular smooth muscle cells. FEBS Lett 1998, 440, 167–171. [Google Scholar]
- Altura, BM; Shah, NC; Jiang, XC; Li, Z; Perez-Albela, JL; Sica, AC; Altura, BT. Short-term magnesium deficiency results in decreased levels of serum sphingomyelin, lipid peroxidation, and apoptosis in cardiovascular tissues. Am. J. Physiol. Heart Circ. Physiol 2009, 297, H86–H92. [Google Scholar]
- Zhou, Q; Zhou, Y; Liu, W; Kummerow, FA. Low magnesium stimulated prostacyclin generation in cultured human endothelial cells. Magnes. Res 2008, 21, 142–177. [Google Scholar]
- Tongyai, S; Rayssiguier, Y; Motta, C; Gueux, E; Maurois, P; Heaton, FW. Mechanism of increased erythrocyte membrane fluidity during magnesium deficiency in weanling rats. Am. J. Physiol. Cell Physiol 1989, 257, C270–C276. [Google Scholar]
- Rayssiguier, Y; Gueux, E; Bussiere, L; Durlach, J; Mazur, A. Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. J. Am. Coll. Nutr 1993, 12, 133–137. [Google Scholar]
- Gueux, E; Mazor, A; Cardot, P; Rayssiguier, Y. Magnesium deficiency affects plasma lipoprotein composition in rats. J. Nutr 1991, 121, 1222–1227. [Google Scholar]
- Sekiya, F; Yoshida, M; Yamashita, T; Morita, T. Magnesium (II) is a crucial constituent of the blood coagulation cascade. Potentiation of coagulant activities of factor IX by Mg2+ ions. J. Biol. Chem 1996, 271, 8541–8544. [Google Scholar]
- Deerfield, DW; Olson, DL; Berkowitz, P; Byrd, PA; Koehler, KA; Pedersen, LG; Hiskey, RG. Mg(II) binding by bovine prothrombin fragment 1 via equilibrium dialysis and the relative roles of Mg(II) and Ca(II) in blood coagulation. J. Biol. Chem 1987, 262, 4017–4023. [Google Scholar]
- Messer, AS; Velander, WH; Bajaj, SP. Contribution of magnesium in binding of factor IXa to the phospholipid surface: Implications for vitamin K-dependent coagulation proteins. J. Thromb. Haemost 2009, 7, 2151–2153. [Google Scholar]
- Carman, GM; Han, GS. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem. Sci 2006, 31, 694–699. [Google Scholar]
- Collet, JF; Stroobant, V; Van Schaftingen, E. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J. Biol. Chem 1999, 274, 33985–33990. [Google Scholar]
- Ikari, A; Nakajima, K; Suketa, Y; Harada, H; Takagi, K. Arachidonic acid-activated Na+-dependent Mg2+ efflux in rat renal epithelial cells. Biochim. Biophys. Acta 2003, 1618, 11–17. [Google Scholar]
- Niedworok, E; Muc-Wierzgon, M; Nowakowska-Zajdel, E. Influence of magnesium on fatty acids and their esters in isolated rat hepatocytes. J. Biol. Regul. Homeost. Agents 2010, 24, 377–380. [Google Scholar]
- Nielsen, FH. Dietary fatty acid composition alters magnesium metabolism, distribution, and marginal deficiency response in rats. Magnes. Res 2009, 22, 280–288. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gimenez, M.S.; Oliveros, L.B.; Gomez, N.N. Nutritional Deficiencies and Phospholipid Metabolism. Int. J. Mol. Sci. 2011, 12, 2408-2433. https://doi.org/10.3390/ijms12042408
Gimenez MS, Oliveros LB, Gomez NN. Nutritional Deficiencies and Phospholipid Metabolism. International Journal of Molecular Sciences. 2011; 12(4):2408-2433. https://doi.org/10.3390/ijms12042408
Chicago/Turabian StyleGimenez, María S., Liliana B. Oliveros, and Nidia N. Gomez. 2011. "Nutritional Deficiencies and Phospholipid Metabolism" International Journal of Molecular Sciences 12, no. 4: 2408-2433. https://doi.org/10.3390/ijms12042408
APA StyleGimenez, M. S., Oliveros, L. B., & Gomez, N. N. (2011). Nutritional Deficiencies and Phospholipid Metabolism. International Journal of Molecular Sciences, 12(4), 2408-2433. https://doi.org/10.3390/ijms12042408