Epigenetic Therapy for Breast Cancer
Abstract
:1. Introduction
2. DNA Methylation Inhibitors (DNMT Inhibitors)
2.1. Nucleoside Analogues
2.1.1. 5-Azacytidine
2.1.2. 5′-Aza-2′-Deoxycytidine
2.1.3. 5′-Fluoro-2′-Deoxycytidine
2.1.4. Zebularine
2.2. Non-Nucleoside Analogues
3. Histone Deacetylation Inhibitors (HDAC Inhibitors)
3.1. Shortchain Fatty Acids
3.2. Hydroxamic Acids
3.3. Cyclic Tetrapeptides
3.4. Benzamides
4. Conclusions
Acknowledgments
References
- Jemal, A; Siegel, R; Ward, E; Hao, Y; Xu, J; Murray, T; Thun, MJ. Cancer statistics. Ca-Cancer J. Clin 2008, 58, 71–96. [Google Scholar]
- Kelly, KM; Shah, N; Shedlosky-Shoemaker, R; Porter, K; Agnese, D. Living post treatment: Definitions of those with history and no history of cancer. J. Cancer Survivor 2011, 5, 158–166. [Google Scholar]
- Taby, R; Issa, JP. Cancer epigenetics. Ca-Cancer J. Clin 2010, 60, 376–392. [Google Scholar]
- Alvarez, RH. Present and future evolution of advanced breast cancer therapy. Breast Cancer Res 2010, 12, S1. [Google Scholar]
- Alvarez, RH; Valero, V; Hortobagyi, GN. Emerging targeted therapies for breast cancer. J. Clin. Oncol 2010, 28, 3366–3379. [Google Scholar]
- Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet 2007, 8, 286–298. [Google Scholar]
- Handel, AE; Ebers, GC; Ramagopalan, SV. Epigenetics: Molecular mechanisms and implications for disease. Trends Mol. Med 2010, 16, 7–16. [Google Scholar]
- Egger, G; Liang, G; Aparicio, A; Jones, PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429, 457–463. [Google Scholar]
- Tahiliani, M; Koh, KP; Shen, Y; Pastor, WA; Bandukwala, H; Brudno, Y; Agarwal, S; Iyer, LM; Liu, DR; Aravind, L; et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930–935. [Google Scholar]
- Robertson, AB; Dahl, JA; Vågbø, CB; Tripathi, P; Krokan, HE; Klungland, A. A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 2011, 39, e55. [Google Scholar]
- Voso, MT; D’Alò, F; Greco, M; Fabiani, E; Criscuolo, M; Migliara, G; Pagano, L; Fianchi, L; Guidi, F; Hohaus, S; et al. Epigenetic changes in therapy-related MDS/AML. Chem. Biol. Interact 2010, 184, 46–49. [Google Scholar]
- Hatziapostolou, M; Iliopoulos, D. Epigenetic aberrations during oncogenesis. Cell. Mol. Life Sci 2011, 68, 1681–1702. [Google Scholar]
- Bestor, TH. The DNA methyltransferases of mammals. Hum. Mol. Genet 2000, 9, 2395–2402. [Google Scholar]
- Schaefer, M; Hagemann, S; Hanna, K; Lyko, F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res 2009, 69, 8127–8132. [Google Scholar]
- Chen, ZX; Riggs, AD. DNA methylation and demethylation in mammals. J. Biol. Chem 2011, 286, 18347–18353. [Google Scholar]
- Gehring, M; Reik, W; Henikoff, S. DNA demethylation by DNA repair. Trends Genet 2009, 25, 82–90. [Google Scholar]
- Cortez, CC; Jones, PA. Chromatin, cancer and drug therapies. Mutat. Res 2008, 647, 44–51. [Google Scholar]
- Krawczyk, B; Fabianowska-Majewska, K. Alteration of DNA methylation status in K562 and MCF-7 cancer cell lines by nucleoside analogues. Nucleos. Nucleot. Nucleic Acids 2006, 25, 1029–1032. [Google Scholar]
- Szyf, M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol 2009, 49, 243–263. [Google Scholar]
- Chik, F; Szyf, M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis 2011, 32, 224–232. [Google Scholar]
- Mabaera, R; Greene, MR; Richardson, CA; Conine, SJ; Kozul, CD; Lowrey, CH. Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine’s ability to induce human fetal hemoglobin. Blood 2008, 111, 411–420. [Google Scholar]
- Christman, JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 2002, 21, 5483–5495. [Google Scholar]
- Kuo, HK; Griffith, JD; Kreuzer, KN. 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res 2007, 67, 8248–8254. [Google Scholar]
- Li, Q; Bartlett, DL; Gorry, MC; O’Malley, ME; Guo, ZS. Three epigenetic drugs up-regulate homeobox gene Rhox5 in cancer cells through overlapping and distinct molecular mechanisms. Mol. Pharmacol 2009, 76, 1072–1081. [Google Scholar]
- Qu, Z; Fu, J; Yan, P; Hu, J; Cheng, SY; Xiao, G. Epigenetic repression of PDZ-LIM domain-containing protein 2: Implications for the biology and treatment of breast cancer. J. Biol. Chem 2010, 285, 11786–11792. [Google Scholar]
- Xu, J; Zhou, JY; Tainsky, MA; Wu, GS. Evidence that tumor necrosis factor-related apoptosis-inducing ligand induction by 5-Aza-2′-deoxycytidine sensitizes human breast cancer cells to adriamycin. Cancer Res 2007, 67, 1203–1211. [Google Scholar]
- Mirza, S; Sharma, G; Pandya, P; Ralhan, R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol. Cell Biochem 2010, 342, 101–109. [Google Scholar]
- Beumer, JH; Parise, RA; Newman, EM; Doroshow, JH; Synold, TW; Lenz, HJ; Egorin, MJ. Concentrations of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine (FdCyd) and its cytotoxic metabolites in plasma of patients treated with FdCyd and tetrahydrouridine (THU). Cancer Chemother. Pharmacol 2008, 62, 363–368. [Google Scholar]
- Gowher, H; Jeltsch, A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol. Ther 2004, 3, 1062–1068. [Google Scholar]
- Boothman, DA; Briggle, TV; Greer, S. Exploitation of elevated pyrimidine deaminating enzymes for selective chemotherapy. Pharmacol. Ther 1989, 42, 65–88. [Google Scholar]
- Yoo, CB; Valente, R; Congiatu, C; Gavazza, F; Angel, A; Siddiqui, MA; Jones, PA; McGuigan, C; Marquez, VE. Activation of p16 gene silenced by DNA methylation in cancer cells by phosphoramidate derivatives of 2′-deoxyzebularine. J. Med. Chem 2008, 51, 7593–7601. [Google Scholar]
- Billam, M; Sobolewski, MD; Davidson, NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res. Treat 2010, 120, 581–592. [Google Scholar]
- Balch, C; Yan, P; Craft, T; Young, S; Skalnik, DG; Huang, TH; Nephew, KP. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol. Cancer Ther 2005, 4, 1505–1514. [Google Scholar]
- Schuebel, K; Baylin, S. In living color: DNA methyltransferase caught in the act. Nat. Methods 2005, 2, 736–738. [Google Scholar]
- Brueckner, B; Boy, RG; Siedlecki, P; Musch, T; Kliem, HC; Zielenkiewicz, P; Suhai, S; Wiessler, M; Lyko, F. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005, 65, 6305–6311. [Google Scholar]
- Fang, MZ; Wang, Y; Ai, N; Hou, Z; Sun, Y; Lu, H; Welsh, W; Yang, CS. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003, 63, 7563–7570. [Google Scholar]
- Moyers, SB; Kumar, NB. Green tea polyphenols and cancer chemoprevention: Multiple mechanisms and endpoints for phase II trials. Nutr. Rev 2004, 62, 204–211. [Google Scholar]
- Chen, D; Milacic, V; Chen, MS; Wan, SB; Lam, WH; Huo, C; Landis-Piwowar, KR; Cui, QC; Wali, A; Chan, TH; et al. Tea polyphenols, their biological effects and potential molecular targets. Histol. Histopathol 2008, 23, 487–496. [Google Scholar]
- Piña, IC; Gautschi, JT; Wang, GY; Sanders, ML; Schmitz, FJ; France, D; Cornell-Kennon, S; Sambucetti, LC; Remiszewski, SW; Perez, LB; et al. Psammaplins from the sponge Pseudoceratina purpurea: Inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chem 2003, 68, 3866–3873. [Google Scholar]
- Atadja, P; Gao, L; Kwon, P; Trogani, N; Walker, H; Hsu, M; Yeleswarapu, L; Chandramouli, N; Perez, L; Versace, R; et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res 2004, 64, 689–695. [Google Scholar]
- Davis, AJ; Gelmon, KA; Siu, LL; Moore, MJ; Britten, CD; Mistry, N; Klamut, H; D’Aloisio, S; MacLean, M; Wainman, N; et al. Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest. New Drugs 2003, 21, 85–97. [Google Scholar]
- Stewart, DJ; Donehower, RC; Eisenhauer, EA; Wainman, N; Shah, AK; Bonfils, C; MacLeod, AR; Besterman, JM; Reid, GK. A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Annu. Oncol 2003, 14, 766–774. [Google Scholar]
- Segura-Pacheco, B; Trejo-Becerril, C; Perez-Cardenas, E; Taja-Chayeb, L; Mariscal, I; Chavez, A; Acuña, C; Salazar, AM; Lizano, M; Dueñas-Gonzalez, A. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res 2003, 9, 1596–1603. [Google Scholar]
- Zambrano, P; Segura-Pacheco, B; Perez-Cardenas, E; Cetina, L; Revilla-Vazquez, A; Taja-Chayeb, L; Chavez-Blanco, A; Angeles, E; Cabrera, G; Sandoval, K; et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 2005, 5, 44. [Google Scholar]
- Marsoni, S; Damia, G; Camboni, G. A work in progress: The clinical development of histone deacetylase inhibitors. Epigenetics 2008, 3, 164–171. [Google Scholar]
- Fang, MH; Ji, XM. Histone modification and its application in therapy for hematologic malignancies. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2009, 17, 816–820. (in Chinese). [Google Scholar]
- Namdar, M; Perez, G; Ngo, L; Marks, PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA 2010, 107, 20003–20008. [Google Scholar]
- Candido, EP; Reeves, R; Davie, JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978, 14, 105–113. [Google Scholar]
- Cho, HJ; Kim, SY; Kim, KH; Kang, WK; Kim, JI; Oh, ST; Kim, JS; An, CH. The combination effect of sodium butyrate and 5-Aza-2′-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol 2009, 7, 49:1–49:7. [Google Scholar]
- Göttlicher, M; Minucci, S; Zhu, P; Krämer, OH; Schimpf, A; Giavara, S; Sleeman, JP; Coco, FL; Nervi, C; Pelicci, PG; et al. Valproic aciddefines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001, 20, 6969–6978. [Google Scholar]
- Travaglini, L; Vian, L; Billi, M; Grignani, F; Nervi, C. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int. J. Biochem. Cell. Biol 2009, 41, 225–234. [Google Scholar]
- Kim, SH; Kang, HJ; Na, H; Lee, MO. Trichostatin A enhances acetylation as well as protein stability of ERα through induction of p300 protein. Breast Cancer Res 2010, 12, R22. [Google Scholar]
- Li, Y; Yuan, YY; Meeran, SM; Tollefsbol, TO. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol. Cancer 2010, 9, 274. [Google Scholar]
- Stearns, V; Zhou, Q; Davidson, NE. Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest 2007, 25, 659–665. [Google Scholar]
- Xu, WS; Perez, G; Ngo, L; Gui, CY; Marks, PA. Induction of polyploidy by histone deacetylase inhibitor: A pathway for antitumor effects. Cancer Res 2005, 65, 7832–7839. [Google Scholar]
- Bali, P; Pranpat, M; Swaby, R; Fiskus, W; Yamaguchi, H; Balasis, M; Rocha, K; Wang, HG; Richon, V; Bhalla, K. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clin. Cancer Res 2005, 11, 6382–6389. [Google Scholar]
- Kijima, M; Yoshida, M; Sugita, K; Horinouchi, S; Beppu, T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem 1993, 268, 22429–22435. [Google Scholar]
- Monneret, C. Histone deacetylase inhibitors. Eur. J. Med. Chem 2005, 40, 1–13. [Google Scholar]
- Liu, Y; Liggitt, D; Fong, S; Debs, RJ. Systemic co-administration of depsipeptide selectively targets transfection enhancement to specific tissues and cell types. Gene Ther 2006, 13, 1724–1730. [Google Scholar]
- Marshall, JL; Rizvi, N; Kauh, J; Dahut, W; Figuera, M; Kang, MH; Figg, WD; Wainer, I; Chaissang, C; Li, MZ; et al. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J. Exp. Ther. Oncol 2002, 2, 325–332. [Google Scholar]
- Ray, A; Okouneva, T; Manna, T; Miller, HP; Schmid, S; Arthaud, L; Luduena, R; Jordan, MA; Wilson, L. Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate. Cancer Res 2007, 67, 3767–3776. [Google Scholar]
- Furumai, R; Komatsu, Y; Nishino, N; Khochbin, S; Yoshida, M; Horinouchi, S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Natl. Acad. Sci. USA 2001, 98, 87–92. [Google Scholar]
- Im, JY; Park, H; Kang, KW; Choi, WS; Kim, HS. Modulation of cell cycles and apoptosis by apicidin in estrogen receptor (ER)-positive and-negative human breast cancer cells. Chem. Biol. Interact 2008, 172, 235–244. [Google Scholar]
- Park, H; Im, JY; Kim, J; Choi, WS; Kim, HS. Effects of apicidin, a histone deacetylase inhibitor, on the regulation of apoptosis in H-ras-transformed breast epithelial cells. Int. J. Mol. Med 2008, 21, 325–333. [Google Scholar]
- Keles, E; Lianeri, M; Jagodziński, PP. Apicidin suppresses transcription of 17β-hydroxysteroid dehydrogenase type 1 in endometrial adenocarcinoma cells. Mol. Biol. Rep 2011, 38, 3355–3360. [Google Scholar]
- Saito, A; Yamashita, T; Mariko, Y; Nosaka, Y; Tsuchiya, K; Ando, T; Suzuki, T; Tsuruo, T; Nakanishi, O. A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA 2009, 96, 4592–4597. [Google Scholar]
- Camphausen, K; Burgan, W; Cerra, M; Oswald, KA; Trepel, JB; Lee, MJ; Tofilon, PJ. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004, 64, 316–321. [Google Scholar]
- Srivastava, RK; Kurzrock, R; Shankar, S. MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol. Cancer Ther 2010, 9, 3254–3266. [Google Scholar]
- Xu, J; Zhou, JY; Wei, WZ; Philipsen, S; Wu, GS. Sp1-mediated TRAIL induction in chemosensitization. Cancer Res 2008, 68, 6718–6726. [Google Scholar]
- Riva, L; Blaney, SM; Dauser, R; Nuchtern, JG; Durfee, J; McGuffey, L; Berg, SL. Pharmacokinetics and cerebrospinal fluid penetration of CI-994 (N-acetyldinaline) in the nonhuman primate. Clin. Cancer Res 2000, 6, 994–997. [Google Scholar]
- Perabo, FG; Müller, SC. New agents for treatment of advanced transitional cell carcinoma. Annu. Oncol 2007, 18, 835–843. [Google Scholar]
- Kelly, TK; De Carvalho, DD; Jones, PA. Epigenetic modifications as therapeutic targets. Nat. Biotechnol 2010, 28, 1069–1078. [Google Scholar]
- Kristensen, LS; Nielsen, HM; Hansen, LL. Epigenetics and cancer treatment. Eur. J. Pharmacol 2009, 625, 131–142. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cai, F.-F.; Kohler, C.; Zhang, B.; Wang, M.-H.; Chen, W.-J.; Zhong, X.-Y. Epigenetic Therapy for Breast Cancer. Int. J. Mol. Sci. 2011, 12, 4465-4476. https://doi.org/10.3390/ijms12074465
Cai F-F, Kohler C, Zhang B, Wang M-H, Chen W-J, Zhong X-Y. Epigenetic Therapy for Breast Cancer. International Journal of Molecular Sciences. 2011; 12(7):4465-4476. https://doi.org/10.3390/ijms12074465
Chicago/Turabian StyleCai, Feng-Feng, Corina Kohler, Bei Zhang, Ming-Hong Wang, Wei-Jie Chen, and Xiao-Yan Zhong. 2011. "Epigenetic Therapy for Breast Cancer" International Journal of Molecular Sciences 12, no. 7: 4465-4476. https://doi.org/10.3390/ijms12074465
APA StyleCai, F. -F., Kohler, C., Zhang, B., Wang, M. -H., Chen, W. -J., & Zhong, X. -Y. (2011). Epigenetic Therapy for Breast Cancer. International Journal of Molecular Sciences, 12(7), 4465-4476. https://doi.org/10.3390/ijms12074465