The Behavior of Matrix Metalloproteinases and Their Inhibitors in Colorectal Cancer
Abstract
:1. Introduction
2. Events during Tumor Invasion and Metastasis
3. The Link between Inflammation and Cancer
4. The Role of Proteolytic Enzymes
5. Matrix Metalloproteinases
6. Tissue Inhibitors of Matrix Metalloproteinases (TIMPs)
7. The Role of MMPs and TIMPs in Colorectal Cancer
7.1. Tissue Expression of MMPs and TIMPs in CRC
7.2. Tissue Activity of MMPs in CRC
7.3. Genetic Analysis (Single-Nucleotide Polymorphism) of MMPs and TIMPs in CRC
7.4. Serum and Plasma MMPs and TIMPs in CRC
7.5. Diagnostic Value of MMPs and TIMPs
7.6. Prognostic Value of MMPs and TIMPs
8. Predictive Value of MMPs and TIMPs in Response to Chemotherapy
9. Pharmacological Targeting of MMPs
- Conflict of InterestThe authors declare no conflict of interest.
References
- Ferlay, J.; Parkin, D.M.; Steliarova-Fiocher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 2010, 46, 765–781. [Google Scholar]
- Siegel, R.; Desantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin 2012, 62, 220–241. [Google Scholar]
- Moghimi-Dehkodri, B.; Safaee, A. An overview of colorectal cancer survival rates and prognosis in Asia. World J. Gastrointest. Oncol 2012, 4, 71–75. [Google Scholar]
- Wittmann, T.; Stockbrugger, R.; Herszényi, L.; Jonkers, D.; Molnár, B.; Saurin, J.C.; Regula, J.; Malesci, A.; Laghi, L.; Pintér, T.; et al. New European initiatives in colorectal cancer screening: Budapest Declaration. Dig. Dis 2012, 30, 320–322. [Google Scholar]
- Hart, I.R.; Saini, A. Biology of tumour metastasis. Lancet 1992, 339, 1453–1457. [Google Scholar]
- Nigam, A.K.; Pignatelli, M.; Boulos, P. Current concepts in metastasis. Gut 1994, 35, 996–1000. [Google Scholar]
- Herszényi, L.; Plebani, M.; Carraro, P.; de Paoli, M.; Roveroni, G.; Cardin, R.; Foschia, F.; Tulassay, Z.; Naccarato, R.; Farinati, F. Proteases in gastrointestinal neoplastic disease. Clin. Chim. Acta 2000, 291, 171–187. [Google Scholar]
- Hoon, D.S.; Ferris, R.; Tanaka, R.; Chong, K.K.; Alix-Panabiéres, C.; Pantel, K. Molecular mechanisms of metastasis. J. Surg. Oncol 2011, 103, 508–517. [Google Scholar]
- Witte, M.H.; Dellinger, M.T.; McDonald, D.M.; Nathanson, S.D.; Boccardo, F.M.; Campisi, C.C.; Sleeman, J.P.; Gershenwald, J.E. Lymphangiogenesis and hemangiogenesis: Potential targets for therapy. J. Surg. Oncol 2011, 103, 489–500. [Google Scholar]
- Herszényi, L.; Lakatos, G.; Hritz, I.; Varga, M.Z.; Cierny, G.; Tulassay, Z. The role of inflammation and proteinases in tumor progression. Dig. Dis 2012, 30, 249–254. [Google Scholar]
- Yurchenko, P.D.; Schittny, J.C. Molecular architecture of basement membrane. FABES J 1990, 4, 1577–1590. [Google Scholar]
- DeClerck, Y.A.; Mercurio, A.M.; Stack, M.S.; Chapman, H.A.; Zutter, M.M.; Muschel, R.J.; Raz, A.; Matrisian, L.M.; Sloane, B.F.; Noel, A.; et al. Proteases, extracellular matrix and cancer: A workshop of the path B study section. Am. J. Pathol 2004, 164, 1131–1139. [Google Scholar]
- Cavallo-Medved, D.; Rudy, D.; Blum, G.; Bogyo, M.; Caglic, D.; Sloane, B.F. Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolas of endothelial cells during tube formation. Exp. Cell Res 2009, 315, 1234–1246. [Google Scholar]
- Liotta, L.A.; Kohn, E.C. The microenvironment of the tumour-host interface. Nature 2001, 411, 375–379. [Google Scholar]
- Geho, D.H.; Bandle, R.W.; Clair, T.; Liotta, L.A. Physiological mechanisms of tumor-cell invasion and migration. Physiology (Bethesda) 2005, 20, 194–200. [Google Scholar]
- Mantovani, A.; Allavena, P.; Sica, A; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar]
- Hold, G.L.; El-Omar, M.E. Genetic aspects of inflammation and cancer. Biochem. J 2008, 40, 225–235. [Google Scholar]
- Mantovani, A.; Garlanda, C.; Allavena, P. Molecular pathways and targets in cancer-related inflammation. Ann. Med 2010, 42, 161–170. [Google Scholar]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 7, 1073–1081. [Google Scholar]
- Maltzki, C.; Emmrich, J. Inflammation and immunity in the tumor environment. Dig. Dis 2010, 28, 574–578. [Google Scholar]
- Grivennikov, S.I.; Karin, M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. Ann. Rheum. Dis 2011, 70, i104–i108. [Google Scholar]
- Bromberg, J.; Wang, T.C. Inflammation and cancer: IL-6 and STAT3 completes the link. Cancer Cell 2009, 15, 79–80. [Google Scholar]
- Scheede-Bergdahl, C.; Watt, H.L.; Trutschnigg, B.; Kilgour, R.D.; Haggarty, A.; Lucar, E.; Vigano, A. Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin. Nutr 2012, 31, 85–88. [Google Scholar]
- Burney, B.O.; Hayes, T.G.; Smiechowska, J.; Cardwell, G.; Papusha, V.; Bhargava, P.; Konda, B.; Auchus, R.J.; Garcia, J.M. Low testosterone levels and increased inflammatory markers in patients with cancer and relationship with cachexia. J. Clin. Endocrinol. Metab 2012, 97, E700–E709. [Google Scholar]
- Liotta, L.A.; Stetler-Stevenson, W.G. Tumor invasion and metastasis: An imbalance of positive and negative regulation. Cancer Res 1991, 51, 5054–5059. [Google Scholar]
- Dass, K.; Ahmad, A.; Azmi, A.S.; Sarkar, S.H.; Sarkar, F.H. Evolving role of uPA/uPAR system in human cancers. Cancer Treatment Rev 2008, 34, 122–136. [Google Scholar]
- Polgar, L. Common feature of the four types of protease mechanisms. Biol. Chem. Hoppe-Seyler 1990, 371, 327–331. [Google Scholar]
- Plebani, M.; Herszényi, L.; Cardin, R.; Roveroni, G.; Carraro, P.; de Paoli, M.; Rugge, M.; Grigioni, W.F; Nitti, D.; Naccarato, R.; et al. Cysteine and serine proteases in gastric cancer. Cancer 1995, 76, 367–375. [Google Scholar]
- Herszényi, L.; Plebani, M.; Carraro, P.; de Paoli, M.; Roveroni, G.; Cardin, R.; Tulassay, Z.; Naccarato, R.; Farinati, F. The role of cysteine and serine proteases in colorectal cancer. Cancer 1999, 86, 1135–1142. [Google Scholar]
- Herszényi, L.; Farinati, F.; Cardin, R.; István, G.; Molnár, L.D.; Hritz, I.; de Paoli, M.; Plebani, M.; Tulassay, Z. Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer. BMC Cancer 2008, 8, 194. [Google Scholar]
- Herszényi, L.; Plebani, M.; Carraro, P.; de Paoli, M.; Cardion, R.; di Mari, F.; Kusstacher, S.; Naccarato, R.; Farinati, F. Impaired fibrinolysis and increased protease levels in gastric and duodenal mucosa of patients with active duodenal ulcer. Am. J. Gastroenterol 1997, 92, 843–847. [Google Scholar]
- Herszényi, L.; István, G.; Cardin, R.; de Paoli, M.; Plebani, M.; Tulassaay, Z.; Farinati, F. Serum cathepsin B and plasma urokinase-type plasminogen activator levels in gastrointestinal tract cancers. Eur. J. Cancer Prev 2008, 17, 438–445. [Google Scholar]
- Van Kempelen, L.C.L.; de Visser, K.A.; Coussens, L.M. Inflammation, proteases and cancer. Eur. J. Cancer 2006, 42, 728–734. [Google Scholar]
- Affara, N.I.; Andreau, P.; Coussens, L.M. Delineating protease functions during cancer development. Methods Mol. Biol 2009, 539, 1–32. [Google Scholar]
- Noel, A.; Jost, M.; Maquoi, E. Matrix metalloproteinases at cancer tumor-host interface. Semin. Cell Dev. Biol 2008, 19, 52–60. [Google Scholar]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67. [Google Scholar]
- Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodeling. Nat. Rev. Mol. Cell Biol 2007, 8, 221–233. [Google Scholar]
- Hayden, D.M.; Forsyth, C.; Keshavarzian, A. the role of matrix metalloproteinases in intestinal epithelial wound healing during normal and inflammatory states. J. Surg. Res 2011, 168, 315–324. [Google Scholar]
- Puthenedam, M.; Wu, F.; Shetye, A.; Michaels, A.; Rhee, K.J.; Kwon, J.H. Matrilysin (MMP7) cleaves gelactin-3 and inhibits wound healing in intestinal epithelial cells. Inflamm. Bowel Dis 2011, 17, 260–267. [Google Scholar]
- Sun, J. Matrix metalloproteinases and tissue inhibitor of metalloproteinase are essential for the inflammatory response in cancer cells. J. Signal Transduct 2010, 2010, 985132. [Google Scholar]
- Herszényi, L.; Hritz, I.; Pregun, I.; Sipos, F.; Juhasz, M.; Molnar, B.; Tulassay, Z. Alterations of glutathione S-transferase and matrix metalloproteinase-9 expressions are early events in the esophageal carcinogenesis. World J. Gastroenterol 2007, 13, 676–682. [Google Scholar]
- Herszényi, L.; Sipos, F.; Galamb, O.; Solymosi, N.; Hritz, I.; Miheller, P.; Berczi, L.; Molnár, B.; Tulassay, Z. Matrix metalloproteinase-9 expression in the normal mucosa-adenoma-dysplasiaadenocarcinoma sequence of the colon. Pathol. Oncol. Res 2008, 14, 31–37. [Google Scholar]
- Jensen, S.A.; Vainer, B.; Bartels, A.; Brünner, M.; Sörensen, J.B. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells—Associations with histopathology and patients outcome. Eur. J. Cancer 2010, 46, 3233–3242. [Google Scholar]
- Kirkegaard, T.; Hansen, A.; Bruun, E.; Brynskov, J. Expression and localization of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn’s disease. Gut 2004, 53, 701–709. [Google Scholar]
- Stallmach, A.; Chan, C.C.; Ecker, K.W.; Feifel, G.; Herbst, H; Schuppan, D.; Zeitz, M. Comparable expression of matrix metalloproteinases 1 and 2 in pouchitis and ulcerative colitis. Gut 2000, 47, 415–422. [Google Scholar]
- Von Lampe, B.; Barthel, B.; Coupland, S.E.; Riecken, E.O.; Rosewicz, S. Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut 2000, 47, 63–73. [Google Scholar]
- Ravi, A.; Garg, P.; Sitaraman, S.V. Matrix metalloproteinases in inflammatory bowel disease: Boon or a baine? Inflamm. Bowel Dis 2007, 13, 97–107. [Google Scholar]
- Lakatos, G.; Sipos, F.; Miheller, P.; Hritz, I.; Varga, M.Z.; Juhász, M.; Molnár, B.; Tulassay, Z.; Herszényi, L. The behavior of matrix metalloproteinase-9 in lymphocytic colitis, collagenous colitis and ulcerative colitis. Pathol. Oncol. Res 2012, 18, 85–91. [Google Scholar]
- Lakatos, G.; Hritz, I.; Varga, M.Z.; Juhász, M.; Miheller, P.; Cierny, G.; Tulassay, Z.; Herszényi, L. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig. Dis 2012, 30, 289–295. [Google Scholar]
- Mashhadiabbas, F.; Mahjour, F.; Mahjour, S.B.; Fereidooni, F.; Hosseini, F.S. The immunohistochemical characterization of MMP-2, MMP-10, TIMP-1, TIMP-2 and podoplanin in oral squamous cell carcinoma. Oral Surg. Oral Med. Pathol. Oral Radiol 2012, 114, 240–250. [Google Scholar]
- Fullár, A.; Kovalszky, I.; Bitsche, M.; Romani, A.; Schartinger, V.H.; Sprinzl, G.M.; Riechelmann, H.; Dudás, J. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases ant their inhibitors in oral squamous cell carcinoma. Exp. Cell Res 2012, 318, 1517–1527. [Google Scholar]
- Roomi, M.W.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A. Down-regulation of urokinase plasminogen activator and matrix metalloproteinases and up-regulation of their inhibitors by a novel nutrient mixture in human prostate cancer cell lines PC-3 and DU-145. Oncol. Rep 2011, 26, 1407–1413. [Google Scholar]
- Figueira, R.C.; Gomes, L.R.; Neto, J.S.; Silva, F.C.; Silva, I.D.; Sogayar, M.C. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer 2009, 9, 20. [Google Scholar]
- Roomi, M.W.; Monterrey, J.C.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A. In vitro modulation of MMP-2 and MMP-9 in human cervical and ovarian cancer cell lines by cytokines, inducers and inhibitors. Oncol. Rep 2010, 223, 605–614. [Google Scholar]
- Hu, X.; Li, D.; Zhang, W.; Zhou, J.; Tang, B.; Li, L. Matrix metalloproteinase-9 expression correlates with prognosis and involved in ovarian cancer cell invasion. Arch. Gynecol. Obstet 2012. [Google Scholar] [CrossRef]
- Roomi, M.W.; Kalniovsky, T.; Rath, M.; Niedzwiecki, A. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in human female cancer cell lines. Oncol. Rep 2012, 28, 768–776. [Google Scholar]
- Sharma, R.; Chattopadhyay, T.K.; Mathur, M.; Ralhan, R. Prognostic significance of stromelysin-2 and tissue inhibitor of matrix metalloproteinase-2 in esophageal cancer. Oncology 2004, 67, 300–309. [Google Scholar]
- Groblewska, M.; Siewko, M.; Mroczko, B.; Szmitkowski, M. The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer. Folia Histochem. Cytobiol 2012, 50, 12–19. [Google Scholar]
- Salmela, M.T.; Karjalainen-Lindsberg, M.L.; Puolakkainen, P.; Saarialho-Kere, U. Upregulation and differential expression of matrilysin (MMP-7) and metalloelastase (MMP-12) and their inhibitors TIMP-1 and TIMP-3 in Barrett’s oesophageal adenocarcinoma. Br. J. Cancer 2001, 85, 383–392. [Google Scholar]
- Lukaszewicz-Zajac, M.; Mroczko, B.; Szmitkowski, M. Gastric cancer—The role of matrix metalloproteinases in tumor progression. Clin. Chim. Acta 2011, 412, 1725–1730. [Google Scholar]
- Liu, H.Q.; Song, S.; Wang, J.H.; Zhang, S.L. Expression of MMP-3 and TIMP-3 in gastric cancer tissue and its clinical significance. Oncol. Lett 2011, 2, 1319–1322. [Google Scholar]
- Joergensen, M.T.; Brünner, N.; de Muckadell, O.B. comparison of circulating MMP-9, TIMP-1 and CA-19-9 in the detection of pancreatic cancer. Anticancer Res 2010, 30, 587–592. [Google Scholar]
- Giannopoulos, G.; Pavlakis, K.; Parasi, A.; Kavatzas, N.; Tiniakos, D.; Karakosta, A.; Tzanakis, N.; Peros, G. The expression of matrix metalloproteinase-2 and -9 and their tissue inhibitor 2 in pancreatic ductal and ampullary carcinoma and their relation to angiogenesis and clinicopathological parameters. Anticancer Res 2008, 28, 1875–1881. [Google Scholar]
- Gao, Z.H.; Tretiakova, M.S.; Liu, W.H.; Gong, C.; Farris, P.D.; Hart, J. Association of E-cadherin, matrix metalloproteinases with the progression and metastasis of hepatocellular carcinoma. Mod. Pathol 2006, 19, 533–540. [Google Scholar]
- Tretiakova, M.S.; Hart, J.; Shabani-Rad, M.T.; Zhang, J.; Gao, Z.H. Distinction of hepatocellular adenoma from hepatocellular carcinoma with and without cirrhosis using E-cadherin and matrix metalloproteinase immunohistochemistry. Mod. Pathol 2009, 22, 1113–1120. [Google Scholar]
- Roy, R.; Yang, J.; Moses, A.M. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol 2009, 27, 5287–5297. [Google Scholar]
- Yeh, Y.C.; Sheu, B.S.; Cheng, H.C.; Wang, Y.L.; Yang, H.B.; Wu, J.J. Elevated matrix metalloproteinase-3 and -7 in H. pylori-related gastric cancer can be biomarkers correlating with a poor survival. Dig. Dis. Sci 2010, 55, 1649–1657. [Google Scholar]
- Medina, C.; Radomski, M.W. Role of matrix metalloproteinases in intestinal inflammation. J. Pharmacol. Exp. Ther 2006, 318, 933–938. [Google Scholar]
- Wiercinska-Drapalo, A.; Jaroszewicz, J.; Flisiak, R.; Prokopowicz, D. Plasma matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 as biomarkers of ulcerative colitis activity. World J. Gastroenterol 2003, 9, 2843–2845. [Google Scholar]
- Meijer, M.J.; Mieremet-Ooms, M.A.; van Hogezand, R.A.; Lamers, C.B.; Hommes, D.W.; Verspaget, H.W. Role of matrix metalloproteinase, tissue inhibitor of matrix metalloproteinase and tumor necrosis factor-alpha single nucleotide gene polymorphisms in inflammatory bowel disease. World J. Gastroenterol 2007, 13, 2960–2966. [Google Scholar]
- Meijer, M.J.; Mieremet-Ooms, M.A.; Sier, C.F.; van Hogezand, R.A.; Lamers, C.B.; Hommes, D.W.; Verspaget, H.W. Matrix metalloproteinases and their tissue inhibitors as prognostic indicators for diagnostic and surgical recurrence in Crohn’s disease. Inflamm. Bowel Dis 2009, 15, 84–92. [Google Scholar]
- Kapsoritakis, A.N.; Kapsoritaki, A.L.; Davidi, I.P.; Lotis, V.D.; Manolakis, A.C.; Mylonis, P.I.; Theodoridou, A.T.; Germenis, A.E.; Potamianos, S.P. Imbalance of tissue inhibitors of metalloproteinases (TIMP) -1 and -4 serum levels in patients with inflammatory bowel disease. BMC Gastroenterol 2008, 8, 55. [Google Scholar]
- Mäkitalo, L.; Kolho, K.L.; Karikoski, R.; Anthoni, H.; Saarialho-Kere, U. Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease. Scan. J. Gastroenterol 2010, 45, 862–871. [Google Scholar]
- Hornebeck, W.; Lambert, E.; Petitfrére, E.; Bernard, P. Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression. Biochimie 2005, 87, 377–383. [Google Scholar]
- Schrötzlmair, F.; Kopitz, C.; Hälbgewachs, B.; Lu, F.; Algül, H.; Brünner, N.; Gansbacher, B.; Krüger, A. Tissue inhibitor of metalloproteinase-1-induced scattered liver metastasis is mediated by host-derived urokinase-type plasminogen activator. J. Cell Mol. Med 2010, 14, 2760–2770. [Google Scholar]
- Schelter, F.; Halbgewachs, B.; Bäumleer, P.; Neu, C.; Görlach, A.; Schrötzlmair, F.; Krüger, A. Tissue inhibitor of metalloproteinase-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1α. Clin. Exp. Metastasis 2011, 28, 91–99. [Google Scholar]
- Stetler-Stevenson, W.G. The tumor microenvironment: Regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev 2008, 27, 57–66. [Google Scholar]
- Bourboulia, D.; Stetler-Stevenson, W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol 2010, 20, 161–168. [Google Scholar]
- Lambert, E.; Dassé, E.; Haye, B.; Petitfére, E. TIMPs as multifactorial proteins. Crit. Rev. Oncol. Hematol 2004, 49, 187–198. [Google Scholar]
- Kallio, J.P.; Hopkins-Donaldson, S.; Baker, A.H.; Kähäri, V.M. TIMP-3 promotes apoptosis in nonadherent small cell lung carcinoma cells lacking functional death receptor pathway. Int. J. Cancer 2011, 128, 991–996. [Google Scholar]
- Fernández, C.A.; Moses, M.A. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4. Biochem. Biphys. Res. Commun 2006, 345, 523–529. [Google Scholar]
- Dao Thi, M.U.; Trocmé, C.; Montmasson, M.P.; Fanchon, E.; Toussaint, B.; Tracqui, P. Investigating metalloproteinases MMP-2 and MMP-9 mechanosensitivity to feedback loops involved in the regulation of in vitro angiogenesis by endogenous mechanical stresses. Acta Biother 2012, 60, 21–40. [Google Scholar]
- Lamoreaux, W.J.; Fitzgerald, M.E.; Reiner, A.; Hasty, K.A.; Charles, S.T. Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cellsin vitro. Microvasc. Res 1998, 55, 29–42. [Google Scholar]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar]
- Lee, M.S.; Jung, J.I.; Kwon, S.H.; Lee, S.M.; Morita, K.; Her, S. TIMP-2 fusion protein with human serum albumin potentiates anti-angiogenesis-mediated inhibition of tumor growth by suppressing MMP-2 expression. PLoS One 2012, 7, e35710. [Google Scholar]
- Zeng, Z.S.; Huang, Y.; Cohen, A.M.; Guillem, J.G. Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J. Clin. Oncol 1996, 14, 3133–3140. [Google Scholar]
- Guzinska-Ustymovicz, K. MMP-9 and cathepsin B expression in tumor budding as an indicator of a more aggressive phenotype of colorectal cancer. Anticancer Res 2006, 26, 1589–1594. [Google Scholar]
- Curran, S.; Dundas, S.R.; Buxton, J.; Leeman, M.F.; Ramsay, R.; Murray, G.I. Matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin. Cancer Res 2004, 10, 8229–8234. [Google Scholar]
- Lyall, M.S.; Dundas, S.R.; Curran, S.; Murray, G.I. Profiling markers of prognosis in colorectal cancer. Clin. Cancer Res 2006, 12, 1184–1191. [Google Scholar]
- Bendardaf, R.; Buhmeida, A.; Hilska, M.; Laato, M.; Syrjänen, S.; Collan, Y.; Pyrhönen, S. MMP-9 (gelatinase B) expression is associated with disease-free survival and disease-specific survival in colorectal cancer patients. Cancer Invest 2010, 1, 38–43. [Google Scholar]
- Buhmeida, A.; Bendardaf, R.; Hilska, M.; Collan, Y.; Laato, M.; Syrynen, S.; Syrjanen, K.; Pyrhönen, S. Prognostic significance of matrix metalloproteinase-9 (MMP-9) in stage II colorectal cancer. J. Gastrointest. Cancer 2009, 40, 91–97. [Google Scholar]
- Chu, D.; Zhao, Z.; Li, Y.; Zheng, J.; Zhao, Q.; Wang, W. Matrix metalloproteinase-9 is associated with relapse and prognosis of patients with colorectal cancer. Ann. Surg. Oncol 2012, 19, 318–325. [Google Scholar]
- Langers, A.M.J.; Verspaget, H.W.; Hawinkels, L.J.A.C.; Kubben, F.J.G.M.; van Duijn, W.; van der Reijden, J.J.; Hardwick, J.C.H.; Hommes, D.W.; Sier, C.F.M. MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients. Br. J. Cancer 2012, 106, 1495–1498. [Google Scholar]
- Hilska, M.; Roberts, P.J.; Collan, Y.U.; Laine, O.; Kössi, J.; Hirsimaki, P.; Rahkonen, O.; Laato, M. Prognostic significance of matrix metalloproteinase-1, -2, -7 and -13 and tissue inhibitors of metalloproteinases -1, -2 -3 and-4 in colorectal cancer. Int. J. Cancer 2007, 121, 714–723. [Google Scholar]
- Kim, Y.W.; Ko, Y.T.; Kim, N.K.; Chung, H.C.; Min, B.S.; Lee, K.Y.; Park, J.P.; Kim, H. A comparative study of protein expression in primary colorectal cancer and synchronous hepatic metastases: The significance of matrix metalloproteinase-1 expression as a predictor of liver metastasis. Scand. J. Gastroenterol 2010, 45, 217–225. [Google Scholar]
- Möller Sörensen, N.; Wejgaard Sörensen, I.; Örnbjerg Würtz, S.; Schrohol, A.S.; Dowell, B.; Davis, G.; Jarle Christensen, I.; Nielsen, H.J.; Brünner, N. Biology and potential clinical implications of tissue inhibitor of metalloproteinase-1 in colorectal cancer treatment. Scand. J. Gastroenterol 2008, 43, 774–786. [Google Scholar]
- Gonzáles, L.; Eiró, N.; Gonzáles, L.O.; Andicoechea, A.; Barbón, E.; Garcia-Muniz, J.L.; Vizozo, F.J. Effect of the expression of matrix metalloproteases and their tissue inhibitors on survival of patients with resectable colorectal cancer. Dig. Dis. Sci 2012, 57, 2063–2071. [Google Scholar]
- Konishi, K.; Fujii, T.; Boku, N.; Kato, S.; Koba, I.; Ohtsu, A.; Tajiri, H.; Ochiai, A.; Yoshida, S. Clinicopathological differences between colonic and rectal carcinomas: Are they based on the same mechanism of carcinogenesis? Gut 1999, 45, 818–821. [Google Scholar]
- Kapitejin, E.; Liefers, G.J.; Los, L.C.; Kranenbarg, E.K.; Hermans, J.; Tollenaar, R.A.; Moriya, Y.; Velde, C.J.H.; Krieken, J.H. Mechanisms of oncogenesis in colon versus rectal cancer. J. Pathol 2001, 195, 171–178. [Google Scholar]
- Svagzdys, S.; Lesauskaite, V.; Pangonyte, D.; Saladzinskas, Z.; Tamelis, A.; Pavalkis, D. Matrix metalloproteinase-9 is a prognostic marker to predict survival of patients who underwent surgery due to rectal carcinoma. Tohoku J. Exp. Med 2011, 223, 67–73. [Google Scholar]
- Cavdar, Z.; Canda, A.E.; Terzi, C.; Sarioglu, S.; Fuzun, M.; Oktay, G. Role of gelatinases (matrix metalloproteinases 2 and 9) vascular endothelial growth factor and endostatin on clinicopathological behaviour of rectal cancer. Colorectal Dis 2011, 13, 154–160. [Google Scholar]
- Tomita, T.; Iwata, K. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in colonic adenomas-adenocarcinomas. Dig. Colon. Rectum 1996, 39, 1255–1264. [Google Scholar]
- Liabakk, N.B.; Talbot, J.; Wilkinson, K.; Balkwill, F. Matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) type IV collagenase in colorectal cancer. Cancer Res 1996, 56, 190–196. [Google Scholar]
- Takeuchi, T.; Hisanaga, M.; Nagao, M.; Ikeda, N.; Fujii, H.; Koyama, F.; Mukowaga, T.; Matsumoto, H.; Kondo, S.; Takahashi, C.; et al. The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clin. Cancer Res 2004, 10, 5572–5579. [Google Scholar]
- Gimeno-Garcia, A.Z.; Sanatana-Rodriguez, A.; Jiménez, A.; Parra-Blanco, A.; Nicolás-Pérez, D.; Puz-Cabrera, C.; Diaz-Gonazález, F.; Median, C.; Diaz-Flores, L.; Quintero, E. Up-regulation of gelatinases in the colorectal adenoma-carcinoma sequence. Eur. J. Cancer 2006, 42, 3246–3252. [Google Scholar]
- Murname, M.J.; Cai, J.; Shuja, S.; McAneny, D.; Willett, J.B. Active matrix metalloproteinase-2 activity discriminates colonic mucosa, adenomas with and without high-grade dysplasia and cancers. Hum. Pathol 2011, 42, 688–701. [Google Scholar]
- Decock, J.; Paridaens, R.; Ye, S. Genetic polymorphisms of matrix metalloproteinases in lung, breast and colorectal cancer. Clin. Genet 2008, 73, 197–211. [Google Scholar]
- Langers, A.M.; Verspaget, H.W.; Hommes, D.W.; Sier, C.F. Single-nucleotide polymorphisms of matrix metalloproteinases and their inhibitors in gastrointestinal cancer. World J. Gastrointest. Oncol 2011, 3, 79–98. [Google Scholar]
- Woo, M.; Park, K.; Nam, J.; Kim, J.C. Clinical implications of matrix metalloproteinase-1, -3, -7, -9, -12, and plasminogen activator inhibitor-1 gene polymorphisms in colorectal cancer. J. Gastroenterol. Hepatol 2007, 22, 1064–1070. [Google Scholar]
- Park, K.S.; Kim, S.J.; Kim, K.H.; Kim, J.C. Clinical characteristics of TIMP2, MMP2, and MMP9 gene polymorphisms in colorectal cancer. J. Gastroenterol. Hepatol 2011, 26, 391–397. [Google Scholar]
- Xing, L.L.; Wang, Z.N.; Jiang, L.; Zhang, Y.; Xu, Y.Y.; Li, J.; Luo, Y.; Zhang, X. Matrix metalloproteinase-9-1562C > T polymorphism may increase the risk of lymphatic metastasis of colorectal cancer. World J. Gastroenterol 2007, 13, 4626–4629. [Google Scholar]
- Elander, N.; Söderkvist, P.; Fransén, K. Matrix metalloproteinase (MMP)-1, -2, -3 and -9 promoter polymorphsis in colorectal cancer. Anticancer Res 2006, 26, 791–795. [Google Scholar]
- Xu, E.; Xia, X.; Lü, B.; Xinx, X.; Huang, Q.; Ma, Y.; Wang, W.; Lai, M. Association of matrix metalloproteinase-2 and -9 promoter polymorphisms with colorectal cancer in Chinese. Mol. Carcinog 2007, 46, 924–929. [Google Scholar]
- Langers, A.M.; Sier, C.F.; Hawinkels, L.J.; Kubben, F.J.; van Duijn, W.; van der Reijden, J.J.; Lamers, C.B.; Hommes, D.W.; Verspaget, H.W. MMP-2 geno-phenotype is prognostic for colorectal cancer survival, whereas MMP-9 is not. Br. J. Cancer 2008, 98, 1820–1823. [Google Scholar]
- McColgan, P.; Sharma, P. Polymorphisms of matrix metalloproteinases 1, 2, 3 and 9 and susceptibility to lung, breast and colorectal cancer in over 30,000 subjects. Int. J. Cancer 2009, 125, 1473–1478. [Google Scholar]
- Peng, B.; Cao, L.; Wang, W.; Xian, L.; Jiang, D.; Zhao, J.; Zhang, Z.; Wang, X.; Yu, L. Polymorphisms in the promoter regions of matrix metalloproteinases 1 and 3 and cancer risk: A meta-analysis of 50 case-control studies. Mutagenesis 2010, 25, 41–48. [Google Scholar]
- Mroczko, B.; Groblewska, M.; Okulczyk, B.; Kedra, B.; Szmitkowski, M. The diagnostic value of matrix matalloproteinase 9 (MMP-9) and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) determination in the sera of colorectal adenoma and cancer patients. Int. J. Colorectal. Dis 2010, 25, 1177–1184. [Google Scholar]
- Dragutinovic, V.V.; Radonjic, N.V.; Petrijevic, N.D.; Tatic, S.B.; Dimitrijevic, I.B.; Radovanovic, N.S.; Krivokapic, Z.V. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in preoperative serum as independent prognostic markers in patients with colorectal cancer. Mol. Cell Biochem 2011, 355, 173–178. [Google Scholar]
- Emara, M.; Cheung, P.Y.; Grabowski, K.; Sawicki, G.; Wozniak, M. Serum levels of matrix metalloproteinase-2 and -9 and conventional tumor markers (CEA and CA 19-9) in patients with colorectal and gastric cancer. Clin. Chem. Lab Med 2009, 47, 993–1000. [Google Scholar]
- Wilson, S.; Damery, S.; Stocken, D.D.; Dowswell, G.; Holder, R.; Ward, S.T.; Redman, V.; Wakelam, M.J.; James, J; Hobbs, F.D.; et al. Serum matrix metalloproteinase 9 and colorectal neoplasia: A community-based evaluation of a potential diagnostic test. Br. J. Cancer 2012, 106, 1431–1438. [Google Scholar]
- Nielsen, H.J.; Brünner, N.; Jorgensen, L.N.; Olsen, J.; Rahr, H.B.; Thygesen, K.; Hoyer, U.; Lauberg, S.; Stieber, P.; Blankenstein, M.A.; et al. Plasma TIMP-1 and CEA in detection of primary colorectal cancer: A prospective, population based study of 4509 high-risk individuals. Scand. J. Gastroenterol 2011, 46, 60–69. [Google Scholar]
- Hurst, N.G.; Stocken, D.D.; Wilson, S.; Keh, C.; Wakelam, M.J.; Ismail, T. Elevated serum matrix metalloproteinase 9 (MMP-9) concentration predicts the presence of colorectal neoplasia in symptomatic patients. Br. J. Cancer 2007, 97, 971–977. [Google Scholar]
- Wilson, S.; Raskila, T.; Ismail, T.; Stocken, D.D.; Martin, A.; Redman, V.; Wakelam, M.; Perry, I.; Hobbs, R. Establishing the added benefit of measuring MMP-9 in FOB positive patients as a part of the Wolverhampton colorectal cancer screening programme. BMC Cancer 2009, 9, 36. [Google Scholar]
- Hritz, I.; Varga, M.Z.; Juhász, M.; Miheller, P.; Tulassay, Z.; Herszényi, L. Increased serum MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-2 levels in colorectal cancer development. Gastroenterology 2011, 140, S-343. [Google Scholar]
- Nielsen, H.J.; Christensen, I.J.; Brünner, N. A novel prognostic index in colorectal cancer defined by serum carcinoembryonic antigen and plasma tissue inhibitor of metalloproteinases-1. Scand. J. Gastroenterol 2010, 45, 200–207. [Google Scholar]
- Birgisson, H.; Nielsen, H.J.; Christensen, I.J.; Glimelius, B.; Brünner, N. Preoperative TIMP-1 is an independent prognostic indicator in patients with primary colorectal cancer: A prospective validation study. Eur. J. Cancer 2010, 46, 3323–3331. [Google Scholar]
- Min, B.S.; Kim, N.K.; Jeong, H.C.; Chung, H.C. High levels of serum VEGF and TIMP-1 are correlated with colon cancer liver metastasis and intrahepatic recurrence after liver resection. Oncol. Lett 2012, 4, 123–130. [Google Scholar]
- Pasternak, B.; Matthiessen, P.; Jansson, K.; Andersson, M.; Aspenberg, P. Elevated intraperitoneal matrix meetalloproteinases-8 and -9 in patients who develop anastomotic leakage after rectal cancer surgery: A pilot study. Colorectal Dis 2010, 12, e93–e98. [Google Scholar]
- Jung, K.; Klotzek, S.; Stephan, C.; Mannello, F.; Lein, M. IMpact of blood sampling on the circulating matrix metalloproteinases 1, 2, 3, 7, 8, and 9. Clin. Chem 2008, 54, 772–773. [Google Scholar]
- Jung, K. Is serum matrix metalloproteinase 9 a useful biomarker in detection of colorectal cancer? Considering pre-analytical interference that may influence diagnostic accuracy. Br. J. Cancer 2008, 99, 553–554. [Google Scholar]
- Makowski, G.S.; Rambsy, M.L. Use of citrate to minimize neutrophil matrix metalloproteinase-9 in human plasma. Anal. Biochem 2003, 322, 283–286. [Google Scholar]
- Wu, C.Y.; Wu, M.S.; Chiang, E.P.; Chen, C.J.; Chi, N.H.; Shih, Y.T.; Chen, G.H.; Lin, J.T. Plasma matrix metalloproteinase-9 level to predict gastric cancer evolution. Clin. Cancer Res 2007, 13, 2054–2060. [Google Scholar]
- Gerlach, R.F.; Meschiari, C.A.; Marcaccini, A.M.; Palei, A.C.; Sandrim, V.C.; Cavalli, R.C.; Tanus-Santos, J.E. Positive correlations between serum and plasma matrix metalloproteinase (MMP)-2 and MMP-9 levels in disease conditions. Clin. Chem. Lab Med 2009, 47, 888–891. [Google Scholar]
- Gerlach, R.F.; Demacq, C.; Jung, K.; Tanus-Santos, J.E. Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (MMP)-9 levels in serum versus plasma. Clin. Biochem 2007, 40, 119–123. [Google Scholar]
- Sörensen, N.M.; Byström, P.; Christensen, I.J.; Berglund, A.; Nielsen, H.J.; Brünner, N.; Glimelius, B. TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving combination of irinotecan, 5-fluorouracil, and folinic acid. Clin. Cancer Res 2007, 13, 4117–4122. [Google Scholar]
- Bourboulia, D.; Jensen-Taubman, S.; Rittler, M.R.; Han, H.Y.; Chatterjee, T.; Wei, B.; Stetler-Stevenson, W.G. Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment. Am. J. Pathol 2011, 179, 2589–2600. [Google Scholar]
- Boudreau, N.; Sympson, C.J.; Werb, Z.; Bissel, M.J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 1995, 267, 891–893. [Google Scholar]
- Murphy, F.R.; Issa, R.; Zhou, X.; Ratnarajah, S.; Nagase, H.; Arthur, M.J.; Benyon, C.; Iredale, J.P. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibitor: Implications for reversibility of liver fibrosis. J. Biol. Chem 2002, 277, 11069–11076. [Google Scholar]
- Alduaymi, B.; Christensen, I.J.; Sölétormos, G.; Jess, P.; Nielsen, S.E.; Brünner, N.; Nielsen, H.J. Changes in soluble CEA and TIMP-1 levels during adjuvant chemotherapy for stage III colon cancer. Anticancer Res 2010, 30, 233–237. [Google Scholar]
- Bozec, L.; Bierling, P.; Fromont, P.; Lévi, F.; Debat, P.; Cvitkovic, E.; Misset, J.L. Irinotecan-induced immune thrombocytopenia. Ann. Oncol 1998, 9, 453–455. [Google Scholar]
- Sörbye, H.; Bruserud, Y.; Dahl, O. Oxaliplatin-induced haematological emergency with an immediate severe thrombocytopaenia and haemolysis. Acta Oncol 2001, 40, 882–883. [Google Scholar]
- Curtis, B.R.; Kaliszewszki, J.; Marques, M.B.; Saif, M.W.; Nabelle, L.; Blank, J.; McFarland, J.G.; Aster, R.H. Immune-mediated thrombocytopaenia resulting from sensitivity to oxaliplatin. Am. J. Hematol 2006, 81, 193–198. [Google Scholar]
- Bautista, M.A.; Stevens, W.T.; Chen, C.S.; Curtis, B.R.; Aster, R.H.; Hsueh, C.T. Hypersensitivity reaction and acute immune-mediated thrombocytopaenia from oxaliplatin: Two case reports and a review of the literature. J. Hematol. Oncol 2010, 3, 12. [Google Scholar]
- Ramer, R.; Eichele, K.; Hinz, B. Upregulation of tissue inhibitor matrix metalloproteionases-1 confers the anti-invasive action of cisplatin on human cancer cells. Oncogenes 2007, 26, 5822–5827. [Google Scholar]
- Ramer, R.; Hinz, B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinase-1. J. Natl. Cancer Inst 2008, 100, 59–69. [Google Scholar]
- Cattaneo, M.; Fontanella, E.; Canton, C.; Delia, D.; Biunno, I. SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia 2005, 7, 1030–1038. [Google Scholar]
- Park, H.J.; Lee, H.J.; Min, H.Y.; Chung, H.J.; Suh, M.E.; Park-Choo, H.Y.; Kim, C.; Kim, H.J.; Seo, E.K.; Lee, S.K. Inhibitory effect of a benz(f)indole-4,9-dione analog on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells. Eur. J. Pharmacol 2005, 527, 31–36. [Google Scholar]
- Park, M.J.; Lee, H.J.; Park, C.M.; Lee, H.C.; Woo, S.H.; Jin, H.O.; Han, C.J.; An, S.; Lee, S.H.; Chung, H.Y.; et al. Arsenic trioxide (As2O3) inhibits invasion of HT1080 human fibrosarcoma cells: Role of nuclear factor-κ,B and reactive oxygen species. J. Cell Biochem 2005, 95, 955–969. [Google Scholar]
- Watanabe, T.; Kobunai, T.; Yamamoto, Y.; Matsuda, K.; Ishihara, S.; Nozawa, K.; Iinuma, H.; Ikeuchi, H. Gene expression of vascular endothelial growth factor A, thymidylate synthase, and tissue inhibitor of metalloproteinase 3 in prediction of response to bevacizumab treatment in colorectal cancer. Dis. Colon. Rectum 2011, 54, 1026–1035. [Google Scholar]
- Manello, F.; Tonti, G.; Pap, S. Matrix metalloproteinase inhibitors as targets of anticancer therapeutics. Curr. Cancer Drugs Targets 2005, 5, 285–298. [Google Scholar]
- Manello, F. Natural bio-drugs as matrix metalloproteinase inhibitors: New perspectives on the horizon? Recent Pat. Anticancer Drug Discover 2006, 1, 91–103. [Google Scholar]
- Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 2011, 278, 16–27. [Google Scholar]
- Tu, G.; Xu, W.; Huang, H.; Li, S. Progress in the development of matrix metalloproteinase inhibitors. Curr. Med. Chem 2008, 15, 1388–1395. [Google Scholar]
- Zucker, S.; Cao, J.; Chen, W.T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 2000, 19, 6642–6650. [Google Scholar]
- Li, X.; Wu, J.F. Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs). Recent Pat. Anticancer Drug Discov 2010, 5, 109–141. [Google Scholar]
- López-Otín, C.; Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 2007, 7, 800–809. [Google Scholar]
- Zucker, S.; Cao, J. Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: Ready for prime time? Cancer Biol. Ther 2009, 8, 2371–2373. [Google Scholar]
- Dormán, G.; Cseh, S.; Hajdú, I.; Barna, L.; Kónya, D.; Kupai, K.; Kovács, L.; Ferdinandy, P. Matric metalloproteinase inhibitors: A critical appraisal of design principles and proposed therapeutic utility. Drugs 2010, 70, 949–964. [Google Scholar]
- Fingleton, B. MMPs as therapeutic targets-still a viable option? Semin. Cell Dev. Biol 2008, 19, 61–68. [Google Scholar]
- Peterson, J.T. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc. Res 2006, 698, 677–687. [Google Scholar]
- King, J.; Zhao, J.; Clingan, P.; Morris, D. Randomised double blind placebo control study of adjuvant treatment with the metalloproteinase inhibitor, Marimastat in patients with inoperable colorectal hepatic metastases: Significant survival advantage in patients with musculoskeletal side-effects. Anticancer Res 2003, 23, 639–645. [Google Scholar]
- Swarnakar, S.; Paul, S.; Singh, L.P.; Reiter, R.J. Matrix metalloproteinases in health and disease: Regulation by melatonin. J. Pineal. Res 2011, 50, 8–20. [Google Scholar]
- Hadler-Olsen, E.; Fadnes, B.; Sylte, I.; UhlinHansen, L.; Winberg, J.O. Regulation of matrix metalloproteinase activity in health and disease. FEBS J 2011, 278, 28–45. [Google Scholar]
- Bauvois, B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta 2012, 1825, 29–36. [Google Scholar]
- Overall, C.M.; Kleifield, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 2006, 6, 226–239. [Google Scholar]
- Sela-Passwell, N.; Rosenblum, G.; Shohan, T.; Sagi, I. Structural and functional bases for allosteric control of MMP activities: Can it pave the path for selective inhibition? Biochim. Biophys. Acta 2010, 1803, 29–38. [Google Scholar]
- Kapral, M.; Wawszczyk, J.; Jurzak, M.; Hollek, A.; Weglarz, L. The effect of inositol hexaphosphate on the expression of selected metalloproteinases and their tissue inhibitors in IL-1β-stimulated colon cancer cells. Int. J. Colorectal Dis 2012. [Google Scholar] [CrossRef]
- Wang, J.; Ding, W.; Sun, B.; Jing, R.; Huang, H.; Shi, G.; Wang, H. Targeting of colorectal cancer growth, metastasis, and anti-apoptosis in BALB/c nude mice via APRIL siRNA. Mol. Cell Biochem 2012, 363, 1–10. [Google Scholar]
- Hsu, H.H.; Liu, C.J.; Shen, C.Y.; Chen, Y.J.; Chen, L.M.; Kuo, W.H.; Lin, Y.M.; Chen, R.J.; Tsai, C.H.; Tsai, F.J.; et al. p38α MAPK mediates 17β-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells. J. Cell Physiol 2012, 227, 3648–3660. [Google Scholar]
- Saitou, T.; Itano, K.; Hoshino, D.; Koshikawa, N.; Seiki, M.; Ichikawa, K.; Suzuki, T. Control and inhibition analysis of complex formation processes. Theor. Biol. Model 2012, 9, 33. [Google Scholar]
- Konstantinopoulos, P.A.; Karamouzis, M.V.; Papatsoris, A.G.; Papavassiliou, A.G. Matrix metalloproteinase inhibitors as anticancer agents. Int. J. Biochem. Cell Biol 2008, 40, 1156–1168. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Herszényi, L.; Hritz, I.; Lakatos, G.; Varga, M.Z.; Tulassay, Z. The Behavior of Matrix Metalloproteinases and Their Inhibitors in Colorectal Cancer. Int. J. Mol. Sci. 2012, 13, 13240-13263. https://doi.org/10.3390/ijms131013240
Herszényi L, Hritz I, Lakatos G, Varga MZ, Tulassay Z. The Behavior of Matrix Metalloproteinases and Their Inhibitors in Colorectal Cancer. International Journal of Molecular Sciences. 2012; 13(10):13240-13263. https://doi.org/10.3390/ijms131013240
Chicago/Turabian StyleHerszényi, László, István Hritz, Gábor Lakatos, Mária Zsófia Varga, and Zsolt Tulassay. 2012. "The Behavior of Matrix Metalloproteinases and Their Inhibitors in Colorectal Cancer" International Journal of Molecular Sciences 13, no. 10: 13240-13263. https://doi.org/10.3390/ijms131013240
APA StyleHerszényi, L., Hritz, I., Lakatos, G., Varga, M. Z., & Tulassay, Z. (2012). The Behavior of Matrix Metalloproteinases and Their Inhibitors in Colorectal Cancer. International Journal of Molecular Sciences, 13(10), 13240-13263. https://doi.org/10.3390/ijms131013240