Bacterial Exopolysaccharides: Functionality and Prospects
Abstract
:1. Introduction
2. Morphologic and Functional Properties of Bacterial Exopolysaccharide
2.1. Bacterial Capsule
2.2. Exopolysaccharides
2.3. Important Polysaccharides from Marine Bacteria
3. Exopolysaccharides in Bacterial Biofilm
4. Bacterial Exopolysaccharides Antigen
5. Applications of Bacterial Exopolysaccharides
6. Future Prospects for Bacterial Exopolysaccharides
7. Concluding Remarks
Acknowledgements
References
- Anderson, A.J.; Haywood, G.W.; Dawes, E.A. Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int. J. Biol. Macromol 1990, 12, 102–105. [Google Scholar]
- Rehm, B.H.A.; Valla, S. Bacterial alginates: Biosynthesis and applications. Appl. Microbiol. Biotechnol 1997, 48, 281–288. [Google Scholar]
- Cerning, J. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 1995, 75, 463–472. [Google Scholar]
- Rehm, B.H.A. Bacterial polymers: Biosynthesis, modifications and applications. Nat. Rev. Microbiol 2010, 8, 578–592. [Google Scholar]
- Sutherland, I.W. Bacterial Exopolysaccharides. In Advances in Microbial Physiology; Rose, A.H., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Ruas-Madiedo, P.; Hugenholtz, J.; Zoon, P. An overview of the functionality of exopolysaccharides produced by lactic acidbacteria. Int. Dairy J 2002, 12, 163–171. [Google Scholar]
- Gerba, C.P.; Bitton, G. Microbial Pollutants: Their Survival and Transport Pattern to Groundwater. In Groundwater Pollution Microbiology; Bitton, G., Gerba, C.P., Eds.; Wiley Interscience: New York, NY, USA, 1984; pp. 65–88. [Google Scholar]
- Nichols, C.M.; Lardière, S.G.; Bowman, J.P.; Nichols, P.D.; Gibson, J.A.E.; Guézennec, J. Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb. Ecol 2005, 49, 578–589. [Google Scholar]
- Junge, K.; Eicken, H.; Deming, J.W. Bacterial activity at −2 to −20 °C in Arctic wintertime sea ice. Appl. Environ. Microbiol 2004, 70, 550–557. [Google Scholar]
- Dogsa, I.; Kriechbaum, M.; Stopar, D.; Laggner, P. Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophys. J 2005, 89, 2711–2720. [Google Scholar]
- Decho, A.W.; Norman, R.S.; Visscher, P.T. Quorum sensing in natural environments: Emerging views from microbial mats. Trends Microbiol 2010, 18, 73–80. [Google Scholar]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol 2010, 8, 623–633. [Google Scholar]
- Sutherland, I.W. Novel and established applications of microbial polysaccharides. Tibtech 1998, 16, 41–46. [Google Scholar]
- Otero, A.; Vincenzini, M. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J. Biotechnol 2003, 102, 143–152. [Google Scholar]
- Linker, A.; Jones, R.S. A new polysaccharide resembling alginic acid isolated from pseudomonads. J. Biol. Chem 1966, 241, 3845–3851. [Google Scholar]
- Pindar, D.F.; Bucke, C. The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem. J 1975, 152, 617–622. [Google Scholar]
- Schleifer, K.H.; Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 1972, 36, 407–477. [Google Scholar]
- Simelyte, E.; Rimpiläinen, M.; Zhang, X.; Toivanen, P. Role of peptidoglycan subtypes in the pathogenesis of bacterial cell wall arthritis. Ann. Rheum. Dis 2003, 62, 976–982. [Google Scholar]
- Ghuysen, J. Use of bacteriolytic ezymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev 1968, 32, 425–464. [Google Scholar]
- Bugg, T.D.; Brandish, P.E. From peptidoglycan to glycoproteins: Common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol. Lett 1994, 119, 255–262. [Google Scholar]
- Stewart-Tull, D.E.S. The immunological activities of bacterial peptidoglycans. Annu. Rev. Microbiol 1980, 34, 311–340. [Google Scholar]
- Martinez-Martinez, L.; Timmerman, C.; Fleer, A.; Verhoef, J. Chemiluminescence of human polymorphonuclear leukocytes after stimulation with whole cells and cell-wall components of Staphylococcus epidermidis. J. Med. Microbiol 1993, 39, 196–203. [Google Scholar]
- Heumann, D.; Barras, C.; Severin, A.; Glauser, M.P.; Tomasz, A. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun 1994, 62, 2715–2721. [Google Scholar]
- Schembri, M.A.; Dalsgaard, D.; Klemm, P. Capsule shields the function of short bacterial adhesins. J. Bacteriol 2004, 186, 1249–1257. [Google Scholar]
- Esko, J.D. Bacterial Polysaccharides. In Essentials of Glycomics, 2nd ed; Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., Marth, J., Eds.; Cold Spring Laboratory Press: Cold Spring Harbor, NY, USA, 1999. [Google Scholar]
- Matsui, M.S.; Muizzuddin, N.; Arad, S.; Marenus, K. Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl. Biochem. Biotechnol 2003, 104, 13–22. [Google Scholar]
- Lee, J.B.; Hayashi, T.; Hayashi, K.; Sankawa, U. Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray ionization mass spectrometry. J. Nat. Prod 2000, 63, 136–138. [Google Scholar]
- De Morais, M.G.; Stillings, C.; Dersch, R.; Rudisile, M.; Pranke, P.; Costa, J.A.V.; Wendorff, J. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour. Technol 2010, 101, 2872–2876. [Google Scholar]
- Daegelen, P.; Studier, F.W.; Lenski, R.E.; Kim, J.F. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21 (DE3). J. Mol. Biol 2009, 394, 634–643. [Google Scholar]
- De Vuyst, L.; Degeest, B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev 1999, 23, 153–177. [Google Scholar]
- Cerning, J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev 1990, 87, 113–130. [Google Scholar]
- Looijesteijn, P.J.; van Casteren, W.H.M.; Tuinier, R.; Doeswijk-Voragen, C.H.L.; Hugenholtz, J. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. J. Appl. Microbiol 2000, 89, 116–122. [Google Scholar]
- Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol 2007, 189, 7945–7947. [Google Scholar]
- Marvasi, M.; Visscher, P.T.; Martinez, L.C. Exopolymeric substances (EPS) from Bacillus subtilis: Polymers and genes encoding their synthesis. FEMS Microbiol. Lett 2010, 313, 1–9. [Google Scholar]
- Watnick, P.; Kolter, R. Biofilm, city of microbes. J. Bacteriol 2000, 182, 2675–2679. [Google Scholar]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar]
- Flemming, H.C.; Wingender, J. Extracellular Polymeric Substances: Structure, Ecological Functions, Technical Relevance. In Encyclopedia of Environmental Microbiology; Bitton, G., Ed.; Wiley: New York, NY, USA, 2002; Volume 3, pp. 1223–1231. [Google Scholar]
- Silver, R.P.; Aaronson, W.; Vann, W.F. The K1 capsular polysaccharide of Escherichia coli. Rev. Infect. Dis 1998, 10, 282–286. [Google Scholar]
- DeAngelis, P.L.; White, C.L. Identification and molecular cloning of a heparosan synthase from Pasteurella multocida Type D. J. Biol. Chem 2002, 277, 7209–7213. [Google Scholar]
- Roberts, I.S. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol 1996, 50, 285–315. [Google Scholar]
- DeAngelis, P.L. Glycosaminoglycan polysaccharide biosynthesis and production: Today and tomorrow. Appl. Microbiol. Biotechnol 2012, 94, 295–305. [Google Scholar]
- Esko, J.D.; Lindahl, U. Molecular diversity of heparan sulphate. J. Clin. Invest 2001, 108, 169–173. [Google Scholar]
- Alban, S.; Franz, S.G. Anticoagulant sulphated polysaccharides: Part 1. Synthesis and structure—Activity relationship of new pullulan sulphates. Carbohydr. Polym 2002, 47, 267–276. [Google Scholar]
- Rosalam, S.; England, R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme Microb. Technol 2006, 39, 197–207. [Google Scholar]
- Yoshida, T.; Tanner, R.D. Bioproducts and Bioprocess; Springer-Verlag: Heidelberg, Berlin, Germany, 1993; Volume 2. [Google Scholar]
- Salminen, S.; Bouley, C.; Boutron-Ruault, M.C.; Cummings, J.; Frank, A.; Gibson, G.; Isolauri, E.; Moreau, M.C.; Roberfroid, M.; Rowland, I. Functional food science and gastrointestinal physiology and function. Br. J. Nutr 1998, 80, 147–171. [Google Scholar]
- Staaf, M.; Yang, Z.; Huttunen, E.; Widmalm, G. Structural elucidation of the viscous exopolysaccharide produced by Lactobacillus helveticus Lb161. Carbohydr. Res 2000, 326, 113–119. [Google Scholar]
- Faber, E.J.; Kamerling, J.P.; Vliegenthart, J.F. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291. Carbohydr. Res 2001, 331, 183–194. [Google Scholar]
- Martin, S.A.; Karnovsky, M.L.; Krueger, J.M.; Pappenheimer, J.R.; Biemann, K. Peptidoglycans a promotors of slow-wave sleep. I. Structure of the sleep-promoting factor isolated from human urine. J. Biol. Chem 1984, 259, 12659–12662. [Google Scholar]
- Zhang, Z.Q.; Lin, B.; Xia, S.Q.; Wang, X.J.; Yang, A.M. Production and application of a bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source. J. Environ. Sci 2007, 19, 660–666. [Google Scholar]
- Rudén, C. Acrylamide and cancer risk-expert risk assessments and the public debate. Food Chem. Toxicol 2004, 42, 335–349. [Google Scholar]
- Cosa, S.; Mabinya, L.V.; Olaniran, O.A.; Okoh, O.O.; Bernard, K.; Deyzel, S.; Okoh, A.I. Bioflocculant production by Virgibacillus sp. Rob isolated from the bottom sediment of Algoa Bay in the Eastern Cape, South Africa. Molecules 2011, 16, 2431–2442. [Google Scholar]
- Piyo, N.; Cosa, S.; Mabinya, V.L.; Okoh, A.I. Assessment of bioflocculant production by Bacillus sp. Gilbert, a marine bacterium isolated from the bottom sediment of Algoa Bay. Mar. Drugs 2011, 9, 1232–1242. [Google Scholar]
- Mabinya, V.L.; Cosa, S.; Nwodo, U.U.; Okoh, A.I. Studies on bioflocculant production by Arthrobacter sp. Raats, a freshwater bacteria isolated from Tyume River, South Africa. Int. J. Mol. Sci 2012, 13, 1054–1065. [Google Scholar]
Process | Functional Relevance of Exopolysaccharides to Biofilms |
---|---|
Adhesion | Exopolysaccharides makes provision for the initial steps in the colonization of surfaces (abiotic and biotic) and long-term attachment of biofilms. |
Bacterial cell aggregation | The bridging between cells is enabled by exopolysaccharides, thus temporarily immobilizing bacterial population thus, the subsequent development of high cell densities and cell–cell recognition. |
Water retention | Hydrophilic exopolysaccharides have high water retention ability thus maintaining a hydrated microenvironment around biofilm and this leading to the survival of desiccation in water-deficient environments. |
Cohesion of biofilms | Neutral and charged exopolysaccharides forms a hydrated polymer network (the biofilm matrix), mediating the mechanical stability of biofilms (often in conjunction with multivalent cations), determining biofilm architecture, as well as allowing cell-cell communication. |
Nutrient source | Exopolysaccharides serves as source of carbon, nitrogen and phosphorus containing compounds for utilization by the biofilm community. |
Protective barrier | Exopolysaccharides confers resistance to non specific and specific host defences during infection, confers tolerance to various antimicrobial agents, protects cyanobacterial nitrogenase from the harmful effects of oxygen and offers protection against some phagocytic protozoa. |
Sorption of organic Compounds and inorganic ions | Charged and hydrophobic exopolysaccharides mediates the accumulation of nutrients from the environment, sorption of xenobiotics and recalcitrant materials. They promote polysaccharide gel formation resulting in ion exchange, mineral formation and the accumulation of toxic metal ions (thus collectively contributing to environmental detoxification). |
Binding of enzymes | Non glycolytic extracellular enzyme interaction with exopolysaccharides leads to retention stabilization and accumulation. |
Export of cell components | Lipopolysaccharides (isoprenoid glycosyl carrier lipids), which lipo-glyco conjugate, mediates the releases cellular material as a result of metabolic turnover. |
Sink for excess energy | Exopolysaccharides stores excess carbon under unbalanced carbon to nitrogen ratios. |
Human Disease | Biofilm Bacteria |
---|---|
Cystic fibrosis pneumonia | P. aeruginosa and Burkholderia cepacia |
Otitis media | Haemophilus influenzae (Non-typable strains) |
Periodontitis | Gram negative anaerobic oral bacteria |
Dental caries | Streptococcus spp. and other acidogenic Gram positive cocci |
Musculoskeletal infections | Staphylococci and other Gram-positive cocci |
Necrotizing fasciitis | Group A streptococci |
Bacterial prostatitis | E. coli and other Gram-negative bacteria |
Urinary catheter cystitis | E. coli and other Gram-negative rods |
Biliary tract infection | E. coli and other enteric bacteria |
Meloidosis | Pseudomonas pseudomallei |
Bacteria Species | Pathogenic Serotypes | Capsular Antigen Nomenclature | Associated Clinical Disease |
---|---|---|---|
E. coli | >80 | K-antigen | Diarrhoea, Neonatal meningitis and Urinary tract infection. |
H. influenzae | >6 | (a–f) | Meningitis, Epiglottitis, Septicaemia and Pneumonia. |
N. meningitidis | >10 | K-antigen | Meningitis, Meningococcemia. |
K. pneumonia | >80 | K-antigen | Pneumonia, Bacteremia, Thrombophlebitis, Urinary tract infection (UTI), Cholecystitis, Diarrhea, Upper respiratory tract infection, Wound infection, Osteomyelitis, Meningitis and Pyogenic liver abscess. |
Streptococcus pneumoniae | >96 | CPS | Otitis media, Bronchopneumonia and Meningitis. |
Staphylococcus aureus | >11 | CP | Furuncles and carbuncles, Staphylococcal scalded skin syndrome, Septic arthritis, Staphylococcal endocarditis and Atopic dermatitis. |
Bacteria Exopolysaccharide | Polysaccharide Component | Molecular Weight (Da) | Properties | Applications | Bacteria strains |
---|---|---|---|---|---|
Dextran | Glucose | 106–109 | Non-ionic, good stability Newtonian, fluid behavior | Foods, Pharmaceutical industry (Blood volume expander) and Chromatographic media | L. mesenteriodes |
Alginate | Guluronic acid and mannuronic acid | (0.3–1.3) × 106 | Gelling capacity, film forming | Food hydrocolloid and medicine (surgical dressings, wound management and controlled drug release) | P. aeruginosa and A. vinelandii |
Xanthan | Glucose, mannose and glucuronic acid | (2.0–50) × 106 | High viscosity, Stable over a wide temperature, pH and salt concentrations ranges | Foods, petroleum industry, pharmaceuticals, cosmetics and personal care products | Xanthomonas spp. |
Curdlan | Glucose | 5 × 104–2 × 106 | Gel-forming ability, water insolubility, edible and non-toxic has biological activity | Foods, pharmaceutical industry, heavy metal removal and concrete additive | Rhizobium meliloti and Agrobacterium radiobacter |
Cellulose | Glucose | ~106 | Not soluble in most solvents and high tensile strength | Foods (indigestible fiber), biomedical (wound healing, tissue engineered blood vessels) and audio speaker diaphragms | Acetobacter spp. |
Succinoglycan | Glucose and galactose | 5 × 103–1 × 106 | High viscosity and acid stability | Food and oil recovery | Alcaligenes faecalis var. myxogenes |
Glucuronan | Glucuronic acid | 6 × 104–6 × 105 | Gelling and thickening capacity | Food and cosmetics products | Sinorhizobium meliloti M5N1CS and Gluconacetobacter hansenii |
Colanic acid | Fucose, glucose, glucoronate, and galactose | 2 × 104–6 × 105 | Gelling capacity | Cosmetics and personal care products | E. coli, Shigella spp., Salmonella spp. and Enterobacter spp. |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nwodo, U.U.; Green, E.; Okoh, A.I. Bacterial Exopolysaccharides: Functionality and Prospects. Int. J. Mol. Sci. 2012, 13, 14002-14015. https://doi.org/10.3390/ijms131114002
Nwodo UU, Green E, Okoh AI. Bacterial Exopolysaccharides: Functionality and Prospects. International Journal of Molecular Sciences. 2012; 13(11):14002-14015. https://doi.org/10.3390/ijms131114002
Chicago/Turabian StyleNwodo, Uchechukwu U., Ezekiel Green, and Anthony I. Okoh. 2012. "Bacterial Exopolysaccharides: Functionality and Prospects" International Journal of Molecular Sciences 13, no. 11: 14002-14015. https://doi.org/10.3390/ijms131114002
APA StyleNwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial Exopolysaccharides: Functionality and Prospects. International Journal of Molecular Sciences, 13(11), 14002-14015. https://doi.org/10.3390/ijms131114002