Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction, Purification and Physicochemical Properties of Polysaccharide Fractions
2.2. Analysis of Monosaccharide Composition by GC-MS
2.2.1. Validation of the Method Developed
2.2.2. Application to the Analysis of Three Polysaccharide Fractions
2.3. Antioxidant Activity
2.3.1. Scavenging Effects on ABTS Radicals
2.3.2. Scavenging Effects on Hydroxyl Radicals
2.3.3. Scavenging Effects on Superoxide Radicals
3. Experimental Section
3.1. Materials and Reagents
3.2. Extraction and Purification of Pine Cone Polysaccharide
3.3. Molecular Weight Determination
3.4. Analysis of Monosaccharide Composition by GC-MS
3.4.1. Hydrolysis of the Pine cone Polysaccharide Fraction
3.4.2. Derivatization
3.4.3. GC-MS Analysis
3.5. Neutral Sugar, Uronic Acid and Amino Acid Analysis
3.6. FT-IR
3.7. Antioxidant Activity
3.7.1. ABTS Radical Scavenging Assay
3.7.2. Hydroxyl Radical Scavenging Assay
3.7.3. Superoxide Radical Scavenging Assay
4. Conclusions
Acknowledgments
References
- Wang, X.R.; Szmidt, A.E. Chloroplast DNA-based phylogeny of Asian Pinus species (Pinaceae). Plant Syst. Evol 1993, 188, 197–211. [Google Scholar]
- Kurose, K.; Okamura, D.; Yatagai, M. Composition of the essential oils from the leaves of nine Pinus species and the cones of three of Pinus species. Flavour Frag. J 2007, 22, 10–20. [Google Scholar]
- Yu, L.M.; Zhao, M.M.; Wang, J.S.; Cui, C.; Yang, B.; Jiang, Y.M.; Zhao, Q.Z. Antioxidant, immunomodulatory and anti-breast cancer activities of phenolic extract from pine (Pinus massoniana Lamb) bark. Innov. Food Sci. Emerg 2008, 9, 122–128. [Google Scholar]
- Wu, D.C.; Li, S.; Yang, D.Q.; Cui, Y.Y. Effects of Pinus massoniana bark extract on the adhesion and migration capabilities of HeLa cells. Fitoterapia 2011, 82, 1202–1205. [Google Scholar]
- Chen, Y.H.; Hsieh, P.C.; Mau, J.L.; Sheu, S.C. Antioxidant properties and mutagenicity of Pinus morrisonicola and its vinegar preparation. LWT Food Sci. Technol 2011, 44, 1477–1481. [Google Scholar]
- Sakagami, H.; Kushida, T.; Oizumi, T.; Nakashima, H.; Makino, T. Distribution of lignin-carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol. Therapeut 2010, 128, 91–105. [Google Scholar]
- Kilic, A.; Hafizoglu, H.; Tumen, I.; Donmez, I.E.; Sivrikaya, H.; Sundberg, A.; Holmbom, B. Polysaccharides in cones of eleven coniferous species growing in Turkey. Wood Sci. Technol 2010, 44, 523–529. [Google Scholar]
- Micales, J.A.; Han, J.S.; Davis, J.L.; Joung, R.A. Chemical composition and fungitoxic activities of pine cone extractives. Biodeterior. Res 1994, 4, 317–332. [Google Scholar]
- Black, G.E.; Fox, A. Recent progress in the analysis of sugar monomers from complex matrices using chromatography in conjunction with mass spectrometry or stand-alone tandem mass spectrometry. J. Chromatogr. A 1996, 720, 51–60. [Google Scholar]
- Ye, F.T.; Yan, X.J.; Xu, J.L.; Chen, H.M. Determination of aldoses and ketoses by GC-MS using differential derivatisation. Phytochem. Anal. 2006, 17, 379–383. [Google Scholar]
- Ruiz-Matute, A.I.; Hernandez-Hernandez, O.; Rodriguez-Sanchez, S.; Sanz, M.L.; Martinez-Castro, I. Derivatization of carbohydrates for GC and GC-MS analyses. J. Chromatogr. B 2011, 879, 1226–1240. [Google Scholar]
- Rumpel, C.; Dignac, M.F. Gas chromatographic analysis of monosaccharides in a forest soil profile: Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation. Soil Biol. Biochem 2006, 38, 1478–1481. [Google Scholar]
- Fox, A.; Rosario, R.M.T.; Larsson, L. Monitoring of bacterial sugars and hydroxyl fatty acids in dust from air conditioners by gas chromatography-mass spectrometry. Appl. Environ. Microbiol 1993, 59, 4354–4360. [Google Scholar]
- Fox, K.F.; Wunschel, D.S.; Fox, A.; Stewart, G.C. Complementarity of GC-MS and LC-MS analyses for determination of carbohydrate profiles of vegetative cells and spores of bacilli. J. Microbiol. Meth 1998, 33, 1–11. [Google Scholar]
- Fox, A. Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry and their trace detection in complex matrices by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 1999, 843, 287–300. [Google Scholar]
- Crowell, E.P.; Burnett, B.B. Determination of the carbohydrate composition of wood pulps by gas chromatography of the alditol acetates. Anal. Chem 1967, 39, 121–124. [Google Scholar]
- Yang, X.; Ding, Y.; Sun, Z.H.; Zhang, D.M. Studies on chemical constituents of Pinus armandii. Acta Pharmacol. Sin 2005, 40, 435–437. [Google Scholar]
- Yang, X.; Zhang, H.; Zhang, Y.C.; Ma, Y.; Wang, J. Two new diterpenoid acids from Pinus koraiensis. Fitoterapia 2008, 79, 179–181. [Google Scholar]
- Yang, X.; Zhang, Y.C.; Zhang, H.; Dong, A.J.; Zhao, H.T.; Xu, D.C.; Ma, Y.; Wang, J. Diterpenoid acids from Pinus koraiensis. Chem. Nat. Compd 2010, 4, 227–229. [Google Scholar]
- Yang, X.; Zhao, H.T.; Wang, J.; Meng, Q.; Zhang, H.; Yao, L.; Zhang, Y.C.; Dong, A.J.; Ma, Y.; Wang, Z.Y.; et al. Chemical composition and antioxidant activity of essential oil of pine cones of Pinus armandii from the Southwest region of China. J. Med. Plants Res 2010, 4, 1668–1672. [Google Scholar]
- Yang, X.; Zhang, H.; Zhang, Y.C.; Zhao, H.T.; Dong, A.J.; Xu, D.C.; Yang, L.; Ma, Y.; Wang, J. Analysis of the essential oil of pinecones of two pine species from China. J. Essent. Oil Res 2010, 22, 446–448. [Google Scholar]
- Luo, A.X.; He, X.J.; Zhou, S.D.; Fan, Y.J.; Luo, A.S.; Chun, Z. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohyd. Polym 2010, 79, 1014–1019. [Google Scholar]
- Yuan, J.F.; Zhang, Z.Q.; Fan, Z.C.; Yang, J.X. Antioxidant effects and cytotoxicity of three purified polysaccharides from Ligusticum chuanxiong Hort. Carbohyd. Polym 2008, 74, 822–827. [Google Scholar]
- Chen, R.Z.; Liu, Z.Q.; Zhao, J.M.; Chen, R.P.; Meng, F.L.; Zhang, M.; Ge, W.C. Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosu. Food Chem 2011, 127, 434–440. [Google Scholar]
- Macdonald, J.; Galley, H.F.; Webster, N.R. Oxidative stress and gene expression in sepsis. Brit. J. Anaesth 2003, 90, 221–232. [Google Scholar]
- Sun, Z.W.; Zhang, L.X.; Zhang, B.; Niu, T.G. Structural characterization and antioxidant properties of polysaccharides from the fruiting bodies of Russula virescens. Food Chem 2010, 118, 675–680. [Google Scholar]
- Lin, C.L.; Wang, C.C.; Chang, S.C.; Stephen Inbaraj, B.; Chen, B.H. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int. J. Biol. Macromol 2009, 45, 146–151. [Google Scholar]
- Lo, T.C.T.; Kang, M.W.; Wang, B.C.; Chang, C.A. Glycosyl linkage characteristics and classifications of exo-polysaccharides of some regionally different strains of Lentinula edodes by amplified fragment length polymorphism assay and cluster analysis. Anal. Chim. Acta 2007, 592, 146–153. [Google Scholar]
- Lo, T.C.T.; Chang, C.A.; Chiu, K.H.; Tsay, P.K.; Jen, J.F. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohyd. Polym 2011, 86, 320–327. [Google Scholar]
- Li, J.W.; Liu, Y.F.; Fan, L.P.; Ai, L.Z.; Shan, L. Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus Jujuba cv. Jinsixiaozao. Carbohyd. Polym 2011, 84, 390–394. [Google Scholar]
- Sun, Y.X.; Liu, J.C.; Kennedy, J.F. Purification, composition analysis and antioxidant activity of different polysaccharide conjugates (APPs) from the fruiting bodies of Auricularia polytricha. Carbohyd. Polym 2010, 82, 299–304. [Google Scholar]
- Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant activity of dulse (Palmaria palmate) extract evaluated in vitro. Food Chem 2005, 91, 485–494. [Google Scholar]
- Zha, X.Q.; Wang, J.H.; Yang, X.F.; Liang, H.; Zhao, L.L.; Bao, S.H.; Luo, J.P.; Xu, Y.Y.; Zhou, B.B. Antioxidant properties of polysaccharide fractions with different molecular mass extracted with hot-water from rice bran. Carbohyd. Polym 2009, 78, 570–575. [Google Scholar]
- Chen, Y.; Xie, M.Y.; Nie, S.P.; Li, C.; Wang, Y.X. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 2008, 107, 231–241. [Google Scholar]
- Ku, C.S.; Jang, J.P.; Mun, S.P. Exploitation of polyphenol-rich pine barks for potent antioxidant activity. J. Wood Sci 2007, 53, 524–528. [Google Scholar]
- Bonvehi, J.S.; Coll, F.V. Evaluation of bitterness and astringency of polyphenolic compounds in cocoa powder. Food Chem 1997, 60, 365–370. [Google Scholar]
- Sun, Y.; Tang, J.; Gu, X.; Li, D. Water-soluble polysaccharides from Angelica sinensis (Oliv) Diels: Preparation, characterization and bioactivity. Int. J. Biol. Macromol 2005, 36, 283–289. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem 1956, 28, 350–356. [Google Scholar]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem 1973, 54, 484–489. [Google Scholar]
- Li, H.M.; Ma, Y.; Li, Q.M.; Wang, J.Q.; Cheng, J.J.; Xue, J.; Shi, J. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk. Int. J. Mol. Sci 2011, 12, 4885–4895. [Google Scholar]
- Kumar, C.G.; Joo, H.S.; Choi, J.W.; Koo, Y.M.; Chang, C.S. Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb. Technol 2004, 34, 673–681. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Bio. Med 1999, 26, 1231–1237. [Google Scholar]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar]
- Wang, B.S.; Li, B.S.; Zeng, Q.X.; Liu, H.X. Antioxidant and free radical scavenging activities of pigments extracted from molasses alcohol wastewater. Food Chem 2008, 107, 1198–1204. [Google Scholar]
Component | Polysaccharide | ||
---|---|---|---|
PKP | PSP | PAP | |
Neutral sugar (%) | 41.33 | 33 | 42 |
Uronic acid (%) | 51.52 | 37.13 | 56.32 |
Molecular weight (kDa) | 4186.0 | 4239.2 | 4166.1 |
Amino acid component (%) b | |||
Asp | nd a | Nd a | 0.06 |
Thr | 0.06 | 0.07 | 0.12 |
Ser | 0.04 | 0.05 | nd a |
Glu | nd a | 0.01 | 0.09 |
Gly | 0.03 | 0.03 | 0.14 |
Cys | 0.02 | 0.05 | 0.08 |
Val | 0.07 | 0.08 | 0.08 |
Met | nd a | 0.07 | 0.09 |
Ile | 0.01 | 0.02 | 0.01 |
Lei | 0.01 | 0.02 | 0.04 |
Tyr | 0.01 | 0.03 | 0.04 |
Phe | 0.01 | 0.01 | 0.04 |
Lys | 0.01 | 0.01 | 0.03 |
His | nd a | 0.01 | 0.01 |
Arg | nd a | 0.01 | 0.04 |
Monosaccharide | R.T. (min) | Linear Range (mg/mL) | Regression Equation | R2 | LOD (μg/mL) |
---|---|---|---|---|---|
d-Ribose | 6.05 | 0.01–0.40 | Y = 7.88 × 103X − 2.15 × 105 | 0.9998 | 0.45 |
l-Rhamnose | 6.16 | 0.01–0.40 | Y = 6.19 × 103X − 1.34 × 105 | 0.9997 | 0.45 |
l-Arabinose | 6.21 | 0.01–0.40 | Y = 6.42 × 103X − 1.12 × 105 | 0.9999 | 0.45 |
d-Xylose | 6.32 | 0.01–0.40 | Y = 7.01 × 103X − 1.20 × 105 | 0.9999 | 0.45 |
d-Mannose | 8.41 | 0.01–0.40 | Y = 5.31 × 103X − 1.79 × 105 | 0.9988 | 0.50 |
d-Glucose | 8.51 | 0.01–0.40 | Y = 4.60 × 103X − 1.06 × 105 | 0.9997 | 0.50 |
d-Galactose | 8.61 | 0.01–0.40 | Y = 5.51 × 103X − 1.09 × 105 | 0.9998 | 0.50 |
Polysaccharide | Monosaccharide (mol%) | ||||||
---|---|---|---|---|---|---|---|
Ribose | Rhamnose | Arabinose | Xylose | Mannose | Glucose | Galactose | |
PKP | 2.16 | 11.25 | 13.78 | 3.84 | 17.62 | 17.24 | 34.11 |
PSP | 2.11 | 2.67 | 35.54 | 5.07 | 15.48 | 16.61 | 22.52 |
PAP | 1.84 | 2.05 | 50.25 | 4.32 | 12.60 | 10.47 | 18.47 |
Monosaccharide | Average recovery (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
PKP | PSP | PAP | |||||||
Spiked level (mg/mL) | Spiked level (mg/mL) | Spiked level (mg/mL) | |||||||
0.02 | 0.10 | 0.20 | 0.02 | 0.10 | 0.20 | 0.02 | 0.10 | 0.20 | |
d-Ribose | 85.00 (11.2) | 89.66 (7.8) | 90.52 (2.4) | 74.55 (4.5) | 85.06 (3.3) | 89.57 (2.2) | 89.05 (7.6) | 87.52 (6.0) | 88.98 (9.7) |
l-Rhamnose | 103.80 (13.3) | 87.94 (9.9) | 86.35 (2.8) | 82.8 (2.7) | 90.44 (1.6) | 90.89 (4.2) | 88.55 (20.4) | 91.74 (7.2) | 82.02 (11.9) |
l-Arabinose | 97.20 (9.8) | 94.44 (3.2) | 91.24 (5.3) | 110.4 (11.3) | 104.94 (3.6) | 94.87 (13.2) | 100.45 (10.8) | 109.74 (6.7) | 89.87 (8.0) |
d-Xylose | 91.10 (5.2) | 93.64 (5.4) | 92.23 (1.4) | 79.25 (7.1) | 89.99 (4.8) | 91.45 (2.0) | 92.25 (1.9) | 98.26 (3.9) | 92.03 (0.9) |
d-Mannose | 87.50 (3.4) | 89.66 (4.4) | 88.68 (3.2) | 92.60 (20.7) | 93.75 (5.3) | 97.35 (3.6) | 90.50 (13.6) | 94.10 (3.7) | 84.12 (3.4) |
d-Glucose | 96.20 (11.2) | 89.00 (10.6) | 88.10 (2.4) | 93.30 (17.0) | 83.55 (1.3) | 93.09 (0.7) | 91.10 (6.8) | 99.85 (2.4) | 82.37 (6.9) |
d-Galactose | 65.40 (14.2) | 89.96 (8.5) | 87.09 (4.8) | 108.05 (16.1) | 103.28 (0.4) | 95.92 (6.1) | 93.70 (13.7) | 102.80 (8.6) | 88.33 (0.8) |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xu, R.-B.; Yang, X.; Wang, J.; Zhao, H.-T.; Lu, W.-H.; Cui, J.; Cheng, C.-L.; Zou, P.; Huang, W.-W.; Wang, P.; et al. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones. Int. J. Mol. Sci. 2012, 13, 14262-14277. https://doi.org/10.3390/ijms131114262
Xu R-B, Yang X, Wang J, Zhao H-T, Lu W-H, Cui J, Cheng C-L, Zou P, Huang W-W, Wang P, et al. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones. International Journal of Molecular Sciences. 2012; 13(11):14262-14277. https://doi.org/10.3390/ijms131114262
Chicago/Turabian StyleXu, Ren-Bo, Xin Yang, Jing Wang, Hai-Tian Zhao, Wei-Hong Lu, Jie Cui, Cui-Lin Cheng, Pan Zou, Wei-Wei Huang, Pu Wang, and et al. 2012. "Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones" International Journal of Molecular Sciences 13, no. 11: 14262-14277. https://doi.org/10.3390/ijms131114262